首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main objective of this study is to assess regional landslide hazards in the Hoa Binh province of Vietnam. A landslide inventory map was constructed from various sources with data mainly for a period of 21 years from 1990 to 2010. The historic inventory of these failures shows that rainfall is the main triggering factor in this region. The probability of the occurrence of episodes of rainfall and the rainfall threshold were deduced from records of rainfall for the aforementioned period. The rainfall threshold model was generated based on daily and cumulative values of antecedent rainfall of the landslide events. The result shows that 15-day antecedent rainfall gives the best fit for the existing landslides in the inventory. The rainfall threshold model was validated using the rainfall and landslide events that occurred in 2010 that were not considered in building the threshold model. The result was used for estimating temporal probability of a landslide to occur using a Poisson probability model. Prior to this work, five landslide susceptibility maps were constructed for the study area using support vector machines, logistic regression, evidential belief functions, Bayesian-regularized neural networks, and neuro-fuzzy models. These susceptibility maps provide information on the spatial prediction probability of landslide occurrence in the area. Finally, landslide hazard maps were generated by integrating the spatial and the temporal probability of landslide. A total of 15 specific landslide hazard maps were generated considering three time periods of 1, 3, and 5 years.  相似文献   

2.
The logistic regression and statistical index models are applied and verified for landslide susceptibility mapping in Daguan County, Yunnan Province, China, by means of the geographic information system (GIS). A detailed landslide inventory map was prepared by literatures, aerial photographs, and supported by field works. Fifteen landslide-conditioning factors were considered: slope angle, slope aspect, curvature, plan curvature, profile curvature, altitude, STI, SPI, and TWI were derived from digital elevation model; NDVI was extracted from Landsat ETM7; rainfall was obtained from local rainfall data; distance to faults, distance to roads, and distance to rivers were created from a 1:25,000 scale topographic map; the lithology was extracted from geological map. Using these factors, the landslide susceptibility maps were prepared by LR and SI models. The accuracy of the results was verified by using existing landslide locations. The statistical index model had a predictive rate of 81.02%, which is more accurate prediction in comparison with logistic regression model (80.29%). The models can be used to land-use planning in the study area.  相似文献   

3.
Of the natural hazards in Turkey, landslides are the second most devastating in terms of socio-economic losses, with the majority of landslides occurring in the Eastern Black Sea Region. The aim of this study is to use a statistical approach to carry out a landslide susceptibility assessment in one area at great risk from landslides: the Sera River Basin located in the Eastern Black Sea Region. This paper applies a multivariate statistical approach in the form of a logistics regression model to explore the probability distribution of future landslides in the region. The model attempts to find the best fitting function to describe the relationship between the dependent variable, here the presence or absence of landslides in a region and a set of independent parameters contributing to the occurrence of landslides. The dependent variable (0 for the absence of landslides and 1 for the presence of landslides) was generated using landslide data retrieved from an existing database and expert opinion. The database has information on a few landslides in the region, but is not extensive or complete, and thus unlike those normally used for research. Slope, angle, relief, the natural drainage network (including distance to rivers and the watershed index) and lithology were used as independent parameters in this study. The effect of each parameter was assessed using the corresponding coefficient in the logistic regression function. The results showed that the natural drainage network plays a significant role in determining landslide occurrence and distribution. Landslide susceptibility was evaluated using a predicted map of probability. Zones with high and medium susceptibility to landslides make up 38.8 % of the study area and are located mostly south of the Sera River Basin and along streams.  相似文献   

