首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 1945 Tsunami generated due to Makran Earthquake in the Arabian Sea was the most devastating tsunami in the history of the Arabian Sea and caused severe damage to property and loss of life. It occurred on 28th November 1945, 21:56 UTC (03:26 IST) with a magnitude of 8.0 (M w), originating off the Makran Coast of Pakistan in the Arabian Sea. It has impacted as far as Mumbai in India and was noticed up to Karvar Coast, Karnataka. More than 4,000 people were killed as a result of the earthquake and the tsunami. In this paper an attempt is made for a numerical simulation of the tsunami generation from the source, its propagation into the Arabian Sea and its effect on the western coast of India through the use of a numerical model, referred to as Tunami-N2. The present simulation is carried out for a duration of 300 min. It is observed from the results that the simulated arrival time of tsunami waves at the western coast of India is in good agreement with the available data sources. The paper also presents run-up elevation maps prepared using Shuttle Radar Topographic Mission (SRTM) data, showing the possible area of inundation due to various wave heights along different parts of the Gujarat Coast. Thus, these results will be useful in planning the protection measures against inundation due to tsunami and in the implementation of a warning system.  相似文献   

2.
Sea level measurements along the southeastern Brazilian coast, between 20° S and 30° S, show the effect of the Sumatra Tsunami of December 26, 2004. Two records from stations, one located inside an estuary and other inside a bay, shows oscillations of about 0.20 m range; one additional record from a station facing the open sea shows up to 1.2 m range oscillations. These oscillations have around 45 min period, starting 20–22 h after the Sumatra earthquake in the Indian Ocean (00:59 UTC) and lasting for 2 days. A computer modelling of the event reproduces the time of arrival of long shallow-water tsunami waves at the southeastern Brazilian coast but with slight longer period and amplitudes smaller than observed at the coast, probably due to its coarse resolution (1/4 of a degree). The high amplitudes observed at the coast suggest a mechanism of amplification of these waves over the southeastern Brazilian shelf.  相似文献   

3.
The Sultanate of Oman is among the Indian Ocean countries that were subjected to at least two confirmed tsunamis during the twentieth and twenty-first centuries: the 1945 tsunami due to an earthquake in the Makran subduction zone in the Sea of Oman (near-regional field tsunami) and the Indian Ocean tsunami in 2004, caused by an earthquake from the Andaman Sumatra subduction zone (far - field tsunami). In this paper, we present a probabilistic tsunami hazard assessment for the entire coast of Oman from tectonic sources generated along the Makran subduction zone. The tsunami hazard is assessed taking into account the contribution of small- and large-event magnitudes. Results of the earthquake recurrence rate studies and the tsunami numerical modeling for different magnitudes were used through a logic-tree to estimate the tsunami hazard probabilities. We derive probability hazard exceedance maps for the Omani coast considering the exposure times of 100, 250, 500, and 1000 years. The hazard maps consist of computing the likelihood that tsunami waves exceed a specific amplitude. We find that the probability that a maximum wave amplitude exceeds 1 m somewhere along the coast of Oman reaches, respectively, 0.7 and 0.85 for 100 and 250 exposure times, and it is up to 1 for 500 and 1000 years of exposure times. These probability values decrease significantly toward the southern coast of Oman where the tsunami impact, from the earthquakes generated at Makran subduction zone, is low.  相似文献   

