首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dynamical stability of 16 multiple stars is analyzed using Monte Carlo simulations with allowance for the errors in the observational data. The analysis was carried out by varying the uncertainties in the initial observational data. Six different stability criteria were considered, and the dynamical evolution was studied using numerical simulations. Eleven of the systems are probably stable, whereas five systems (HD 40887, HD 136176, HD 150680, HD 217675, and HD 222326) are probably unstable (the probability that they are unstable is 0.94 or more accordingt o the results of forward and backward simulations over intervals of 106 yr). The results of the simulations were most consistent with the criteria of Mardling-Aarseth (the correlation coefficient between the probabilities of disruption inferred from the stability criterion and numerical integration was r = 0.998), Valtonen-Karttunen (r = 0.998), and Eggleton-Kiseleva (r = 0.997). In about 92–93% of all cases, these criteria yield results that are consistent with the numerical simulations. These criteria also yield high disruption probabilities for the unstable systems. Scenarios for the formation of such systems are discussed: temporary capture of a field star by a close binary, perturbation of a stable multiple system by a massive field object, and disruption of small stellar groups or clusters. The probabilities that these scenarios are realized are analyzed.  相似文献   

2.
Criteria for stability of triple systems are studied and compared with the results of numerical simulations obtained for model triple systems and observed multiple stars. The results for the stability analyses using two new criteria—those of Aarseth and of Valtonen et al.—agree with the simulation results in 98% of cases. Thus, these criteria can be used to analyze the stability of systems for which direct modeling of their dynamical evolution is difficult (for example, because not all orbital parameters for their subsystems are known). The last published version of the “Multiple-Star Catalog” of Tokovinin is analyzed to search for systems that may be unstable according to the two new criteria. More detailed studies are carried out for the HD 284419 (T Tau) system. The parameters of the apparent motion method is used to obtain new orbital solutions for this system. The regions of dynamical stability of the system as functions of the orbital parameters are estimated. It is not possible to determine a unique solution for the orbit with the available data; for periods shorter than 300 yr and longer than 5500 yr, the probability of decay of the system on time scales less than 107 yr is high. This conclusion is supported by the application of the stability criteria, as well as direct modeling of the system’s dynamical evolution.  相似文献   

3.
The structures of plasma flows in close binary systems whose accretors have strong intrinsic magnetic fields are studied. A close binary system with the parameters of a typical polar is considered. The results of three-dimensional numerical simulations of the matter flow from the donor into the accretor Roche lobe are presented. Special attention is given to the flow structure in the vicinity of the inner Lagrangian point, where the accretion flow is formed. The interaction of the accretion-flow material from the donor’s envelope with the magnetic field of the accretor results in the formation of a hierarchical structure of the magnetosphere, because less dense areas of the accretion flow are stopped by the magnetic field of the white dwarf earlier than more dense regions. Taking into account this kind of magnetosphere structure can affect analysis results and interpretation of the observations.  相似文献   

4.
Possible paths for the formation of Ap/Bp stars—massive main-sequence stars with strong magnetic fields—are analyzed based on modern theories for the evolution of single and binary stars. Assuming that the strong magnetic fields of these stars are the main reason for their comparatively slow axial rotation and the observed anomalies in the chemical compositions of their atmospheres, possible origins for these high magnetic fields are considered. Analysis of several possible scenarios for the formation of these stars leads to the conclusion that their surface magnetic fields are probably generated in the convective envelopes of the precursor stars. These precursors may be young, single stars with masses 1.5–3 M that formed at the peripheries of forming star clusters and ended their accretion at the Hayashi boundary, or alternatively close binaries whose components have convective envelopes, whose merger leads to the formation of an Ap/Bp star. Arguments are presented supporting the view that the merger of close binaries is the main channel for the formation of Ap/Bp stars, and a detailed analysis of this scenario is presented. The initial major axes of the merging binary systems must be in the range 6–12 R , and the masses of their components in the range 0.7–1.5 M . When the merging components possess developed convective envelopes and fairly strong initial magnetic fields, these can generate powerful magnetic fields “inherited” by the products of the merger—Ap/Bp stars. The reason the components of the close binaries merge is a loss of angular momentum via the magnetic stellar winds of the components.  相似文献   

5.
Numerical simulations of the chemical evolution of disk galaxies taking into account the influence of Population III stars are considered. The probability that stars with peculiar chemical compositions are present in the solar neigborhood is analyzed, and possibilities for their detection considered. For various assumptions about the slope of the initial mass function for Population III stars and the critical metallicity, the radius surrounding the Sun containing at least one such star is 10–12 pc. Such objects could be studied using modern large telescopes. The influence of Population III stars on the chemical evolution of disk galaxies is investigated. Taking into account the first stars in early stages leads to an earlier onset of chemical enrichment of the ISM and a characteristic chemical composition of the gas, but all traces of this enrichment have disappeared by the current epoch.  相似文献   