4.
The current research presents a detailed landslide susceptibility mapping study by binary logistic regression, analytical hierarchy process, and statistical index models and an assessment of their performances. The study area covers the north of Tehran metropolitan, Iran. When conducting the study, in the first stage, a landslide inventory map with a total of 528 landslide locations was compiled from various sources such as aerial photographs, satellite images, and field surveys. Then, the landslide inventory was randomly split into a testing dataset 70 % (370 landslide locations) for training the models, and the remaining 30 % (158 landslides locations) was used for validation purpose. Twelve landslide conditioning factors such as slope degree, slope aspect, altitude, plan curvature, normalized difference vegetation index, land use, lithology, distance from rivers, distance from roads, distance from faults, stream power index, and slope-length were considered during the present study. Subsequently, landslide susceptibility maps were produced using binary logistic regression (BLR), analytical hierarchy process (AHP), and statistical index (SI) models in ArcGIS. The validation dataset, which was not used in the modeling process, was considered to validate the landslide susceptibility maps using the receiver operating characteristic curves and frequency ratio plot. The validation results showed that the area under the curve (AUC) for three mentioned models vary from 0.7570 to 0.8520 $ ({\text{AUC}}_{\text{AHP}} = 75.70\;\% ,\;{\text{AUC}}_{\text{SI}} = 80.37\;\% ,\;{\text{and}}\;{\text{AUC}}_{\text{BLR}} = 85.20\;\% ) $ ( AUC AHP = 75.70 % , AUC SI = 80.37 % , and AUC BLR = 85.20 % ) . Also, plot of the frequency ratio for the four landslide susceptibility classes of the three landslide susceptibility models was validated our results. Hence, it is concluded that the binary logistic regression model employed in this study showed reasonably good accuracy in predicting the landslide susceptibility of study area. Meanwhile, the results obtained in this study also showed that the statistical index model can be used as a simple tool in the assessment of landslide susceptibility when a sufficient number of data are obtained.  相似文献   

5.
Identification of landslides and production of landslide susceptibility maps are crucial steps that can help planners, local administrations, and decision makers in disaster planning. Accuracy of the landslide susceptibility maps is important for reducing the losses of life and property. Models used for landslide susceptibility mapping require a combination of various factors describing features of the terrain and meteorological conditions. Many algorithms have been developed and applied in the literature to increase the accuracy of landslide susceptibility maps. In recent years, geographic information system-based multi-criteria decision analyses (MCDA) and support vector regression (SVR) have been successfully applied in the production of landslide susceptibility maps. In this study, the MCDA and SVR methods were employed to assess the shallow landslide susceptibility of Trabzon province (NE Turkey) using lithology, slope, land cover, aspect, topographic wetness index, drainage density, slope length, elevation, and distance to road as input data. Performances of the methods were compared with that of widely used logistic regression model using ROC and success rate curves. Results showed that the MCDA and SVR outperformed the conventional logistic regression method in the mapping of shallow landslides. Therefore, multi-criteria decision method and support vector regression were employed to determine potential landslide zones in the study area.  相似文献   

6.
A remote sensing and Geographic Information System-based study has been carried out for landslide susceptibility zonation in the Chamoli region, part of Garhwal Himalayas. Logistic regression has been applied to correlate the presence of landslides with independent physical factors including slope, aspect, relative relief, land use/cover, lithology, lineament, and drainage density. Coefficients of the categories of each factor have been obtained and used to assess the landslide probability value to ultimately categorize the area into various landslide susceptibility zones; very low, low, moderate, high, and very high. The results show that 71.13% of observed landslides fall in 21.96% of predicted very high and high susceptibility zone, which in fact should be the case. Furthermore, lineament first buffer category (0–500 m) and the east and south aspects are the most influential in causing landslides in the region.  相似文献   

7.
Natural Hazards - The article “Landslide susceptibility mapping of the Sera River Basin using logistic regression model,” written by Nussaïbah B. Raja, Ihsan Çiçek, Necla...  相似文献   

8.
The aim of this study is to apply and compare a probability model, frequency ratio and statistical model, and a logistic regression to Sajaroud area, Northern Iran using geographic information system. Landslide locations of the study area were detected from interpretation of aerial photographs and field surveys. Landslide-related factors such as elevation, slope gradient, slope aspect, slope curvature, rainfall, distance to fault, distance to drainage, distance to road, land use, and geology were calculated from the topographic and geology map and LANDSAT ETM satellite imagery. The spatial relationships between the landslide location and each landslide-related factor were analyzed and then landslide susceptibility maps were produced using the frequency ratio and forward stepwise logistic regression methods. Finally, the maps were tested and compared using known landslide locations, and success rates were calculated. Predicted accuracy values for frequency ratio (79.48%) and logistic regression models showed that the map obtained from frequency ratio model is more accurate than the logistic regression (77.4%) model. The models used in this study have shown a great deal of importance for watershed management and land use planning.  相似文献   

