首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Single crystal Raman spectra of pyrite-type RuS2, RuSe2, OsS2, OsSe2, PtP2, and PtAs2 are presented and discussed with reference to the energies of the X-X stretching modes x-x (A g, F g) and the X2 librations (E, 2Fg). The main results obtained are (i) strong Raman resonance effects, (ii) different sequences for x-x (A g) and (E g), i.e., R_{x_2 } $$ " align="middle" border="0"> for PtP2 and PtAs2 and R_{x_2 } $$ " align="middle" border="0"> for OsS2, owing to the interplay of intraionic and interionic lattice forces, (iii) greater strengths for the intraionic P-P and As-As bonds compared to the S-S and Se-Se bonds, respectively, and (iv) a strong influegnce of the metal ions on the strength of the X-X bonds.This is contribution LXI of a series of papers on lattice vibration spectra  相似文献   

2.
The polarized far-infrared reflection spectra of single crystals of FeS2-marcasite are presented in the range from 40–700 cm?1. The spectra show 7 reststrahlen bands, as predicted by group theory. The oscillator parameters ?α ∞, ωα f, ?α f, γα f, and the transversal and longitudinal optical phonon frequencies ωTO and ωLO as well as effective ionic charges and oscillator strength weighted mean phonon frequencies were calculated. The anisotropic behaviour of these quantities is discussed in relation to the data for FeS2-pyrite. It is shown that the ionicity of marcasite is considerably smaller than that of pyrite, especially in the a and c direction. The directional dependence of the phonon frequencies is given and discussed with regard to the spectra of polycrystalline samples.  相似文献   

3.
Metal K- and L3-, sulfur K- and arsenic K- and L3-edge X-ray absorption near-edge spectra of a series of metal disulfides, FeS2 (both pyrite and marcasite), CoS2, NiS2, and CuS2, and their isomorphs, FeAsS and CoAsS, are presented. The features in this region of these spectra are interpreted using band structure and molecular orbital calculations in terms of the transitions from the 1s or 2p3/2 state to unoccupied states. The 3d transition metal L3-edge spectra of these materials show dependence on the degree of multiplet splitting in the final state, and thus offer less information on the electronic ground state. There are substantial differences in the spectra of the isostructural materials, whereas the spectra of the isotopes pyrite and marcasite show several similarities, illustrating the dependence of near-edge region on electronic structure.  相似文献   

4.
A thin film of marcasite, FeS2, was synthesized under vacuum and its structure and reactivity under oxidizing conditions was investigated by means of diffraction and surface analytical techniques, respectively. Synthesis of the film was carried out by codepositing Fe and S2 onto a Ta support. The thickness of the film could be varied from approximately 10 Å to 1 μm. High-resolution S 2p synchrotron-based photoemission showed S22−, with undetectable amounts of S2− impurity that is typically present on natural sample surfaces. X-ray diffraction of the micron-thick films showed that the film crystallized in the marcasite phase of FeS2. Atomic force microscopy indicated that the thin film had a nanometer-scale roughness suggesting the film contained defects such as steps and kinks. X-ray photoelectron spectroscopy studies found the thin marcasite film to be more reactive than natural pyrite (the most ubiquitous FeS2 dimorph) after exposure to a gaseous O2/H2O environment on the basis of the amount of sulfate formation. Likely the oxidation of marcasite was dominated by its short-range order (e.g., presence of steps), because the density of nonstoichiometric defect sites (e.g., S2−) was low as assessed by photoelectron spectroscopy.  相似文献   

5.
Interatomic potential parameters have been derived at simulated temperatures of 0 K and 300 K to model pyrite FeS2. The predicted pyrite structures are within 1% of those determined experimentally, while the calculated bulk modulus is within 7%. The model is also able to simulate the properties of marcasite, even though no data for this phase were included in the fitting procedure. There is almost no difference in results obtained for pyrite using the two potential sets; however, when used to model FeS2 marcasite, the potential fitted at 0 K performs better. The potentials have also been used to study the high-pressure behaviour of pyrite up to 44 GPa. The calculated equation of state gives good agreement with experiment and shows that the Fe–S bonds shorten more rapidly that the S–S dimer bonds. The behaviour of marcasite at high pressure is found to be similar to that of pyrite.  相似文献   