4.
Geological Indicators of Large Tsunami in Australia   总被引:1,自引:0,他引:1  
Bryant  E. A.  Nott  J. 《Natural Hazards》2001,24(3):231-249
Tsunami waves can produce four general categories of depositional and erosional signatures that differentiate them from storm waves. Combinations of items from these categories uniquely define the impact of palaeo-tsunami on the coastal landscape. The largest palaeo-tsunami waves in Australia swept sediment across the continental shelf and obtained flow depths of 15–20 m at the coastline with velocities in excess of 10 m -1. In New South Wales, along the cliffs of Jervis Bay, waves reachedelevations of more than 80 m above sea-level with evidence of flow depths in excess of 10 m. These waves swept 10 km inland over the Shoalhaven delta. In northern Queensland, boulders more than 6 m in diameter and weighing 286 tonnes were tossed alongshore above cyclone storm wave limits inside the Great Barrier Reef. In Western Australia waves overrode and breached 60 m high hills up to 5 km inland. Shell debris and cobbles can be found within deposits mapped as dunes, 30 km inland. The array of signatures provide directional information about the origin of the tsunami and, when combined with radiocarbon dating, indicate thatat least one and maybe two catastrophic events have occurred during the last 1000 years along these three coasts. Only the West Australian coast hashistorically been affected by notable tsunami with maximum run-up elevations of 4–6 m. Palaeo-tsunami have been an order of magnitude greater than this. These palaeo-tsunami are produced most likely by large submarine slides on the continental slope or the impactof meteorites with the adjacent ocean.  相似文献   

5.
Recent tsunamis affecting the West Coast of the USA have resulted in significant damage to ports and harbors, as well as to recreational and commercial vessels attempting to escape the tsunami. With the completion of tsunami inundation simulations for a distant tsunami originating from the Aleutian Islands and a locally generated tsunami on the Cascadia subduction zone (CSZ), the State of Oregon is now able to provide guidance on the magnitudes and directions of the simulated currents for the Oregon coast and shelf region. Our analyses indicate that first wave arrivals for an Aleutian Island event would take place on the north coast,?~?3 h 40 min after the start of the earthquake,?~?20 min later on the southern Oregon coast. The simulations demonstrated significant along-coast variability in both the tsunamis water levels and currents, caused by localized bathymetric effects (e.g., submarine banks and reefs). A locally generated CSZ event would reach the open coast within 7–13 min; maximum inundation occurs at?~?30–40 min. As the tsunami current velocities increase, the potential for damage in ports and harbors correspondingly increases, while also affecting a vessels ability to maintain control out on the ocean. Scientific consensus suggests that tsunami currents?<?1.54 m/s are unlikely to impact maritime safety in ports and harbors. No such guidance is available for boats operating on the ocean, though studies undertaken in Japan suggest that velocities in the region of 1–2 m/s may be damaging to boats. In addition to the effects of currents, there is the added potential for wave amplification of locally generated wind waves interacting with opposing tsunami currents in the offshore. Our analyses explore potential wave amplification effects for a range of generic sea states, ultimately producing a nomogram of wave amplification for a range of wave and opposing current conditions. These data will be useful for US Coast Guard and Port authorities as they evaluate maritime tsunami evacuation options for the Oregon coast. Finally, we identify three regions of hazard (high, moderate, and low) across the Oregon shelf, which can be used to help guide final designation of tsunami maritime evacuation zones for the coast.  相似文献   

6.
The tsunami run-up, inundation and damage pattern observed along the coast of Tamilnadu (India) during the deadliest Indian Ocean tsunami of December 26, 2004 is documented in this paper. The tsunami caused severe damage and claimed many victims in the coastal areas of eleven countries, bordering the Indian Ocean. Along the coast of Indian mainland, the damage was caused by the tsunami only. Largest tsunami run-up and inundation was observed along the coast of Nagapattinam district and was about 10–12 m and 3.0 km, respectively. The measured inundation data were strongly scattered in direct relationship to the morphology of the seashore and the tsunami run-up. Lowest tsunami run-up and inundation was measured along the coast of Thanjavur, Puddukkotai and Ramnathpuram districts of Tamilnadu in the Palk Strait. The presence of shadow of Sri Lanka, the interferences of direct/receded waves with the reflected waves from Sri Lanka and Maldive Islands and variation in the width of continental shelf were the main cause of large variation in tsunami run-up along the coast of Tamilnadu.  相似文献   

