首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在医院、教学楼等建筑中广泛采用隔震技术,能降低地震对上部结构的破坏作用。虽然隔震技术经过几十年的发展已趋于成熟,但环境及其他荷载对隔震结构性能的影响规律、结构设计的合理性以及震后结构状态评估等问题,仍需建立隔震结构健康监测系统对施工、运营期的结构响应进行监测,并对其进行评估与验证。首先,针对基础隔震结构的特点,研究了基础隔震结构的主要监测内容;在此基础上提出基础隔震结构健康监测系统的总体设计要求及原则,根据不同监测对象(整体与局部监测量)给出基础隔震结构传感器布置原则和数据采集系统软硬件设计原则,提出基础隔震结构设计验证与安全评定方法;最后给出基础隔震结构健康监测值得进一步研究的问题。  相似文献   

2.
杨迪雄  赵岩 《地震学报》2010,32(5):579-587
选择台湾集集地震和美国北岭地震的近断层地震动记录作为输入,考察了近断层地震动破裂向前方向性与滑冲效应引起的两种不同速度脉冲运动对单自由度体系和长周期橡胶支座隔震建筑结构抗震性能的影响.反应谱分析表明,破裂向前方向性与滑冲效应对工程结构地震响应的影响是随结构周期变化的.在中短周期段,含破裂向前方向性效应地震动的谱加速度值大于含滑冲效应地震动的谱加速度值;而在长周期段,含滑冲效应地震动的谱加速度大于含破裂向前方向性效应的谱加速度值.并且,与无脉冲地震动作用相比,含破裂向前方向性与滑冲效应脉冲的近断层地震动作用下隔震建筑的地震响应显著增大.滑冲效应引起的速度脉冲使隔震建筑底部的层间变形和楼层剪力明显增大,这意味着滑冲效应脉冲比向前方向性效应脉冲对长周期建筑结构的破坏更具危害性.  相似文献   

3.
The accurate analysis of the seismic response of isolated structures requires incorporation of the flexibility of supporting soil.However,it is often customary to idealize the soil as rigid during the analysis of such structures.In this paper,seismic response time history analyses of base-isolated buildings modelled as linear single degree-of-freedom(SDOF) and multi degree-of-freedom(MDOF) systems with linear and nonlinear base models considering and ignoring the flexibility of supporting soil are conducted.The flexibility of supporting soil is modelled through a lumped parameter model consisting of swaying and rocking spring-dashpots.In the analysis,a large number of parametric studies for different earthquake excitations with three different peak ground acceleration(PGA) levels,different natural periods of the building models,and different shear wave velocities in the soil are considered.For the isolation system,laminated rubber bearings(LRBs) as well as high damping rubber bearings(HDRBs) are used.Responses of the isolated buildings with and without SSI are compared under different ground motions leading to the following conclusions:(1) soil flexibility may considerably influence the stiff superstructure response and may only slightly influence the response of the flexible structures;(2) the use of HDRBs for the isolation system induces higher structural peak responses with SSI compared to the system with LRBs;(3) although the peak response is affected by the incorporation of soil flexibility,it appears insensitive to the variation of shear wave velocity in the soil;(4) the response amplifications of the SDOF system become closer to unit with the increase in the natural period of the building,indicating an inverse relationship between SSI effects and natural periods for all the considered ground motions,base isolations and shear wave velocities;(5) the incorporation of SSI increases the number of significant cycles of large amplitude accelerations for all the stories,especially for earthquakes with low and moderate PGA levels;and(6) buildings with a linear LRB base-isolation system exhibit larger differences in displacement and acceleration amplifications,especially at the level of the lower stories.  相似文献   

