首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
在国际甚长基线干涉测量(very long baseline interferometry, VLBI)大地测量与天体测量服务组织协调下,首次利用隶属于VLBI全球观测系统(VLBI global observing system, VGOS)的美国Kokee和德国Wettzell观测站及并置的传统VLBI观测站开展了世界时(universal time, UT1)联合测量试验,观测数据在上海VLBI中心进行了干涉处理。结果表明,VGOS超宽带观测系统的UT1测量精度约为7 μs,并置基线的传统S/X双频系统测量精度约为14 μs,VGOS系统的UT1解算结果优于S/X系统。通过试验建立了从相关处理、相关后处理到UT1参数解算的完整数据处理流程,验证了上海VLBI相关处理机的VGOS数据处理能力,为承担国内和国际VGOS观测数据的相关处理任务奠定了基础。  相似文献   

2.
We perform extensive simulations in order to assess the accuracy with which the position of a radio transmitter on the surface of the Moon can be determined by geodetic VLBI. We study how the quality and quantity of geodetic VLBI observations influence these position estimates and investigate how observations of such near-field objects affect classical geodetic parameters like VLBI station coordinates and Earth rotation parameters. Our studies are based on today’s global geodetic VLBI schedules as well as on those designed for the next-generation geodetic VLBI system. We use Monte Carlo simulations including realistic stochastic models of troposphere, station clocks, and observational noise. Our results indicate that it is possible to position a radio transmitter on the Moon using today’s geodetic VLBI with a two-dimensional horizontal accuracy of better than one meter. Moreover, we show that the next-generation geodetic VLBI has the potential to improve the two-dimensional accuracy to better than 5 cm. Thus, our results lay the base for novel observing concepts to improve both lunar research and geodetic VLBI.  相似文献   

3.
孙中苗  范昊鹏 《测绘学报》2017,46(10):1346-1353
甚长基线干涉测量(VLBI)因其独具的超高空间分辨率和定位精度,使其从20世纪70年代末开始就一直是各国的大地测量学研究热点。然而目前VLBI的测量水平依旧不能满足许多需要毫米级精度的科学和工程领域的需求。为促进实现全球尺度下1mm位置精度的目标,国际VLBI大地测量与天体测量服务组织(IVS)正在推进新一代VLBI全球观测系统,即VGOS。本文从组成VGOS测站的各个子系统入手,介绍了国内外当前的进展情况及未来VGOS的发展趋势,并在最后列出了现阶段依旧面临的问题和挑战。  相似文献   

4.
Within the International VLBI Service for Geodesy and Astrometry (IVS) Monte Carlo simulations have been carried out to design the next generation VLBI system (“VLBI2010”). Simulated VLBI observables were generated taking into account the three most important stochastic error sources in VLBI, i.e. wet troposphere delay, station clock, and measurement error. Based on realistic physical properties of the troposphere and clocks we ran simulations to investigate the influence of the troposphere on VLBI analyses, and to gain information about the role of clock performance and measurement errors of the receiving system in the process of reaching VLBI2010’s goal of mm position accuracy on a global scale. Our simulations confirm that the wet troposphere delay is the most important of these three error sources. We did not observe significant improvement of geodetic parameters if the clocks were simulated with an Allan standard deviation better than 1 × 10−14 at 50 min and found the impact of measurement errors to be relatively small compared with the impact of the troposphere. Along with simulations to test different network sizes, scheduling strategies, and antenna slew rates these studies were used as a basis for the definition and specification of VLBI2010 antennas and recording system and might also be an example for other space geodetic techniques.  相似文献   