6.
《Chemical Geology》2006,225(3-4):278-290
The thermodynamic mixing properties of As into pyrite and marcasite have been investigated using first-principles and Monte Carlo calculations in order to understand the incorporation of this important metalloid into solid solution. Using quantum-mechanical methods to account for spin and electron transfer processes typical of sulfide minerals, the total energies of different As–S configurations were calculated at the atomic scale, and the resulting As–S interactions were incorporated into Monte Carlo simulations. Enthalpies, configurational entropies and Gibbs free energies of mixing show that two-phase mixtures of FeS2 (pyrite or marcasite) and FeAsS (arsenopyrite) are energetically more favorable than the solid solution Fe(S,As)2 (arsenian pyrite or marcasite) for a wide range of geologically relevant temperatures. Although miscibility gaps dominate both solid solution series, the solubility of As is favored for XAs < 0.05 in iron disulfides. Consequently, pyrite and marcasite can host up to ∼6 wt.% of As in solid solution before unmixing into (pyrite or marcasite) + arsenopyrite. This finding is in agreement with previously published HRTEM observations of As-rich pyrites (> 6 wt.% As) that document the presence of randomly distributed domains of pyrite + arsenopyrite at the nanoscale. According to the calculations, stable and metastable varieties of arsenian pyrite and marcasite are predicted to occur at low (XAs < 0.05) and high (XAs > 0.05) As bulk compositions, respectively.  相似文献   

7.
Quantitative molecular orbital (MO) calculations and qualitative perturbational MO arguments are used to interpret the spectra and structure of transition metal dichalcogenides and related compounds. Competition between pyrite (FeS2), marcasite (FeS2) and loellingite (FeAs2) structure types is explained in terms of the number of electrons occupying a set of MO's obtained from the mixing of dianion (A 2) orbitals and metal (M) orbitals. Direct metal-metal d orbital interaction is argued to be small. Attention is focused upon the M - A - M angles which differ substantially among the three structure types as a consequence of varying numbers of electrons in orbitals which closely resemble the * orbitals of the dianions. Variations in M - A and A - A distances can also be understood in terms of the occupations of this set of MO's. Disulfide valence region photo-emission spectra are interpreted in terms of calculations on MS6 and S6 molecular clusters. M3d orbitals are found to progressively approach the S3p orbitals with increasing atomic number of M from Fe to Ni. For CuS2 comparison of calculation and experiment supports an approximate electron configuration of Cu+1 S 2 ?1 .  相似文献   

8.
The assignment of spin-allowed Fe2+-bands in orthopyroxene electronic absorption spectra is revised by studying synthetic bronzite (Mg0.8 Fe0.2)2Si2O6, hypersthene (Mg0.5 Fe0.5)2Si2O6 and ferrosilite (Fe2Si2O6). Reheating of bronzite and hypersthene single crystals causes a redistribution of the Fe2+-ions over the M1 and M2 octahedra, which was determined by Mössbauer spectroscopy and correlated to the intensity change of the spin-allowed Fe2+ d-d bands in the polarized absorption spectra. The 11000 cm-1 band is caused by Fe2+ in M1 (5B2g5A1g) and Fe2+ in M2 (5A15A1), the 8500 cm-1 band by Fe2+ in M1 (5B2g5B1g) and the 5000 cm-1 band by Fe2+ in M2 octahedra (5A15B1). The Fe2+-Fe3+ charge transfer band is identified at 12500cm-1 in the spectra of synthetic Fe3+ -Al bearing ferrosilite. This band shows a strong γ-polarization and therefore is caused by Fe2+ -Fe3+-ions in edge-sharing octahedra.  相似文献   

9.
Lattice dynamical calculations of the pyrite FeS2 were performed using the polarizable-ion model (PIM) with different sets of short-range force constants. Not until the mean deviations between the observed and the calculated phonon energies become smaller than 3 cm-1, the true force field can be established. In the case of only slightly greater deviations, the force fields computed differ strongly being without any physical meaning. The results are discussed with respect to the force constants K i , F i , and H i , the effective dynamic charges and polarizabilities of the atoms involved, and the eigenvectors and potential energy distributions of the phonon modes. The most important short-range force constants are K 1 (Fe-S stretching): 0.5 N cm-1, K 2 (internal stretching of the S2 units): 1.0 N cm-1, F 1 (Fe....Fe stretching): 0.2 N cm-1, which indicate repulsive interactions of Fe atoms due to the occupied t 2g orbitals despite the relatively large Fe?Fe distances of 383 pm, and F 2 and F 3 (both intermolecular S2?S2 interactions): 0.2 N cm-1. The great TO/LO splittings of some of the IR allowed phonon modes (species F u) are caused by the large polarizabilities (2.4.106 and 3.3.106 pm3) of the atoms involved rather than by their effective charges (Fe: 0.2 e).  相似文献   