7.
We present a preliminary estimation of tsunami hazard associated with the Makran subduction zone (MSZ) at the northwestern Indian Ocean. Makran is one of the two main tsunamigenic zones in the Indian Ocean, which has produced some tsunamis in the past. Northwestern Indian Ocean remains one of the least studied regions in the world in terms of tsunami hazard assessment. Hence, a scenario-based method is employed to provide an estimation of tsunami hazard in this region for the first time. The numerical modeling of tsunami is verified using historical observations of the 1945 Makran tsunami. Then, a number of tsunamis each resulting from a 1945-type earthquake (M w 8.1) and spaced evenly along the MSZ are simulated. The results indicate that by moving a 1945-type earthquake along the MSZ, the southern coasts of Iran and Pakistan will experience the largest waves with heights of between 5 and 7 m, depending on the location of the source. The tsunami will reach a height of about 5 m and 2 m in northern coast of Oman and eastern coast of the United Arab Emirates, respectively.  相似文献   

8.
The November 16, 2006, Simushir and August 2, 2007, Nevelsk tsunami records obtained by bottom pressure gauges in Kholmsk Bay are analyzed. The dominant role of the zero mode of eigen oscillations in the bay during the the wave field formation is shown: in the initial record interval (for the remote tsunami source) and 1.5 h after the first wave (for the nearly tsunami). Numerical modeling showed that the longer waves propagated toward Kholmsk in the case of the Nevelsk earthquake and they did not generate eigen oscillations of the bay. These oscillations were generated 1.5 h later when the shorter waves reflected from the Primorye coast arrived.  相似文献   

9.
Tide gauge data were used to identify the occurrence, characteristics, and cause of tsunamis of meteorological origin (termed ‘meteotsunamis’) along the Western Australian coast. This is the first study to identify meteotsunamis in this region, and the results indicated that they occur frequently. Although meteotsunamis are not catastrophic to the extent of major seismically induced basin-scale events, the wave heights of meteotsunamis examined at some local stations in this study were higher than those recorded through seismic tsunamis. In June 2012, a meteotsunami contributed to an extreme water-level event at Fremantle, which recorded the highest water level in over 115 years. Meteotsunamis (wave heights >0.4 m, when the mean tidal range in the region is ~0.5 m) were found to coincide with thunderstorms in summer and the passage of low-pressure systems during winter. Spectral analysis of tide gauge time series records showed that existing continental seiche oscillations (periods between 30 min and 5 h) were enhanced during the meteotsunamis, with a high proportion of energy transferred to the continental shelf oscillation period. Three recent meteotsunami events (22 March 2010, 10 June 2012, and 7 January 2013) two due to summer thunderstorms and one due to a winter frontal system were chosen for detailed analysis. The meteotsunami amplitudes were up to a factor 2 larger than the local tidal range and sometimes contributed up to 85 % of the non-tidal water signal. A single meteorological event was found to generate several meteotsunamis along the coast, up to 500 km apart, as the air pressure disturbance propagated over the continental shelf; however, the topography and local bathymetry of the continental shelf defined the local sea-level resonance characteristics at each location. With the available data (sea level and meteorological), the exact mechanisms for the generation of the meteotsunamis could not be isolated.  相似文献   

10.
A few years ago the Canadian Hydrographic Service initiated a major upgrade toall tide gauges and tsunami stations on the coast of British Columbia (B.C.). Thisprogram was undertaken to address shortcomings of the earlier digital systems andwas driven by concerns about emergency response continuity in the year 2000. By1999, thirteen tide gauge stations had been installed and were operational. Three ofthese stations (Tofino, Winter Harbour, and Langara) were selected for use as tsunamiwarning stations. Several years of continuous, high quality data have now been collectedat these stations and used for analysis of long waves in the tsunami frequency band.Careful examination of these data revealed two weak tsunamis recorded by severalB.C. stations: a distant tsunami of June 23, 2001 generated by the Peru Earthquake(Mw = 8.4), and a local tsunami of October 12, 2001 induced by the Queen Charlotte Earthquake (Mw = 6.3$). Spectral characteristics of these two tsunamis are compared with the spectral characteristics of long waves generated by a strong storm (October, 2000) and of ordinary background oscillations. The topographic admittance functions (frequency responses) constructed for all stations showed that most of them (in particular, Winter Harbour, Tofino, Bamfield, Port Hardy, and Victoria) have strong resonance at periods from 2.5 to 20 min, indicating that these locations are vulnerable to relatively high-frequency tsunamis. The Winter Harbour station also has two strong resonant peaks with periods of 30 and 47 min and with amplification factors of about 7. The estimated source functions show very clear differences between long waves associated with the seismic source (typical periods 10–30 min) and those generated by a storm, which typically have shorter periods and strong energy pumping from high-frequencies due to non-linear interaction of wind waves.  相似文献   

