首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Kobanov  N.I.  Makarchik  D.V.  Sklyar  A.A. 《Solar physics》2003,217(1):53-67
In this paper we carry out an analysis of the spatial–temporal line-of-sight velocity variations measured in the chromospheric (H, H) and photospheric (Fei 6569 Å, Fei 4864 Å, Nii 4857 Å) lines at the base of 17 coronal holes. Time series of a duration from 43 to 120 min were recorded with the CCD line-array and the CCD matrix. Rather frequently we observed quasi-stationary upward flows with a measured velocity of up to 1 km s–1 in the photosphere and up to 4–5 km s–1 in the chromosphere (equivalent radial velocity of up to 3 km s–1 and up to 12–15 km s–1 accordingly) near dark points on the chromospheric network boundary inside polar CH. Line-of-sight velocity fluctuation spectra contain meaningful maxima in the low-frequency region clustering around the values 0.4, 0.75, and 1 mHz. Usually, the spatial localization of these maxima mutually coincides and, in our opinion, coincides with the chromospheric network boundary. Acoustic 3- and 5-min oscillations are enhanced in the coronal hole region and reach 1 km s–1 in the photosphere and 3–4 km s–1 in the chromosphere. These oscillations are not localized spatially and are distinguished throughout the entire region observed.  相似文献   

2.
From a 35-min time series of photographic spectra in the Caii H-line obtained at the Vacuum Tower Telescope (VTT) of the Sacramento Peak Observatory under high spatial, spectral, and temporal resolution, we have derived a large number of H-line profiles at the sites of the bright points in the interior of the supergranulation cells, and at the network elements, on a quiet region at the centre of the solar disc. It is shown that the bright points are associated with 3-min periodicity in their intensity oscillations whereas the network elements exhibit 7-min periodicity. It is surmised that the large difference in periods of the intensity oscillations, the strength of the magnetic fields, and the intensity enhancements at the sites of the bright points and the network elements themselves may probably be taken as evidence to argue that the mechanisms of heating in the two cases are dissimilar, irrespective of the sizes of these structures.  相似文献   

3.
The distribution of oscillation-amplitude for Doppler shifts in chromospheric lines is computed as a function of position on the disk and time frequency. High amplitude regions are restricted to a small part of the solar surface. Propagation modes are investigated with respect to the oscillation amplitude in the K line. Waves seem to be standing or evanescent for most of the points (small amplitude in K) and progressive for some other ones, with perhaps upward and downward motions (partial reflections). Mechanical energy could only escape into corona from narrow chromospheric structures.  相似文献   

4.
Slitless spectrograms of the chromosphere obtained during the eclipse of 4–5 February 1962 have been analyzed to obtain the decrements of the level populations of hydrogen, the self-absorption in the Balmer lines, and parameters useful in construction of models of the low chromosphere.The decrement of the high energy levels of hydrogen inferred under the optically thin assumption does not vary significantly with height, and it appears to be unnecessary to seek large deviations from local thermodynamic equilibrium in the high levels. The observed Balmer-to-Paschen line intensity ratios have been used to infer self-absorption and opacities in the Balmer lines. The resulting population of the second energy level is about an order of magnitude smaller than that found by Athay and Thomas from the 1952 data.The chromospheric continuum was generally underexposed; the absence of observed continuum in the visible region of the spectrum made it impossible to derive a unique model from the 1962 data alone. However, the high Balmer line data and new theoretical solutions of the statistical equilibrium equations for hydrogen combined with corrected 1952 observations at 4700 A are compatible with a model having approximately the same temperature and neutral hydrogen structure as the 1952 model by Pottasch and Thomas but half the electron density: T e = 6200K, N 1 = 7.4 × 1013 cm-3, N e = 2.3 × 1011 cm-3 at 500 km and T e = 7200K, N 1 = 2.6 × 1012 cm-3, N e = 1.7 × 1011 cm-3 at 1000 km.Based in part on a Ph.D. thesis submitted to the Department of Astro-Geophysics, University of Colorado.Now at the Department of Astronomy, Indiana University.  相似文献   