4.
For the public welfare and safety, buildings such as hospitals, industrial facilities, and technology centers need to remain functional at all times; even during and after major earthquakes. The values of these buildings themselves may be insignificant when compared to the cost of loss of operations and business continuity. Seismic isolation aims to protect both the integrity and the contents of a structure. Since the tolerable acceleration levels are relatively low for continued services of vibration-sensitive high-tech contents, a better understanding of acceleration response behaviors of seismically isolated buildings is necessary. In an effort to shed light to this issue, following are investigated via bi-directional time history analyses of seismically isolated benchmark buildings subject to historical earthquakes: (i) the distribution of peak floor accelerations of seismically isolated buildings subject to seismic excitations in order to find out which floors are likely to sustain the largest accelerations; (ii) the influence of equivalent linear modeling of isolation systems on the floor accelerations in order to find out the range of possible errors introduced by this type of modeling; (iii) the role of superstructure damping in reducing floor accelerations of seismically isolated buildings with flexible superstructures in order to find out whether increasing the superstructure damping helps reducing floor accelerations notably. Influences of isolation system characteristics and superstructure flexibility are both taken into account.  相似文献   

5.
Strength-reduction factors that reduce ordinates of floor spectra acceleration due to nonlinearity in the secondary system are investigated. In exchange for permitting some inelastic deformation to occur in the secondary system or its supports, these strength reduction factors allow to design the nonstructural elements or their supports for lateral forces that are smaller than those that would be required to maintain them elastically during earthquakes. This paper presents the results of a statistical analysis on component strength-reduction factors that were computed considering floor motions recorded on instrumented buildings in California during various earthquakes. The effect of yielding in the component or its anchorage/bracing in offering protection against excessive component acceleration demands is investigated. It is shown that strength-reduction factors computed from floor motions are significantly different from those computed from ground motions recorded on rock or on firm soils. In particular, they exhibit much larger reductions for periods tuned or nearly tuned to the dominant modal periods of the building response. This is due to the large differences in frequency content of ground motions and floor motions, with the former typically characterized by wide-band spectra whereas the latter are characterized by narrow-band spectra near periods of dominant modes in the response of the building. Finally, the study provides approximate equations to estimate component strength-reduction factors computed through nonlinear regression analyses.  相似文献   

6.
In this study, attempts are made to investigate the effects of inertial soil–structure interaction (SSI) on damping coefficients subjected to pulse-like near-fault ground motions. To this end, a suit of 91 pulse-like near-fault ground motions is adopted. The soil and superstructure are idealized employing cone model and single-degree-of-freedom (SDOF) oscillator, respectively. The results demonstrate that soil flexibility reduces and amplifies the damping coefficients for structural viscous damping levels higher and lower than 5%, respectively. The coefficients reach one for both acceleration and displacement responses in cases of dominant SSI effects. The effect of structure dimensions on damping confidents are found insignificant. Moreover, damping coefficients of displacement responses are higher than those of acceleration responses for both fixed-base and flexible-base systems. Evaluation of damping correction factor introduced by FEMA 440 shows its inefficiency to predict acceleration response of soil–structure systems under pulse-like near-fault ground motions. Soil flexibility makes the damping correction factor of moderate earthquakes more pronounced and a distinctive peak value is reported for cases with dominant SSI effects.  相似文献   

7.
In many parts of the world, the repetition of medium–strong intensity earthquake ground motions at brief intervals of time has been observed. The new design philosophies for buildings in seismic areas are based on multi‐level design approaches, which take into account more than a single damageability limit state. According to these approaches, a sequence of seismic actions may produce important consequences on the structural safety. In this paper, the effects of repeated earthquake ground motions on the response of single‐degree‐of‐freedom systems (SDOF) with non‐linear behaviour are analysed. A comparison is performed with the effect of a single seismic event on the originally non‐damaged system for different hysteretic models in terms of pseudo‐acceleration response spectra, behaviour factor q and damage parameters. The elastic–perfect plastic system is the most vulnerable one under repeated earthquake ground motions and is characterized by a strong reduction of the q‐factor. A moment resisting steel frame is analysed as well, showing a reduction of the q‐factor under repeated earthquake ground motions even larger than that of an equivalent SDOF system. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
This paper reports on an investigation of the seismic response of base-isolated reinforced concrete buildings, which considers various isolation system parameters under bidirectional near-fault and far-fault motions. Three-dimensional models of 4-, 8-, and 12-story base-isolated buildings with nonlinear effects in the isolation system and the superstructure are investigated, and nonlinear response history analysis is carried out. The bounding values of isolation system properties that incorporate the aging effect of isolators are also taken into account, as is the current state of practice in the design and analysis of base-isolated buildings. The response indicators of the buildings are studied for near-fault and far-fault motions weight-scaled to represent the design earthquake (DE) level and the risk-targeted maximum considered earthquake (MCER) level. Results of the nonlinear response history analyses indicate no structural damage under DE-level motions for near-fault and far-fault motions and for MCER-level far-fault motions, whereas minor structural damage is observed under MCER-level near-fault motions. Results of the base-isolated buildings are compared with their fixed-base counterparts. Significant reduction of the superstructure response of the 12-story base-isolated building compared to the fixed-base condition indicates that base isolation can be effectively used in taller buildings to enhance performance. Additionally, the applicability of a rigid superstructure to predict the isolator displacement demand is also investigated. It is found that the isolator displacements can be estimated accurately using a rigid body model for the superstructure for the buildings considered.  相似文献   