11.
We present four case studies of exceptional wave events of meteorological origin, observed on the Finnish coast in the summers of 2010 and 2011. Eyewitnesses report unusually rapid and strong sea-level variations (up to 1 m in 5–15 min) and strong oscillating currents during these events. High-resolution sea-level measurements confirm the eyewitness observations, but the oscillations recorded by tide gauges mostly have a considerably smaller amplitude. The oscillations coincide with sudden jumps in surface air pressure at coastal observation stations, related to the passage of squall lines or gust fronts. These fronts propagate above the sea at a resonant speed, allowing efficient energy transfer between the atmospheric disturbance and the sea wave that it generates. Thus, we interpret the observed sea-level oscillations as small meteotsunamis, long tsunami-like waves generated by meteorological processes and resonance effects.  相似文献   

12.
Flood risk curves and uncertainty bounds   总被引:7,自引:5,他引:2  
The Scotia Arc is one of two regions in the Atlantic Ocean with greater potential for tsunami generation from seismic and volcanic sources. A numerical modeling study was undertaken to determine tsunami generation from postulated sources along the Arc and tsunami wave amplification or attenuation along the Patagonian continental shelf. Sea level oscillation represented by a simple sinusoidal wave function applied at the boundary of the numerical grid, which simulated the tsunami entering the computational domain, was implemented as forcing. The validation of this model was carried out by comparing the maximum amplitudes recorded and simulated at Santa Teresita and Mar del Plata (Buenos Aires province) after the occurrence of earthquake and subsequent tsunami in Sumatra (December 2004). From numerical simulations it can be seen that the tsunami propagation is highly affected by bathymetric refraction on the Patagonian continental shelf and the wave amplitude is significantly attenuated on the inner continental shelf. Maximum amplifications were obtained around Malvinas (Falkland) Islands and Burdwood bank because the wave propagates almost without refracting and the shoaling effect is highly significant there.  相似文献   

13.
The application of high resolution seismic data using boomer sound source has revealed a wide distribution of large-scale bedforms (sandwaves) on the Southeast Vietnam continental shelf. Bedforms that are a few meters high in wave height and hundreds of meters long in wavelength are primarily developed in the inner shelf (20–40 m) and considered to be formed under the present-day marine hydrodynamic conditions. Those bedforms developed in the deeper water (120 m) of the northernmost part of the continent can be interpreted as the relict morphological features formed during the latest sea-level lowstand of the late Pleistocene period. Two sediment transport paths have been identified on the basis of the bedform’s leeward orientation: northeast-southwest (along-shore) and north-south (cross-shore). A quantitative bottom current map is constructed from sandwave dimensions, surface sediments and measurement data. The strongest current velocities that gradually decrease toward the southwest are indicated by large sandwaves in the north (field B). Water depth, surficial sediment composition and bottom current are three factors that control the development of bedforms.  相似文献   