5.
We have studied running penumbral waves, umbral oscillations, umbral flashes and their interrelations from H observations of a large isolated sunspot. Using a subtraction image processing technique we removed the sharp intensity gradient between the umbra and the penumbra and enhanced the low contrast, fine features. We observed running penumbral waves which started in umbral elements with a size of a few arcseconds, covered the umbra and subsequently propagated through the penumbra. The period of the waves was 190 s and the mean propagation velocity was about 15 km s–1. We detected intense brightenings, located between umbral elements from where waves started, which had the characteristics of umbral flashes. There are indications that umbral flashes are related to the propagation of the waves through the umbra and their coupling. The subtraction images also show considerable fine structure in the chromospheric umbra, with size between 0.3 and 0.8.  相似文献   

6.
Unique long-term visibility variations are detected when the quiet Sun is observed with interferometers operating at 8 mm and 11 cm wavelength with angular resolutions of 0.5. Quasiperiodic fluctuations in fringe amplitude are observed with periods between 20 and 30 min, and with amplitude nulls which are correlated with 180° phase changes. These variations are interpreted in terms of a changing projected baseline while viewing a few sources with angular sizes of 0.5 which are distributed within the main interferometer beam with typical angular separations of 7. The observed variations cannot be due to expanding or contracting sources of the type envisaged by Bocchia and Poumeyrol (1976) when explaining similar variations observed at 8 mm wavelength. A comparison of the flux observed at 8 mm and 11 cm indicates that the individual sources are optically thick thermal radiators with a flux which decreases with increasing wavelength, but with a temperature which increases with increasing wavelength where higher, hotter levels of the chromosphere are observed. For a source whose angular size is 0.5, the observed flux values correspond to respective temperatures of 5000 K and 19 000 K at 8 mm and 11cm - suggesting that elements of the chromospheric network are being observed. A thermal origin for the individual sources is consistent with the lack of any detectable circular or linear polarization (< 10%) in the interferometer signal.  相似文献   

7.
Motions in an old center of activity have been studied at the limb with the use of timeresolved H spectra. The observations were made at intervals of 5 seconds over a period of 3/4 hour of good seeing at Sacramento Peak Observatory.Objects in this region have larger line-of-sight velocities than have been reported for spicules in quiet regions. Velocities as high as 70 km/sec were observed; seventeen percent of a sample of 200 instantaneous velocities exceed 30 km/sec.The line-of-sight velocities of 20 objects were measured as a function of time. For 5 of these, transverse velocity components could also be estimated. A single pattern, such as the simple rise without fall reported by Mouradian, does not exist. The motion is often quite complex, involving lateral expansion, shear and occasionally splitting. Reversal of sign of the velocity is not uncommon.  相似文献   

8.
Time-sequenced H filtergrams and narrow-band blue filtergrams (0 = 4308 Å, = 10 Å) of umbral dots in a decaying sunspot were studied. The results are: (a) Photospheric umbral dots have lifetimes of about 40 min. (b) Two types of proper motion were found for photospheric umbral dots. Umbral dots born in the umbra or in the light bridge show virtually no proper motion. On the other hand, umbral dots of penumbral origin move inward to the umbra with speeds of about 0.4 km s –1. (c) Chromospheric umbral dots, which have dimensions of 0.6 × 1.2 in the mean, were more numerously found than photospheric umbral dots. (d) Photospheric umbral dots were observed to be associated with chromospheric umbral dots. Thus umbral dots are not phenomena confined to photospheric levels but also extend to chromospheric levels. (e) Some of the chromospheric umbral dots are unrelated to the photospheric umbral dots. They may be excited by the infalling matter from the umbral corona.Contribution from the Kwasan and Hida Observatories, University of Kyoto, No. 266.  相似文献   

9.
10.
The distribution of the magnetic field and radial velocities in the sunspot group were investigated simultaneously at two atmospheric levels (H and 6302.499 Å) of the Sun inside the area of 35 × 80 photographically (Abdussamatov, 1970) using the method of escalation. The outward motion of matter in the spot umbra was detected.Distributions of the magnetic field at both levels are well correlated. The magnetic field motions are observed in the sunspot. The vertical gradient H decreases slightly in the direction of increasing H. The minimum of brightness I in sunspots corresponds to the maximum of H.  相似文献   