6.
Results of numerical modeling of the gas dynamics ofmaterial in the envelopes of T Tauri binary stars with a small component mass ratios (q = 0.08) are reported. In such systems, the less massive component is moving at a supersonic velocity, and the more massive component can move with either a subsonic or supersonic velocity. The modeling results show that the morphology of the flow changes substantially in the transition from supersonic to subsonic motion of the massive component. In particular, one of the two bow shocks vanishes, flows ofmaterial in the system are redistributed, and the characteristics of the accretion disks change. In addition, the effect of the change in the accretion mode on the evolution of the binary system and the possibility of recovering some parameters of the system from observational manifestations of shocks in the circumstellar envelope are considered.  相似文献   

7.
We have searched for protostellar or protoplanetary structures in the vicinity of young T Tauri stars using a technique that is able to distinguish long-period components of the observed light curves. We perform a statistical spectral analysis of the one-year mean light curves of three selected stars (T Tau, DI Cep, and SU Aur) and plot synthetic light curves for the most reliable period of each star. In a first approximation, the results show a good coincidence between our synthetic light curves and the original light curves, supporting the hypothesis that protostellar or protoplanetary structures are present in the studied systems. An analysis of the 0.36–20 µm spectral energy distributions of the program stars also leads to the conclusion that infrared anomalies for young stars are most likely due to thermal radiation from not-yet-formed companions in the vicinity of the star.  相似文献   

8.
During the three flood seasons following the Wenchuan earthquake in 2008, two catastrophic groups of debris flow events occurred in the earthquake-affected area: the 2008-9-24 debris flow events, which had a serious impact on rebuilding; and the 2010-8-13/14 debris flow events, which destroyed much of the progress made in rebuilding. The Wenjia gully is a typical post-earthquake debris flow gully and at least five debris flows have occurred there. As far as the 2010-8-13 debris flow is concerned, the deposits of the Wenjia gully debris flow reached a volume of 3.1 × 106 m3 in volume and hundreds of newly built houses were buried. This study took the Wenjia gully debris flow as an example and discussed the formation and characteristics of post-earthquake debris flow on the basis of field investigations and a remote sensing interpretation. The conclusions drawn from the investigation and analysis were as follows: (1) Post-earthquake debris flows were a joint result of both the earthquake and heavy rainfall. (2) Gully incision and loose material provision are key processes in the initiation and occurrence of debris flows and a cycle can be presented as the following process: runoff—erosion—collapse—engulfment—debris flow—further erosion—further collapse—further engulfment—debris flow enlargement. (3) The amount of rainfall that triggered debris flows from the Wenjia gully was significantly less than the average daily rainfall, while the intraday rainfall threshold decreased by at least 23.3%. (4) The occurrence mechanism of Wenjia gully debris flow was an erosion type and there was a positive relationship between debris flow magnitude and rainfall, which fitted an exponential model. (5) There were five representative characteristics of Wenjia gully debris flow: the long duration of the occurring process; the long distance of deposition chain conversion during the process of damage; magnification in the scale of debris flow; and the high frequency of debris flow events.  相似文献   

9.
Abstract—Currently, hot Jupiters have extended gaseous (ionospheric) envelopes extending far beyond the Roche lobe. The envelopes are loosely bound to the planet and are subject to a strong influence by stellar wind fluctuations. Since hot Jupiters are close to the parent star, the magnetic field of the stellar wind is an important factor which defines the structure of their magnetospheres. For a typical hot Jupiter, the velocity of stellar wind plasma flowing around the atmosphere is close to the Alfvén velocity. Thus, fluctuations of the stellar wind parameters (density, velocity, magnetic field) can affect conditions for the formation of the bow shock around a hot Jupiter, such as transforming the flow from sub-Alfvén to super-Alfvén regime and back. The study results of three-dimensional numerical MHD simulations confirm that, in a hot Jupiter’s envelope located near the Alfvén point of the stellar wind, both the disappearance and appearance of a detached shock can occur under the influence of a coronal mass ejection. The study also shows that this process can affect the observational manifestations of a hot Jupiter, including the radiation flux in the spectrum’s hard region.  相似文献   

10.
Results of three-dimensional gas-dynamical numerical simulations of the structure of matter flows in semi-detached binary systems with various component-mass ratios are considered. The main elements of the flows in the models studied are described. The characteristics of density waves inside the accretion disk for various component-mass ratios are considered. The influence of the precessional density wave on the development of instability in the accretion disks and the characteristics of developing turbulence are analyzed. Values of the Shakura–Syunyaev coefficient α for the simulated systems are calculated.  相似文献   

11.