14.
The Storegga tsunami, dated in Norway to 8150±30 cal. years BP, hit many countries bordering the North Sea. Run-ups of >30 m occurred and 1000s of kilometres of coast were impacted. Whilst recent modelling successfully generated a tsunami wave train, the wave heights and velocities, it under-estimated wave run-ups. Work presented here used luminescence to directly date the Storegga tsunami deposits at the type site of Maryton, Aberdeenshire in Scotland. It also undertook sedimentological characterization to establish provenance, and number and relative power of the tsunami waves. Tsunami model refinement used this to better understand coastal inundation. Luminescence ages successfully date Scottish Storegga tsunami deposits to 8100±250 years. Sedimentology showed that at Montrose, three tsunami waves came from the northeast or east, over-ran pre-existing marine sands and weathered igneous bedrock on the coastal plain. Incorporation of an inundation model predicts well a tsunami impacting on the Montrose Basin in terms of replicate direction and sediment size. However, under-estimation of run-up persisted requiring further consideration of palaeotopography and palaeo-near-shore bathymetry for it to agree with sedimentary evidence. Future model evolution incorporating this will be better able to inform on the hazard risk and potential impacts for future high-magnitude submarine generated tsunami events.  相似文献   

15.
Radiocarbon analysis plays an important role in studying the Quaternary geologic history of the East China Sea. More than 200 14C dates have been published in various Chinese publications. The continental shelf of the East China Sea is one of the few large continental shelves in the world. Many low-lying flats and deltaic plains lie along the coast making it a favorable site for sea-level studies. Radiocarbon data from Neolithic sites, chenier ramparts, peaty deposits, and submarine sediments converge to suggest that oscillations of sea level have occurred: they also suggest that the lowest glacial sea levels probably occurred between 22,000 and 19,000 yr B.P. Calculation of the volume of the Yangtze River Delta, together with 14C dates, indicates that more than 89% of the solid particles carried by the river were deposited in the delta. Due to the sedimentary load, the crust beneath the delta has subsided isostatically and tilted seaward. Marine shells provide many acceptable 14C dates, but because they are easily transported, most samples from the continental shelf cannot be directly related to the history of sea-level changes.  相似文献   

16.
The east coast of Tamil Nadu, particularly Chennai–Nagapattinam was worstly affected by the 2004 tsunami. Run-up shows remarkable variation of 2–8 m with maximum at Cuddalore port and minimum at Marina beach. Factors like width of dislocation, source distance, orientation of the coastline, and bathymetry guide tsunami surge. While most of the parameters are similar in characteristics for the entire coast, it is presumed that variation in bathymetry have played an imperative role in guiding run-up. Based on gradient bathymetry, up to 50 km off the coast was classified into five classes, viz shallow, moderate, and steep continental slope and continental shelf. Statistical analysis was performed between offshore bathymetry and run-up. The results clearly indicate that moderate slopes have guided tsunami to attain maximum height. While steeper slope have acted as barriers and gentle slopes have shoaled tsunami surge resulting in reduced run-up height. The study offers early but potentially meaningful guidance on the role of bathymetry on run-up.  相似文献   

17.
The presence of raised beaches and marine terraces along the Makran coast indicates episodic uplift of the continental margin resulting from large-magnitude earthquakes. The uplift occurs as incremental steps similar in height to the 1–3 m of measured uplift resulting from the November 28, 1945 (M 8.3) earthquake at Pasni and Ormara, Pakistan. The data support an E—W-trending, active subduction zone off the Makran coast.The raised beaches and wave-cut terraces along the Makran coast are extensive with some terraces 1–2 km wide, 10–15 m long and up to 500 m in elevation. The terraces are generally capped with shelly sandstones 0.5–5 m thick. Wave-cut cliffs, notches, and associated boulder breccia and swash troughs are locally preserved. Raised Holocene accretion beaches, lagoonal deposits, and tombolos are found up to 10 m in elevation. The number and elevation of raised wave-cut terraces along the Makran coast increase eastward from one at Jask, the entrance to the Persian Gulf, at a few meters elevation, to nine at Konarak, 250 km to the east. Multiple terraces are found on the prominent headlands as far east as Karachi. The wave-cut terraces are locally tilted and cut by faults with a few meters of displacement.Long-term, average rates of uplift were calculated from present elevation, estimated elevation at time of deposition, and 14C and U–Th dates obtained on shells. Uplift rates in centimeters per year at various locations from west to east are as follows: Jask, 0 (post-Sangamon); Konarak, 0.031–0.2 (Holocene), 0.01 (post-Sangamon); Ormara 0.2 (Holocene).  相似文献   