10.
The pressure-dependent elastic properties of the Fe–S system are important to understand the dynamic properties of the Earth’s interior. We have therefore undertaken a first-principles study of the structural and elastic properties of FeS2 polymorphs under high pressure using a method based on plane-wave pseudopotential density function theory. The lattice constants, elastic constants, zero-pressure bulk modulus, and its pressure derivative of pyrite are in good agreement with the previous experiments and theoretical approaches; the lattice constants of marcasite are also consistent with the available experimental data. Calculations of the elastic constants of pyrite and marcasite have been determined from 0 to 200 GPa. Based on the relationship between the calculated elastic constants and the pressure, which can provide the stability of mineral, it would appear that pyrite is stable, whereas marcasite is unstable when the pressure rises above 130 GPa. Static lattice energy calculations predict the marcasite-to-pyrite phase transition to occur at 5.4 GPa at 0 K.  相似文献   

11.
Eighteen pyrite and twelve marcasite samples which have different provenances have been investigated to determine the systematics of the influence of mineralogical and geological factors on the 57Fe Mössbauer spectra at 298 K. The following results have been obtained: there is no ambiguity in distinguishing single phase pyrite from single phase marcasite by means of 57Fe Mössbauer spectroscopy at 298 K. At 298 K the average electric quadrupole splitting, 〈ΔEQ〉, and average isomer shift, 〈δ〉, with respect to Fe metal, are 0.6110 ± 0.0030 mm s?1 and 0.313 ± 0.008 mm s?1, respectively, for the 18 pyrites; 〈ΔEQ〉 = 0.5030 ± 0.0070 mm s?1 and 〈δ〉 = 0.2770 ± 0.0020 mm s?1 for the 12 marcasites. At 77 K, ΔEQ is 0.624 mm s?1 for pyrite and 0.508 mm s?1 for marcasite. In distinguishing pyrites from marcasites, spectra obtained at 77 K are not warranted.The Mössbauer parameters of pyrite and marcasite exhibit appreciable variations, which bear no simple relationship to the geological environment in which they occur but appear to be selectively influenced by impurities, especially arsenic, in the pyrite lattice. Quantitative and qualitative determinations of pyrite/marcasite mechanical mixtures are straightforward at 298 K and 77 K but do require least-squares computer fittings and are limited to accuracies ranging from ±5 to ±15 per cent by uncertainties in the parameter values of the pure phases. The methodology and results of this investigation are directly applicable to coals for which the presence and relative amounts of pyrite and marcasite could be of considerable genetic significance.  相似文献   

12.
 High-pressure Raman investigations were carried out on a synthetic fluorapatite up to about 7 GPa to analyse the behaviour of the phosphate group's internal modes and of its lattice modes. The Raman frequencies of all modes increased with pressure and a trend toward reduced splitting was observed for the PO4-stretching modes [(ν3a(Ag) and ν3b(Ag); ν3a(E2g) and ν3b(E2g)] and the PO4 out-of-plane bending modes [ν4a(Ag) and ν4b(Ag)]. The pressure coefficients of phosphate modes ranged from 0.0047 to 0.0052 GPa−1 for ν3, from 0.0025 to 0.0044 GPa−1 for ν4, from 0.0056 to 0.0086 GPa−1 for ν2 and 0.0046 for ν1 GPa−1, while the pressure coefficients of lattice modes ranged from 0.0106 to 0.0278 GPa−1. The corresponding Grüneisen parameters varied from 0.437 to 0.474, 0.428, 0.232 to 0.409 and 0.521 to 0.800 for phosphate modes ν3, ν1, ν4, ν2, respectively, and from 0.99 to 2.59 for lattice modes. The vibrational behaviour was interpreted in view of the high-pressure structural refinement performed on the same crystal under the same experimental conditions. The reduced splitting may thus be linked to the reduced distortion of the environment around the phosphate tetrahedron rather than to the decrease of the tetrahedral distortion itself. Moreover, the amount of calcium polyhedral compression, which is about three times the compression of phosphate tetrahedra, may explain the different Grüneisen parameters. Received: 25 April 2000 / Accepted: 20 December 2000  相似文献   