Results from experiments on the radial distribution of the magnetic fields in axial plasma flows formed during the compression of a plasma–current sheath carried out at the KPF-4-PHOENIX plasmafocus installation are presented. The plasma flows were generated in a discharge with stationary filling of the chamber with a working gas of argon or hydrogen, and also with a pulsed injection of argon. Analysis of the radial profiles of the magnetic field distribution and their time variations are used to localize regions of trappedmagnetic field, as well as regions where a return current flows at the periphery of the plasma flow. It is shown that the transverse (radial) size of the plasma flow depends on the density of the ambient medium (background gas) through which it propagates. These experiments were carried out in the framework of a project on laboratory simulations of non-relativistic jets from young stars.

  相似文献   

12.
The results of three-dimensional MHD numerical simulations are used to investigate the characteristic properties of the magnetic-field structures in the accretion disks of semi-detached binary systems. It is assumed that the intrinsic magnetic field of the accretor star is dipolar. Turbulent diffusion of the magnetic field in the disk is taken into account. The SS Cyg system is considered as an example. The results of the numerical simulations show the intense generation of a predominantly toroidal magnetic field in the accretion disk. Magnetic zones with well defined structures for the toroidal magnetic field form in the disk, which are separated by current sheets in which there ismagnetic reconnection and current dissipation. Possible observational manifestations of such structures are discussed. It is shown that the interaction of a spiral precessional wave with the accretor’s magnetosphere could lead to quasi-periodic oscillations of the accretion rate.  相似文献   

13.
Accretion disks in binary systems can experience hydrodynamical influences at both their inner and outer edges. The former is typical for protoplanetary disks around young T Tauri stars, while the latter is typical for circumstellar disks in close binaries. This influence excites perturbations with various scales and amplitudes in the disk. The nonlinear evolution of perturbations with a finite, but small amplitude against the background of a sub-Keplerian flow is investigated. Nonlinear effects at the fronts of perturbation waves lead to the formation of discontinuities in the density and radial velocity; i.e., to formation of shocks. The tangential flow in the neighborhood of the shock becomes equivalent to a flow in a boundary layer. Due to an instability of the tangential flow, the disk becomes turbulent. The characteristics of the turbulence depend on the parameters of the perturbations, but the Shakura–Syunyaev α parameter does not exceed ~0.1.  相似文献   

14.
We have analyzed light curves from the MOST satellite for the two active dwarfs ɛ Eri and κ Cet. Our maps of the stellar surface-temperature inhomogeneities were obtained with no a priori assumptions about the shape, configuration, and number of spots. We find variations of the surface-temperature inhomogeneities with time, also on time scales about equal to their rotation periods. We consider a model of a spotted star with two types of surface inhomogeneities—spots and related plage fields—and demonstrate that the best agreement between the theoretical and observed light curves is achieved for small ratios of the plage-field area to the area of cool spots. This conclusion indicates that long-term brightness variations of stars younger than the Sun are mainly due to variable spots on their surfaces, while the contribution from plage fields becomes more significant for older stars.  相似文献   

15.
We analyze the dynamical stability of the hierarchical quadruple systems HD 68255/6/7 and HD 76644 via numerical integration of the equations of motion of the four-body problem, with a chainlike regularization of close stellar interactions. The observational errors were taken into account using Monte Carlo simulations, assuming that they possessed a Gaussian distribution. HD 68255/6/7 is probably stable, while HD 76644 is unstable with a probability exceeding 0.97 and with a disruption time of no more than 105 years. The influence of the observational errors and possible scenarios for the formation of unstable multiple stars are discussed.  相似文献   

16.
The stability of multiple systems with known orbital elements and with subsystems occupying adjacent hierarchy levels is analyzed using six stability criteria and numerical simulations of their dynamical evolution. All the stability criteria considered are in qualitative agreement with the numerical computations. Of the 16 systems studied, 11 are confirmed to be stable and five (HD 40887, HD 136176, HD 150680, HD 217675, and HD 222326) may be unstable on time scales of ~106 yr or less. The small dynamical ages of the unstable systems may indicate that they have captured components during encounters between close binaries and field or moving cluster stars. The instability could also result from the perturbation of a stable system when it approaches a massive object (star, black hole, or molecular cloud). It is possible that some of the unstable systems are remnants of small clusters or stellar groups.  相似文献   