11.
Chromospheric line-of-sight velocities are investigated in a small pore and its vicinity on the part of the active region NOAA 11024 with a size of 5″. We used Hα spectra of the active region and undisturbed atmosphere obtained with the French–Italian solar telescope THEMIS (Tenerife, Spain). Significant line-of-sight velocity time variations are found. At the beginning of the observations, the investigated region consisted of two areas of oppositely directed flows. The first area had a bright point in the vicinity of the pore and the second area covered the pore. There were upflows in the former and downflows in the latter. Oppositely directed flows appeared in both areas 2.7 min after the start of observations. In the part of the active region with a length of 2Mm, two oppositely directed flows within the same resolution elements, the so-called dual flows, were observed. The size of the area occupied by the dual flows varied quickly. The area shifted toward the pore. The velocity of upflows and downflows reached 25 km/s. The downflows in the first area lasted only for approximately 1 min. Upflows in the second area gradually covered the pore and lasted for 2 min. The resulting velocity field distribution can be due to a new small-scale magnetic flux emergence.  相似文献   

12.
We report the observations of the solar chromosphere from a newly commissioned solar telescope at the incursion site near Pangong Tso lake in Merak (Leh/Ladakh). This new \(\hbox {H}_{\alpha }\) telescope at the Merak site is identical to the Kodaikanal \(\hbox {H}_{\alpha }\) telescope. The telescope was installed in the month of August 2017 at the Merak site. The telescope consists of a 20-cm doublet lens with additional re-imaging optics. A Lyot filter with 0.5 Å passband isolates the Balmer line of the hydrogen spectra to make the observations of the solar chromosphere. The observations made in \(\hbox {H}_{\alpha }\) wavelength delineates the magnetic field directions at the sunspot and the quiet regions. A CCD detector records the images of the chromosphere with a pixel resolution of 0.27\(^{\prime \prime }\) and covers 9.2\(^{\prime }\) field-of-view. This telescope has a good guiding system that keeps the FoV in the intended position. We report the development of control software for tuning the filter unit, control detector system, observations and calibration of the data to make it useful for the scientific community. Some preliminary results obtained from the Merak \(\hbox {H}_{\alpha }\) telescope are also presented. This high altitude facility is a timely addition to regularly obtain \(\hbox {H}_{\alpha }\) images around the globe.  相似文献   

13.
Hongqi Zhang 《Solar physics》1994,154(2):207-214
A set of H chromospheric magnetograms at various wavelengths near the line center, chromospheric Dopplergrams, and photospheric vector magnetograms of a unipolar sunspot region near the solar limb were obtained with the vector video magnetograph at the Huairou Solar Observing Station. The superpenumbral chromospheric magnetic field is almost parallel to the surface at the outside of the sunspot penumbra, where the magnetic lines of force are mainly concentrated in the superpenumbral filaments. In the gaps between the filaments the chromospheric horizontal field is weak.  相似文献   

14.
B. V. Somov 《Solar physics》1975,42(1):235-246
Part of the proper X-ray emission of a flare is absorbed in the chromosphere and heats the region which creates an optical (in particular Hα) flare emission. The heating of chromosphere by X-ray emission may be responsible for the diffuse halo around the flare kernels. The optical emission of flare kernels, whose main sources of heating are energetic particles and/or thermal fluxes, may be also increased. By simple model calculations the present paper discusses the possibility of such effects for the large flare of 1972 August 7.  相似文献   