9.
This study applied, tested and compared a probability model, a frequency ratio and statistical model, a logistic regression to Damre Romel area, Cambodia, using a geographic information system. For landslide susceptibility mapping, landslide locations were identified in the study area from interpretation of aerial photographs and field surveys, and a spatial database was constructed from topographic maps, geology and land cover. The factors that influence landslide occurrence, such as slope, aspect, curvature and distance from drainage were calculated from the topographic database. Lithology and distance from lineament were extracted and calculated from the geology database. Land cover was classified from Landsat TM satellite imagery. The relationship between the factors and the landslides was calculated using frequency ratio and logistic regression models. The relationships, frequency ratio and logistic regression coefficient were overlaid to make landslide susceptibility map. Then the landslide susceptibility map was compared with known landslide locations and tested. As the result, the frequency ratio model (86.97%) and the logistic regression (86.37%) had high and similar prediction accuracy. The landslide susceptibility map can be used to reduce hazards associated with landslides and to land cover planning.  相似文献   

10.
Landslide susceptibility zonation mapping assists researchers greatly to understand the spatial distribution of slope failure probability in a region. Being extremely useful in reducing landslide hazards, such maps could simply be produced using both qualitative and quantitative methods. In the present study, a multivariate statistical method called ‘logistic regression’ was used to assess landslide susceptibility in Hashtchin region, situated in west of Alborz Mountainsnorthwest of Iran. In this study, two independent variables, categorical (predictor) and continuous, were drawn on together in the model. To identify the region’s landslides use was made of aerial photographs, field studies and topographic maps. To prepare the database of factors affecting the region’s landslides and to determine landslide zones, geographic information system (GIS) was used. Using such information, landslide susceptibility modeling was accomplished. The data related to factors causing landslides were extracted as independent variables in each cell (in 50 m×50 m cells). Then, the whole data were input into the SPSS, Version 18. The prepared database was later analyzed using logistic regression, the forward stepwise method and based on maximum likelihood estimation. Regression equation was determined using obtained constants and coefficients and the landslide susceptibility of the area in grid-cells (pixels) was computed between 0 and 0.9954. The Receiver Operating Characteristic (ROC) curve was used to assess the accuracy of the logistic regression model. The predicting ability of the model was 84.1% given the area under ROC curve. Finally, the degree of success of landslide susceptibility zonation mapping was estimated to be 79%.  相似文献   

11.
The Sibiciu Basin is located in Romania between the Buzău Mountains and the Buzau Subcarpathians (Curvature Carpathians and Subcarpathians). The geology of the basin consists of Paleogene flysch deposits represented by an alternation of sandstones, marls, clays and schists and Neogene deposits represented by marls, clays and sands. The area is affected by different types of landslides (shallow, medium-deep and deep-seated failures). In Romania, in the last decades, direct and indirect methods have been applied for landslide susceptibility assessment. The most utilized before 2000 were based on qualitative approaches. This study evaluates the landslide susceptibility in the Sibiciu Basin using a bivariate statistical analysis and an index of entropy. A landslide inventory map was prepared, and a susceptibility estimate was assessed based on the following parameters which influence the landslide occurrence: slope angle, slope aspect, curvature, lithology and land use. The landslide susceptibility map was divided into five classes showing very low to very high landslide susceptibility areas.  相似文献   

12.
A logistic regression model is developed within the framework of a Geographic Information System (GIS) to map landslide hazards in a mountainous environment. A case study is conducted in the mountainous southern Mackenzie Valley, Northwest Territories, Canada. To determine the factors influencing landslides, data layers of geology, surface materials, land cover, and topography were analyzed by logistic regression analysis, and the results are used for landslide hazard mapping. In this study, bedrock, surface materials, slope, and difference between surface aspect and dip direction of the sedimentary rock were found to be the most important factors affecting landslide occurrence. The influence on landslides by interactions among geologic and geomorphic conditions is also analyzed, and used to develop a logistic regression model for landslide hazard mapping. The comparison of the results from the model including the interaction terms and the model not including the interaction terms indicate that interactions among the variables were found to be significant for predicting future landslide probability and locating high hazard areas. The results from this study demonstrate that the use of a logistic regression model within a GIS framework is useful and suitable for landslide hazard mapping in large mountainous geographic areas such as the southern Mackenzie Valley.  相似文献   