17.
The disturbance of mechanical and thermal equilibria in the upper shell of the Earth as a result of mantle or local within-plate processes related to periodic tectonic activity gives rise to the formation of convective flows in the low-viscosity asthenosphere. These flows affect the lithosphere and create domains of subsidence and uplift, which can continue to develop long after the cessation of active periods. If the density of the lithosphere does not decrease with depth, then small-scale flows increase uplift in zones of compression of the continental lithosphere and create domains of extension at their margins. In our opinion, small-scale convection is the main geodynamic factor that forms foredeeps. The results of detailed numerical modeling of foredeep formation at the margins of adjoining orogens are presented in the current paper. In order to set the initial conditions for the stage of continental collision, the precollision stages of the foldbelt evolution are considered, including the stage of trough formation on the thinned continental crust or on the oceanic lithosphere and the stage of sedimentary basin formation; depending on the degree of extension, this can be an inner sea or a passive continental margin. Such initial conditions were used in modeling of the compression stage (continental collision), when the orogen-foredeep system is formed. The parameters of the model and the tectonic processes are chosen so as to bring the results of numerical computation in line with the data on the Greater Caucasus and northern Forecaucasus, including the thickness of the crustal layers and sedimentary cover, structure of the foredeeps, rate of tectonic subsidence, heat flow, etc. Comparison of the numerical modeling results with the formation history of the Caucasus foredeeps confirms that the first stage of regional compression of the Greater Caucasus took place before the deposition of the Maikop sediments. At least three compression stages followed: 16.6–15.8 Ma (Tarchanian), 14.3–12.3 Ma (Konkian-early Sarmatian), and 7.0–5.2 Ma (Pontian). The next stage of regional compression is apparently occurring at present.  相似文献   

18.
The properties of gravitationally bound clouds (halos) of dark matter derived via numerical simulations of the distribution of dark matter in the Universe are investigated. The analysis makes use of a catalog of halos obtained in the European “MareNostrum Universe” project, which has achieved a better balance between resolution and representativeness than catalogs used earlier for similar studies. This has made it possible to refine the main tendencies displayed by the evolution of the halo masses and the angular velocities and density profiles of the halos. The results are compared with the newest available observational data and with known results obtained earlier in numerical simulations with lower resolution and using smaller samples of halos, making it possible to trace the influence of these factors on the results obtained. Disagreements between observations and numerical models obtained in earlier studies are confirmed, and possible ways to explain them discussed.  相似文献   

19.
We present a new electronic version of the General Catalog of Variable Stars (GCVS) based on the new IAU name list of confirmed variable stars. The catalog contains 1270 stars, most of them contained earlier in the New Catalog of Suspected Variable Stars or its supplement. A number of recent studies—including those by authors of the catalog, who investigated many stars using data from modern automatic surveys, determined light-curve elements for periodic stars, and plotted numerous light curves—have made it possible to move these stars to the GCVS. Among the catalog objects, 24 stars are novae or other unusual variable stars that acquired their GCVS names out of the usual order, upon communication from the Bureau of Astronomical Telegrams of the International Astronomical Union. We present the GCVS names, coordinates, classifications (in two forms: the GCVS system and a new, proposed system), brightness-variation limits, and light-curve elements for the catalog stars, as well as bibliographic references and remarks when necessary. We discuss several catalog stars that are of astrophysical interest or caused problems during the compilation of the catalog.  相似文献   

20.
This paper presents a computational method able to effectively model both the simultaneous processes typically observed in backward erosion piping, ie, the pipe tip propagation and the conduit cross-section enlargement. The numerical method is based on the novel formulation of a problem of localized erosion along a line propagating in a multidimensional porous medium. In this line, a conduit with evolving transverse size is embedded, which conveys a multiphase flow. The two systems, porous medium and pipe, are bridged by exchange terms of multiphase fluid mass and by a shared fluid pressure field. On the contrary, different fields are considered to describe flows, which are assumed as Darcian in the porous medium and turbulent in the conduit. These two flows drive pipe propagation and enlargement, respectively, as modeled by means of proper erosion kinetic laws. The corresponding numerical formulation is based on the combination between one- and multidimensional finite elements, to model the erosion conduit and the porous medium, respectively. Several simulations are proposed to demonstrate the ability of the proposed approach in reproducing available experimental data of real-scale tests on levees. Our results point out the crucial role played by the combined influence of pipe propagation and enlargement, as well as of three-dimensional (3D) effects. We also assess the mesh independence of the proposed numerical solution, particularly as concerns the calculated pipe propagation history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号