9.
Usually, buildings with seismic isolation are designed to comply with an operational building performance level after strong earthquakes. This approach, however, may limit the use of seismic isolation for the seismic rehabilitation of existing buildings with low lateral strength or substandard details, because it often requires invasive strengthening measures in the superstructure or the use of expensive custom‐made devices. In this paper, an alternative approach for the seismic rehabilitation of existing buildings with seismic isolation, based on the acceptance of limited plastic deformations in the superstructure under strong earthquakes, is proposed and then applied to a real case study, represented by a four‐storey RC frame building. Nonlinear response‐time histories analyses of an accurate model of the case‐study building are carried out to evaluate the seismic performances of the structure, comparing different rehabilitation strategies with and without seismic isolation. Initial costs of the intervention and possible (future) repair costs are then estimated. Based on the results of this study, values of the behavior factor (i.e. response modification factor) higher than those adopted in the current codes for base‐isolated buildings are tentatively proposed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
The calculated nonlinear structural responses of a building can vary greatly, even if recorded ground motions are scaled to the same spectral acceleration at a building's fundamental period. To reduce the variation in structural response at a particular ground‐motion intensity, this paper proposes an intensity measure (IMcomb) that accounts for the combined effects of spectral acceleration, ground‐motion duration, and response spectrum shape. The intensity measure includes a new measure of spectral shape that integrates the spectrum over a period range that depends on the structure's ductility. The new IM is efficient, sufficient, scalable, transparent, and versatile. These features make it suitable for evaluating the intensities of measured and simulated ground motions. The efficiency and sufficiency of the new IM is demonstrated for the following: (i) elastic‐perfectly plastic single‐degree‐of‐freedom (SDOF) oscillators with a variety of ductility demands and periods; (ii) ductile and brittle deteriorating SDOF systems with a variety of periods; and (iii) collapse analysis for 30 previously designed frames. The efficiency is attributable to the inclusion of duration and to the ductility dependence of the spectral shape measure. For each of these systems, the transparency of the intensity measure made it possible to identify the sensitivity of structural response to the various characteristics of the ground motion. Spectral shape affected all structures, but in particular, ductile structures. Duration only affected structures with cyclic deterioration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
This study presents a seismic fragility analysis of low‐rise masonry in‐filled (MI) reinforced concrete (RC) buildings using a proposed coefficient‐based spectral acceleration method. The coefficient‐based method, without requiring any complicated finite element analysis, is a simplified procedure for assessing the spectral acceleration demand (or capacity) of buildings subjected to earthquakes. This paper begins with a calibration of the proposed coefficient‐based method for low‐rise MI RC buildings using published experimental results obtained from shaking table tests. Spectral acceleration‐based fragility curves for low‐rise MI RC buildings under various inter‐story drift limits are then constructed using the calibrated coefficient‐based method. A comparison of the experimental and estimated results indicates that the simplified coefficient‐based method can provide good approximations of the spectral accelerations at peak loads of low‐rise MI RC buildings, if a proper set of drift‐related factors and initial fundamental periods of structures are used. Moreover, the fragility curves constructed using the coefficient‐based method can provide a satisfactory vulnerability evaluation for low‐rise MI RC buildings under a given performance level. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
A comprehensive parametric study on the inelastic seismic response of seismically isolated RC frame buildings, designed for gravity loads only, is presented. Four building prototypes, with 23 m × 10 m floor plan dimensions and number of storeys ranging from 2 to 8, are considered. All the buildings present internal resistant frames in one direction only, identified as the strong direction of the building. In the orthogonal weak direction, the buildings present outer resistant frames only, with infilled masonry panels. This structural configuration is typical of many existing RC buildings, realized in Italy and other European countries in the 60s and 70s. The parametric study is based on the results of extensive nonlinear response‐time history analyses of 2‐DOF systems, using a set of seven artificial and natural seismic ground motions. In the parametric study, buildings with strength ratio (Fy/W) ranging from 0.03 to 0.15 and post‐yield stiffness ratio ranging from 0% to 6% are examined. Three different types of isolation systems are considered, that is, high damping rubber bearings, lead rubber bearings and friction pendulum bearings. The isolation systems have been designed accepting the occurrence of plastic hinges in the superstructure during the design earthquake. The nonlinear response‐time history analyses results show that structures with seismic isolation experience fewer inelastic cycles compared with fixed‐base structures. As a consequence, although limited plastic deformations can be accepted, the collapse limit state of seismically isolated structures should be based on the lateral capacity of the superstructure without significant reliance on its inherent hysteretic damping or ductility capacity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents an innovative set of high‐seismic‐resistant structural systems termed Advanced Flag‐Shaped (AFS) systems, where self‐centering elements are used with combinations of various alternative energy dissipation elements (hysteretic, viscous or visco‐elasto‐plastic) in series and/or in parallel. AFS systems is developed using the rationale of combining velocity‐dependent with displacement‐dependent energy dissipation for self‐centering systems, particularly to counteract near‐fault earthquakes. Non‐linear time‐history analyses (NLTHA) on a set of four single‐degree‐of‐freedom (SDOF) systems under a suite of 20 far‐field and 20 near‐fault ground motions are used to compare the seismic performance of AFS systems with the conventional systems. It is shown that AFS systems with a combination in parallel of hysteretic and viscous energy dissipations achieved greater performance in terms of the three performance indices. Furthermore, the use of friction slip in series of viscous energy dissipation is shown to limit the peak response acceleration and induced base‐shear. An extensive parametric analysis is carried out to investigate the influence of two design parameters, λ1 and λ2 on the response of SDOF AFS systems with initial periods ranging from 0.2 to 3.0 s and with various strength levels when subjected to far‐field and near‐fault earthquakes. For the design of self‐centering systems with combined hysteretic and viscous energy dissipation (AFS) systems, λ1 is recommended to be in the range of 0.8–1.6 while λ2 to be between 0.25 and 0.75 to ensure sufficient self‐centering and energy dissipation capacities, respectively. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The Friction Pendulum System (FPS) isolator is commonly used as a base isolation system in buildings. In this paper, a new tunable FPS (TFPS) isolator is proposed and developed to act as a semi‐active control system by combining the traditional FPS and semi‐active control concept. Theoretical analysis and physical tests were carried out to investigate the behavior of the proposed TFPS isolator. The experimental and theoretical results were in good agreement, both suggesting that the friction force of the TFPS isolator can be tuned to achieve seismic isolation of the structure. A series of numerical simulations of a base‐isolated structure equipped with the proposed TFPS isolator and subjected to earthquake ground motions were also conducted. In the analyses, the linear quadratic regulator (LQR) method was adopted to control the friction force of the proposed TFPS, and the applicability and effectiveness of the TFPS in controlling the structure's seismic responses were investigated. The simulation results showed that the TFPS can reduce the displacement of the isolation layer without significantly increasing the floor acceleration and inter‐story displacement of the superstructure, confirming that the TFPS can effectively control a base‐isolated structure under earthquake ground motions.  相似文献   