5.
O. Titov 《Journal of Geodesy》2007,81(6-8):455-468
This paper evaluates the effect of the accuracy of reference radio sources on the daily estimates of station positions, nutation angle offsets, and the estimated site coordinates determined by very long baseline interferometry (VLBI), which are used for the realization of the international terrestrial reference frame (ITRF). Five global VLBI solutions, based on VLBI data collected between 1979 and 2006, are compared. The reference solution comprises all observed radio sources, which are treated as global parameters. Four other solutions, comprising different sub-sets of radio sources, were computed. The daily station positions for all VLBI sites and the corrections to the nutation offset angles were estimated for these five solutions. The solution statistics are mainly affected by the positional instabilities of reference radio sources, whereas the instabilities of geodetic and astrometric time-series are caused by an insufficient number of observed reference radio sources. A mean offset of the three positional components (Up, North, East) between any two solutions was calculated for each VLBI site. From a comparison of the geodetic results, no significant discrepancies between the respective geodetic solutions for all VLBI sites in the Northern Hemisphere were found. In contrast, the Southern Hemisphere sites were more sensitive to the selected set of reference radio sources. The largest estimated mean offset of the vertical component between two solutions for the Australian VLBI site at Hobart was 4 mm. In the worst case (if a weak VLBI network observed a limited number of reference radio sources) the daily offsets of the estimated height component at Hobart exceeded 100 mm. The exclusion of the extended radio sources from the list of reference sources improved the solution statistics and made the geodetic and astrometric time-series more consistent. The problem with the large Hobart height component offset is magnified by a comparatively small number of observations due to the low slewing rate of the VLBI dish (1°/ s). Unless a minimum of 200 scans are performed per 24-h VLBI experiment, the daily vertical positions at Hobart do not achieve 10 mm accuracy. Improving the slew rate at Hobart and/or having an increased number of new sites in the Southern Hemisphere is essential for further improvement of geodetic VLBI results for Southern Hemisphere sites.  相似文献   

6.
European geodetic very long baseline interferometry (VLBI) sessions (also known as EUROPE sessions) have been carried out on a regular basis for the past 15 years to study relative crustal motions within Europe. These sessions are based on observations of extragalactic radio sources, which serve as distant fiducial marks to establish an accurate and stable celestial reference frame for long-term geodetic measurements. The radio sources, however, are not always point-like on milliarcsecond scales, as VLBI imaging has revealed. In this work, we quantify the magnitude of the expected effect of intrinsic source structure on geodetic bandwidth synthesis delay VLBI measurements for a subset of 14 sources regularly observed during the EUROPE sessions. These sources have been imaged at both X-band (8.4 GHz) and S-band (2.3 GHz) based on dedicated observations acquired with the European VLBI Network (EVN) in November 1996. The results of this calculation indicate that the reference source 0457+024 causes significant structural effects in measurements obtained on European VLBI baselines (about 10 picoseconds on average), whereas most of the other sources produce effects that are only occasionally larger than a few picoseconds. Applying the derived source structure models to the data of the EUROPE5-96 session carried out at the same epoch as the EVN experiment shows no noticeable changes in the estimated VLBI station locations.  相似文献   

7.
提出了一种可用于下一代VLBI观测系统(VGOS)的双线极化条纹拟合方法。现有的VLBI观测模式采用的是右圆极化(RCP),而VGOS系统采用的是双线极化。本文方法包括校正和组合条纹拟合两部分。校正部分选择一颗强源作为参考源,分别得到不同极化方式下的通道时延及相位校正数据,用于目标源的校正。组合条纹拟合部分将4种极化分量的可见度数据组合成伪Stokes分量,通过搜索差分星位角使伪Stokes分量的幅值达到最大,从而获得最终的时延观测量。与单极化条纹拟合相比,组合极化获得的条纹具有更高的信噪比(SNR)及更小的条纹相位弥散度。  相似文献   

8.
Very long baseline interferometry (VLBI) tracking of satellites is a topic of increasing interest for the establishment of space ties. This shall strengthen the connection of the various space geodetic techniques that contribute to the International Terrestrial Reference Frame. The concept of observing near-Earth satellites demands research on possible observing strategies. In this paper, we introduce this concept and discuss its possible benefits for improving future realizations of the International Terrestrial Reference System. Using simulated observations, we develop possible observing strategies that allow the determination of radio telescope positions in the satellite system on Earth with accuracies of a few millimeters up to 1–2 cm for weekly station coordinates. This is shown for satellites with orbital heights between 2,000 and 6,000 km, observed by dense regional as well as by global VLBI-networks. The number of observations, as mainly determined by the satellite orbit and the observation interval, is identified as the most critical parameter that affects the expected accuracies. For observations of global positioning system satellites, we propose the combination with classical VLBI to radio sources or a multi-satellite strategy. Both approaches allow station position repeatabilities of a few millimeters for weekly solutions.  相似文献   