15.
16.
In this paper we discuss the initial phase of chromospheric evaporation during a solar flare observed with instruments on the Solar Maximum Mission on May 21, 1980 at 20:53 UT. Images of the flaring region taken with the Hard X-Ray Imaging Spectrometer in the energy bands from 3.5 to 8 keV and from 16 to 30 keV show that early in the event both the soft and hard X-ray emissions are localized near the footpoints, while they are weaker from the rest of the flaring loop system. This implies that there is no evidence for heating taking place at the top of the loops, but energy is deposited mainly at their base. The spectral analysis of the soft X-ray emission detected with the Bent Crystal Spectrometer evidences an initial phase of the flare, before the impulsive increase in hard X-ray emission, during which most of the thermal plasma at 107 K was moving toward the observer with a mean velocity of about 80 km s-1. At this time the plasma was highly turbulent. In a second phase, in coincidence with the impulsive rise in hard X-ray emission during the major burst, high-velocity (370 km s-1) upward motions were observed. At this time, soft X-rays were still predominantly emitted near the loop footpoints. The energy deposition in the chromosphere by electrons accelerated in the flare region to energies above 25 keV, at the onset of the high-velocity upflows, was of the order of 4 × 1010 erg s-1 cm-2. These observations provide further support for interpreting the plasma upflows as the mechanism responsible for the formation of the soft X-ray flare, identified with chromospheric evaporation. Early in the flare soft X-rays are mainly from evaporating material close to the footpoints, while the magnetically confined coronal region is at lower density. The site where upflows originate is identified with the base of the loop system. Moreover, we can conclude that evaporation occurred in two regimes: an initial slow evaporation, observed as a motion of most of the thermal plasma, followed by a high-speed evaporation lasting as long as the soft X-ray emission of the flare was increasing, that is as long as plasma accumulation was observed in corona.  相似文献   

17.
In this paper, the slow MHD mode oscillations of the coronal plasma are studied. The aim is to identify the effect of structuring (such as magnetic field, temperature, density, and pressure) on the frequencies of oscillations. We modelled the coronal medium as a low-β plasma with longitudinally density and pressure stratifications and a weakly inhomogeneous magnetic field varied slowly with height and radial directions. The linearized ideal MHD equations reduced to a single Klein–Gordon differential equation for square of oscillatory frequencies. The eigenfunctions and analytical dispersion relations are derived. The dispersion relations were solved numerically. In the case of uniform magnetic field, the previous studies verified. Our numerical results show that, the frequencies and their ratios are very sensitive functions of pressure scale height, and slightly varying functions of inhomogeneity parameter of magnetic field. By changing the magnetic field strength between the apex and footpoints of the loop about 50%, the frequencies ratio are changed about 5%. We concluded that, the pressure scale height and temperature gradient are first order effects and inhomogeneity of magnetic field is a second order effect on the slow mode oscillations.  相似文献   

18.
19.
We investigate the regime of chromospheric oscillations at the bases of coronal holes and compare them with the oscillations in the quiet chromosphere outside coronal holes using time series of spectrograms taken at different times in eight quiet regions on the Sun. As the oscillation parameter being studied, we have chosen the central intensity of the chromospheric Ca II K and H and 849.8-nm lines. The intensity measurements at all spatial points (along the spectrograph slit) have been subjected to a standard Fourier analysis. For the identified areas of the networks, cells, and network boundaries, we have calculated the integrated oscillation powers in several frequency bands. For all frequency bands, the powers of the intensity oscillations at the formation level of the Ca II resonance doublet line cores have been found to be enhanced at the bases of coronal holes approximately by a factor of 1.5. For the “three-minute” band, this enhancement is more pronounced in the network than in the cell, while the opposite is true for the “five-minute” band. The power in the five-minute band is higher than that in the three-minute one both at the bases of coronal holes and outside them, but this ratio in the network for a coronal hole is higher (1.40 ± 0.25 and 1.30 ± 0.10). We interpret this fact and the fact that the power of the three-minute oscillations for nonmagnetic regions changes with height differently at the base of a coronal hole and outside it as an increase in the importance of magnetoacoustic portals at the chromospheric base of the coronal hole.  相似文献   

20.
We detected excess oscillatory power at 0.25–2.0 Hz in a coronal loop in the 1983 Indonesian total solar eclipse. In this second-generation experiment enlarging upon the work of Pasachoff and Landman (1984), we observed in two frequency channels, one coronal and one continuum, to monitor atmospheric and instrumental effects. We briefly discuss the effects of an oscillation near 1 Hz on the coronal heating problem.Visiting Colleague, Institute for Astronomy, University of Hawaii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号