15.
Earthquake simulation technologies are advancing to the stage of enabling realistic simulations of past earthquakes as well as characterizations of more extreme events, thus holding promise of yielding novel insights and data for earthquake engineering. With the goal of developing confidence in the engineering applications of simulated ground motions, this paper focuses on validation of simulations for response history analysis through comparative assessments of building performance obtained using sets of recorded and simulated motions. Simulated ground motions of past earthquakes, obtained through a larger validation study of the Southern California Earthquake Center Broadband Platform, are used for the case study. Two tall buildings, a 20‐story concrete frame and a 42‐story concrete core wall building, are analyzed under comparable sets of simulated and recorded motions at increasing levels of ground motion intensity, up to structural collapse, to check for statistically significant differences between the responses to simulated and recorded motions. Spectral shape and significant duration are explicitly considered when selecting ground motions. Considered demands include story drift ratios, floor accelerations, and collapse response. These comparisons not only yield similar results in most cases but also reveal instances where certain simulated ground motions can result in biased responses. The source of bias is traced to differences in correlations of spectral values in some of the stochastic ground motion simulations. When the differences in correlations are removed, simulated and recorded motions yield comparable results. This study highlights the utility of physics‐based simulations, and particularly the Southern California Earthquake Center Broadband Platform as a useful tool for engineering applications.  相似文献   