13.
Optical microscopy, confocal Raman micro-spectrometry, X-ray photoelectron micro-spectroscopy (XPS) and synchrotron based micro-X-ray fluorescence (XRF), micro-X-ray absorption near edge spectroscopy (XANES) and micro-extended X-ray absorption fine structure (EXAFS) were used to investigate the reduction of aqueous Cr(VI) by pyrite. Special emphasis was placed on the characterisation of the solid phase formed during the reaction process. Cr(III) and Fe(III) species were identified by XPS analyses in addition to non-oxidised pyrite. Optical microscopy images and the corresponding Raman spectra reveal a strong heterogeneity of the samples with three different types of zones. (i) Reflective areas with Eg and Ag Raman wavenumbers relative to non-oxidised pyrite are the most frequently observed. (ii) Orange areas that display a drift of the Eg and Ag pyrite vibration modes of −3 and −6 cm−1, respectively. Such areas are only observed in the presence of Cr(VI) but are not specifically due to this oxidant. (iii) Bluish areas with vibration modes relative to a corundum-like structure that can be assigned to a solid solution Fe2−xCrxO3, x varying between 0.2 and 1.5. The heterogeneity in the spatial distribution of chromium observed by optical microscopy and associated Raman microspectroscopy is confirmed by μ-XRF. In agreement with both solution and XPS analyses, these spectroscopies clearly confirm that chromium is in the trivalent state. XANES spectra in the iron K-edge pre-edge region obtained in rich chromium areas reveal the presence of ferric ion thus revealing a systematic association between Cr(III) and Fe(III). In agreement with Raman analyses, Cr K-edge EXAFS can be interpreted as corresponding to Cr atoms involved in a substituted-type hematite structure Fe2−xCrxO3.  相似文献   

14.
A single-crystal of topaz was studied by Raman spectroscopy to assign the internal modes of the high-frequency range and to compare with infrared data. All active modes exhibit an important Davydov splitting (150 cm?1) but we have found a small Bethe splitting (14.5 cm?1) consistent with a very regular SiO4 tetrahedron. Because of a high value of v 1 (~920 cm?1) the Raman active modes present a mixed v 1/v 3 character. Finally the substitution of OH for F splits an A g internal mode and lead to some proper modes at 3650 cm?1, 3639 cm?1 and 1165 cm?1.  相似文献   

15.
To enhance the computer simulation of hydrothermal processes using the HCh program package, an external ZnS_FeS module has been created on the basis of a nonideal asymmetric model of sphalerite solid solution. FeS and ZnS activity coefficients computed in line with this model within a temperature range 200?C350°C lead to the decrease in FeS mole fraction (X FeS) in sphalerite by 3.0?C1.5 times as compared with the ideal model. The calculated data on composition of sphalerite at the pyrite-pyrrhotite buffer with allowance for pyrrhotite nonideality are consistent with experimental results within the limits of 2% X FeS of its value (0.215). A nonlinear relationship logX FeS versus $\left( {\log f_{S_2 } } \right)$ . has been established, involving additional calculated data on equilibria of sphalerite with pyrite and magnetite, as well as pyrite and barite. With transition from pyrrhotite to magnetite and barite, a FeS mole fraction in sphalerite decreases to 0.1 and 0.006, respectively, because of increase in sulfur fugacity. The feasibility of using the calculation results based on the nonideal model of sphalerite for interpretation of natural data is exemplified in the Rainbow ore occurrence at the Mid-Atlantic Ridge (MAR). The computed pyrite-pyrrhotite and pyrite-cubanite-chalcopyrite buffer equilibria (X FeS = 0.215 and 0.10?C0.12, respectively) are consistent with compositions of sphalerite in the pyrrhotite-cubanite-sphalerite and sphalerite ores (X FeS = 0.20?C0.33 and 0.05?C0.14, respectively).  相似文献   