13.
14.
The likelihood ratio, logistic regression, and artificial neural networks models are applied and verified for analysis of landslide susceptibility in Youngin, Korea, using the geographic information system. From a spatial database containing such data as landslide location, topography, soil, forest, geology, and land use, the 14 landslide-related factors were calculated or extracted. Using these factors, landslide susceptibility indexes were calculated by likelihood ratio, logistic regression, and artificial neural network models. Before the calculation, the study area was divided into two sides (west and east) of equal area, for verification of the models. Thus, the west side was used to assess the landslide susceptibility, and the east side was used to verify the derived susceptibility. The results of the landslide susceptibility analysis were verified using success and prediction rates. The verification results showed satisfactory agreement between the susceptibility map and the existing data on landslide locations.  相似文献   

15.
川藏交通廊道位于青藏高原中东部,是世界上隆升和地貌演化最快的区域之一。在内外动力耦合作用下,区内滑坡灾害极其发育,严重制约着公路、铁路和水电工程的规划建设。在区域地质资料收集和整理的基础上,选取岩性、坡度、坡向、坡形、地形起伏度、地形粗糙度、断裂密度和河流距离8个因素为评价因子,结合传统信息量和逻辑回归模型的优势,采用逻辑回归–信息量模型对研究区滑坡进行易发性评价。通过对评价因子的多重共线性和显著性检验,得到评价因子不存在多重共线性且均对滑坡发生具有显著影响。采用ROC曲线对评价结果进行检验,其AUC值为0.81,表明评价模型能很好地预测滑坡的发生。易发性评价结果表明:研究区高易发区主要集中龙门山断裂带、金沙江断裂带、澜沧江断裂带、怒江断裂带、边坝–洛隆断裂带等大型活动断裂带控制区,以及区内坡度陡峭、地形起伏度大的大型河流深切河谷的两岸;中易发区在区内分布广泛,主要分布在岸坡较陡、地形起伏度中等的大型河流支流的两岸。研究结果有利于加深对川藏交通廊道滑坡发育分布的认识,也可为研究区的工程规划建设和防灾减灾提供科学依据。  相似文献   

16.
Luu  Chinh  Bui  Quynh Duy  Costache  Romulus  Nguyen  Luan Thanh  Nguyen  Thu Thuy  Van Phong  Tran  Van Le  Hiep  Pham  Binh Thai 《Natural Hazards》2021,108(3):3229-3251
Natural Hazards - Vietnam’s central coastal region is the most vulnerable and always at flood risk, severely affecting people’s livelihoods and socio-economic development. In...  相似文献   

17.
A landslide susceptibility zonation (LSZ) map helps to understand the spatial distribution of slope failure probability in an area and hence it is useful for effective landslide hazard mitigation measures. Such maps can be generated using qualitative or quantitative approaches. The present study is an attempt to utilise a multivariate statistical method called binary logistic regression (BLR) analysis for LSZ mapping in part of the Garhwal Lesser Himalaya, India, lying close to the Main Boundary Thrust (MBT). This method gives the freedom to use categorical and continuous predictor variables together in a regression analysis. Geographic Information System has been used for preparing the database on causal factors of slope instability and landslide locations as well as for carrying out the spatial modelling of landslide susceptibility. A forward stepwise logistic regression analysis using maximum likelihood estimation method has been used in the regression. The constant and the coefficients of the predictor variables retained by the regression model have been used to calculate the probability of slope failure for the entire study area. The predictive logistic regression model has been validated by receiver operating characteristic curve analysis, which has given 91.7% accuracy for the developed BLR model.  相似文献   

18.
The aim of this study is to evaluate the landslide hazards at Selangor area, Malaysia, using Geographic Information System (GIS) and Remote Sensing. Landslide locations of the study area were identified from aerial photograph interpretation and field survey. Topographical maps, geological data, and satellite images were collected, processed, and constructed into a spatial database in a GIS platform. The factors chosen that influence landslide occurrence were: slope, aspect, curvature, distance from drainage, lithology, distance from lineaments, land cover, vegetation index, and precipitation distribution. Landslide hazardous areas were analyzed and mapped using the landslide-occurrence factors by frequency ratio and logistic regression models. The results of the analysis were verified using the landslide location data and compared with probability model. The comparison results showed that the frequency ratio model (accuracy is 93.04%) is better in prediction than logistic regression (accuracy is 90.34%) model.  相似文献   

19.
20.
Bahrami  Yousef  Hassani  Hossein  Maghsoudi  Abbas 《GeoJournal》2021,86(4):1797-1816
GeoJournal - Landslides are natural destructive phenomena that can cause great damage to property and life loss. One of the fundamental proceedings to reduce the possible damage is identifying...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号