16.
The term “spatial variability of seismic ground motions” denotes the differences in the amplitude and phase content of seismic motions. The effect of such spatial variability on the structural response is still an open issue. In-situ experiments may be helpful in order to answer the questions regarding both the quantification of the spatial variability of the ground motion within the dimensions of a structure as well as the effect on its dynamic response. The goal of the present study is to quantify the variability of the seismic ground motion accelerations in the shallow sedimentary basin of Argostoli, Greece, and thereafter to identify its effect on the linear and non-linear elasto-plastic response of a single degree of freedom system in terms of spectral displacements. Around 400 earthquakes are used, recorded by the 21-element very dense seismological array deployed in Argostoli with inter-station spacing ranging from 5 to 160 meters. The seismic motion variability, evaluated in terms of spectral accelerations, is found to be significant and to increase with inter-station distance and frequency. Thereafter, the amplitude variability in terms of spectral displacements, which is indeed the linear response of a single degree of freedom (SDOF) system with various fundamental periods, is compared with the amplitude variability of a SDOF with non-linear elasto-plastic response. The variability of the maximum top displacement of the linear single degree of freedom system is estimated to be on average 12% with larger variabilities to be observed within two narrow frequency ranges (between 1.5 and 1.7 Hz and between 3 and 4 Hz). Such high variabilities are caused by locally edge-generated diffracted surface waves. The non-linear perfectly elasto-platic structural response of the SDOF system shows that although the variability has the same trends as in the case of linear response, it is almost constantly increased by 5%.  相似文献   

17.
The optimal design and effectiveness of three control systems, tuned viscous mass damper(TVMD), tuned inerter damper(TID) and tuned mass damper(TMD), on mitigating the seismic responses of base isolated structures, were systematically studied. First, the seismic responses of the base isolated structure with each control system under white noise excitation were obtained. Then, the structural parameter optimizations of the TVMD, TID and TMD were conducted by using three different objectives. The results show that the three control systems were all effective in minimizing the root mean square value of seismic responses, including the base shear of the BIS, the absolute acceleration of structural SDOF, and the relative displacement between the base isolation floor and the foundation. Finally, considering the superstructure as a structural MDOF, a series of time history analyses were performed to investigate the effectiveness and activation sensitivity of the three control systems under far field and near fault seismic excitations. The results show that the effectiveness of TID and TMD with optimized parameters on mitigating the seismic responses of base isolated structures increased as the mass ratio increases, and the effectiveness of TID was always better than TMD with the same mass ratio. The TVMD with a lower mass ratio was more efficient in reducing the seismic response than the TID and TMD. Furthermore, the TVMD, when compared with TMD and TID, had better activation sensitivity and a smaller stroke.  相似文献   