18.
Meteorological tsunamis are frequently observed in different tide stations at the southeastern coast of South America. They are associated with the occurrence of atmospheric gravity waves during the passages of cold fronts over the Buenos Aires Province continental shelf. On the other hand, storm surges are also frequent in the region, and they are associated with strong and persistent southerlies, which are also frequent during cold front passages. The impact of meteorological tsunamis in coastal erosion and in the statistics of storm surge trends is discussed in this paper. For this study, fifteen meteorological tsunamis (with maximum wave heights higher than 0.20 m), seven of them simultaneous to the occurrence of storm surge events (with extreme levels higher than |±0.60 m|), are selected from April 2010 to January 2013. The impact of meteorological tsunamis in the storm erosion potential index (SEPI) is evaluated. Not significant differences are obtained between SEPI calculated with and without filtering the meteorological tsunami signal from the storm surge data series. Moreover, several experiments are carried out computing SEPI from synthetic sea level data series, but very low changes (lower than 4 %) are also obtained. It is concluded that the presence of moderate meteorological tsunamis on sea level records would not enhance this index at the Buenos Aires Province coast. On the other hand, taking into account that meteorological tsunamis can reach up the 20–30 % of the storm surge height, it was concluded that the statistics of storm surge trends (and their uncertainties) should be revised for Mar del Plata data series.  相似文献   

19.
Fossils of terrestrial mammals preserved in submarine environment have been recorded in several places around the world. In Brazil such fossils are rather abundant in the southernmost portion of the coast, associated to fossiliferous concentrations at depths up to 10 m. Here is presented a review of such occurrences and the first record of fossils in deeper areas of the continental shelf. The fossils encompass several groups of both extinct and extant mammals, and exhibit several distinct taphonomic features, related to the marine environment. Those from the inner continental shelf are removed and transported from the submarine deposits to the coast during storm events, thus forming large konzentrat-lagerstätte on the beach, called “Concheiros”. The only fossils from deeper zones of the shelf known so far are a portion of a skull, a left humerus and of a femur of Toxodon sp. and a lower right molar of a Stegomastodon waringi, all collected by fishermen at depths around 20 m. The presence of fossils at great depths and distances from the present coastline, without signs of abrasion and far from areas of fluvial discharges does indicate that these remains have not been transported from the continent to the shelf, but have been preserved directly on the area that today correspond to the continental shelf. These remains indicate the existence of large fossiliferous deposits that have developed during periods of sea-level lowstand (glacial maxima) and have been submerged and reworked by the sea-level rise at the end of the last glaciation.  相似文献   

20.
Studies of the Nile Delta coast have indicated wide values of local subsidence, ranging from 0.4 to 5 mm/yr. Trend analysis of sea-level rise and shoreline retreat at two Nile Delta promontories have been studied. Records from tide gauges at Alexandria (1944–1989) and Port Said (1926–1987), north of the Nile delta coast, indicate a submergence of the land and/or a rise of the sea-level of 2 and 2.4 mm/yr, respectively.Dramatic erosion has occurred on some beaches of the Nile Delta. This is greatest at the tips of the Rosetta and Damietta promontories, with shoreline retreat up to 58 m/yr. Relationship between the shoreline retreat and sea level trends in terms of correlation analysis and application of the Bruun Rule indicates that the sea level rise has, by itself, a relatively minor effect on coastal erosion. The sea-level trend at the Nile delta coast is found to be only one of several effects on shoreline retreat. Major recent effects include a combination of cut-off of sediment supply to the coast by damming the River Nile and local hydrodynamic forces of waves and currents. Estimates of local future sea-level rise by the year 2100 at Alexandria and Port Said, respectively, is expected to be 37.9 and 44.2 cm. These expectations, combined with other factors, could accelerate coastal erosion, inundate wetlands and lowlands, and increase the salinity of lakes and aquifers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号