16.
Polarized optical absorption spectra of Mn(IV) in octahedral crystal fields of Mn(SeO3)2 have been studied by means of microscope-spectrometry in the range 40000-4000 cm?1 and at temperatures between 113 K and 293 K. Intense charge-transfer absorptions (linear absorption coefficient α ? 30000 cm?1) completely mask the d-d transitions in the UV and VIS region above ≈23000 cm?1. The optical electronegativity χ opt of Mn(IV) in Mn(SeO3)2 is estimated to be 2.7. In accordance with the d 3 configuration of tetravalent manganese three d-d bands observed at ambient temperatures at 13250, 14137 (α≈50 cm?1) and ≈18500 cm?1 (α≈500–800 cm?1) are assigned to the spin forbidden 4 A 2g 2 E g and 4 A 2g 2 T 1g transitions as well as to the first spin allowed 4 A 2g 4 T 2g transition, respectively. These assignments allow the calculation of the following ligand field parameters: Dq ≈ 1850 cm?1, B 55 = 869 cm?1 (β 55 = 0.82), and C = 2346 cm?1 (293 K).  相似文献   

17.
The relative reactivities of pulverized samples (100–200 mesh) of 3 marcasite and 7 pyrite specimens from various sources were determined at 25°C and pH 2.0 in ferric chloride solutions with initial ferric iron concentrations of 10?3 molal. The rate of the reaction:
FeS2 + 14Fe3+ + 8H2O = 15Fe2+ + 2SO2?4 + 16H+
was determined by calculating the rate of reduction of aqueous ferric ion from measured oxidation-reduction potentials. The reaction follows the rate law:
?dmFe3+dt = k(AM)mFe3+
where mFe3+ is the molal concentration of uncomplexed ferric iron, k is the rate constant and AM is the surface area of reacting solid to mass of solution ratio. The measured rate constants, k, range from 1.0 × 10?4 to 2.7 × 10?4 sec?1 ± 5%, with lower-temperature/early diagenetic pyrite having the smallest rate constants, marcasite intermediate, and pyrite of higher-temperature hydrothermal and metamorphic origin having the greatest rate constants. Geologically, these small relative differences between the rate constants are not significant, so the fundamental reactivities of marcasite and pyrite are not appreciably different.The activation energy of the reaction for a hydrothermal pyrite in the temperature interval of 25 to 50°C is 92 kJ mol?1. This relatively high activation energy indicates that a surface reaction controls the rate over this temperature range. The BET-measured specific surface area for lower-temperature/early diagenetic pyrite is an order of magnitude greater than that for pyrite of higher-temperature origin. Consequently, since the lower-temperature types have a much greater AM ratio, they appear to be more reactive per unit mass than the higher temperature types.  相似文献   

18.
19.
Single-crystal electron paramagnetic resonance (EPR) spectra of a gem-quality jeremejevite, Al6B5O15(F, OH)3, from Cape Cross, Namibia, reveal an S = 1/2 hole center characterized by an 27Al hyperfine structure arising from interaction with two equivalent Al nuclei. Spin-Hamiltonian parameters obtained from single-crystal EPR spectra at 295 K are as follows: g 1 = 2.02899(1), g 2 = 2.02011(2), g 3 = 2.00595(1); A 1/g e β e  = −0.881(1) mT, A 2/g e β e  = −0.951(1) mT, and A 3/g e β e  = −0.972(2) mT, with the orientations of the g 3- and A 3-axes almost coaxial and perpendicular to the Al–O–Al plane; and those of the g 1- and A 1-axes approximately along the Al–Al and Al–OH directions, respectively. These results suggest that this aluminum-associated hole center represents hole trapping on a hydroxyl oxygen atom linked to two equivalent octahedral Al3+ ions, after the removal of the proton (i.e., a VIAl–OVIAl center). Periodic ab initio UHF and DFT calculations confirmed the experimental 27Al hyperfine coupling constants and directions, supporting the proposed structural model. The VIAl–OVIAl center in jeremejevite undergoes the onset of thermal decay at 300 °C and is completely bleached at 525 °C. These data obtained from the VIAl–OVIAl center in jeremejevite provide new insights into analogous centers that have been documented in several other minerals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号