18.
Effectiveness of a new semiactive independently variable stiffness (SAIVS) device in reducing seismic response of sliding base isolated buildings is evaluated analytically and experimentally. Through analytical and experimental study of force—displacement behaviour of the SAIVS device, it is shown that the device can vary stiffness continuously and smoothly between minimum and maximum stiffness. Passive sliding base isolation systems reduce interstorey drifts and superstructure accelerations, but with increased base displacements, which is undesirable, under large velocity near fault pulse type earthquakes. It is a common practice to incorporate non‐linear passive dampers into the isolation system to reduce bearing displacements. Incorporation of passive dampers, however, may result in increased superstructure accelerations and drifts; while, properly designed passive dampers can be beneficial. A viable alternative is to use semiactive variable stiffness systems, which can vary the period of the sliding base isolated buildings in real time, to simultaneously reduce bearing displacements and superstructure responses further than the passive systems, which deserves investigation. This study investigates the performance of a 1:5 scaled smart sliding base isolated building model equipped with the SAIVS device analytically and experimentally, under near fault earthquakes, by developing a new moving average non‐linear tangential stiffness control algorithm for control of the SAIVS device. The SAIVS device reduces bearing displacements further than the passive cases, while maintaining isolation level forces and superstructure responses at the same level as the passive minimum stiffness case, indicating the significant potential of the SAIVS system. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
In seismic base isolation, most of the earthquake‐induced displacement demand is concentrated at the isolation level, thereby the base‐isolation system undergoes large displacements. In an attempt to reduce such displacement demand, this paper proposes an enhanced base‐isolation system incorporating the inerter, a 2‐terminal flywheel device whose generated force is proportional to the relative acceleration between its terminals. The inerter acts as an additional, apparent mass that can be even 200 times higher than its physical mass. When the inerter is installed in series with spring and damper elements, a lower‐mass and more effective alternative to the traditional tuned mass damper (TMD) is obtained, ie, the TMD inerter (TMDI), wherein the device inertance plays the role of the TMD mass. By attaching a TMDI to the isolation floor, it is demonstrated that the displacement demand of base‐isolated structures can be significantly reduced. Due to the stochastic nature of earthquake ground motions, optimal parameters of the TMDI are found based on a probabilistic framework. Different optimization procedures are scrutinized. The effectiveness of the optimal TMDI parameters is assessed via time history analyses of base‐isolated multistory buildings under several earthquake excitations; a sensitivity analysis is also performed. The enhanced base‐isolation system equipped with optimal TMDI attains an excellent level of vibration reduction as compared to the conventional base‐isolation scheme, in terms not only of displacement demand of the base‐isolation system but also of response of the isolated superstructure (eg, base shear and interstory drifts); moreover, the proposed vibration control strategy does not imply excessive stroke of the TMDI.  相似文献   

20.
Although Singapore is located in a low‐seismicity region, huge but infrequent Sumatran subduction earthquakes might pose structural problems to medium‐ and high‐rise buildings in the city. Based on a series of ground motion simulations of potential earthquakes that may affect Singapore, the 1833 Sumatran subduction earthquake (Mw=9.0) has been identified to be the worst‐case scenario earthquake. Bedrock motions in Singapore due to the hypothesized earthquake are simulated using an extended reflectivity method, taking into account uncertainties in source rupture process. Random rupture models, considering the uncertainties in rupture directivity, slip distribution, presence of asperities, rupture velocity and dislocation rise time, are made based on a range of seismologically possible models. The simulated bedrock motions have a very long duration of about 250 s with a predominant period between 1.8 and 2.5 s, which coincides with the natural periods of medium‐ and high‐rise buildings widely found in Singapore. The 90‐percentile horizontal peak ground acceleration is estimated to be 33 gal and the 90‐percentile horizontal spectral acceleration with 5% damping ratio is 100 gal within the predominant period range. The 90‐percentile bedrock motion would generate base shear force higher than that required by the current design code, where seismic design has yet to be considered. This has not taken into account effects of local soil response that might further amplify the bedrock motion. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号