9.
The AUSTRAL observing program was started in 2011, performing geodetic and astrometric very long baseline interferometry (VLBI) sessions using the new Australian AuScope VLBI antennas at Hobart, Katherine, and Yarragadee, with contribution from the Warkworth (New Zealand) 12 m and Hartebeesthoek (South Africa) 15 m antennas to make a southern hemisphere array of telescopes with similar design and capability. Designed in the style of the next-generation VLBI system, these small and fast antennas allow for a new way of observing, comprising higher data rates and more observations than the standard observing sessions coordinated by the International VLBI Service for Geodesy and Astrometry (IVS). In this contribution, the continuous development of the AUSTRAL sessions is described, leading to an improvement of the results in terms of baseline length repeatabilities by a factor of two since the start of this program. The focus is on the scheduling strategy and increased number of observations, aspects of automated operation, and data logistics, as well as results of the 151 AUSTRAL sessions performed so far. The high number of the AUSTRAL sessions makes them an important contributor to VLBI end-products, such as the terrestrial and celestial reference frames and Earth orientation parameters. We compare AUSTRAL results with other IVS sessions and discuss their suitability for the determination of baselines, station coordinates, source coordinates, and Earth orientation parameters.  相似文献   

10.
Our present relativistic part of the geodetic VLBI model for Earthbound antennas is a consensus model which is considered as a standard for processing high-precision VLBI observations. It was created as a compromise between a variety of relativistic VLBI models proposed by different authors as documented in the IERS Conventions 2010. The accuracy of the consensus model is in the picosecond range for the group delay but this is not sufficient for current geodetic purposes. This paper provides a fully documented derivation of a new relativistic model having an accuracy substantially higher than one picosecond and based upon a well accepted formalism of relativistic celestial mechanics, astrometry and geodesy. Our new model fully confirms the consensus model at the picosecond level and in several respects goes to a great extent beyond it. More specifically, terms related to the acceleration of the geocenter are considered and kept in the model, the gravitational time-delay due to a massive body (planet, Sun, etc.) with arbitrary mass and spin-multipole moments is derived taking into account the motion of the body, and a new formalism for the time-delay problem of radio sources located at finite distance from VLBI stations is presented. Thus, the paper presents a substantially elaborated theoretical justification of the consensus model and its significant extension that allows researchers to make concrete estimates of the magnitude of residual terms of this model for any conceivable configuration of the source of light, massive bodies, and VLBI stations. The largest terms in the relativistic time delay which can affect the current VLBI observations are from the quadrupole and the angular momentum of the gravitating bodies that are known from the literature. These terms should be included in the new geodetic VLBI model for improving its consistency.  相似文献   

11.
VLBI observations of GNSS-satellites: from scheduling to analysis   总被引:1,自引:1,他引:0  
The possibility of observing satellites with the very long baseline interferometry (VLBI) technique has been discussed for several years in the geodetic community, with observations of either existing satellites of the global navigation satellite systems or of satellites dedicated to realise a space tie. Such observations were carried out using the Australian telescopes in Hobart and Ceduna which, for the first time, integrated all the necessary steps: planning the observations (automated scheduling), correlation of the data and the generation of a series of time delay observables suitable for a subsequent geodetic analysis. We report on the development of new and the adaptation of existing routines for observing and data processing, focusing on technology development. The aim was to use methods that are routinely used in geodetic VLBI. A series of test experiments of up to six hours duration was performed, allowing to improve the observations from session to session and revealing new problems still to be solved. The newly developed procedures and programs now enable more observations. Further development assumed, this bears the prospect of being directly applied to the observation of dedicated space-tie satellites.  相似文献   

12.
We present earth rotation results from the ultra-rapid operations during the continuous VLBI campaigns CONT11 and CONT14. The baseline Onsala–Tsukuba, i.e., using two out of the 13 and 17 stations contributing to CONT11 and CONT14, respectively, was used to derive UT1-UTC in ultra-rapid mode during the ongoing campaigns. The latency between a new observation and a new UT1-UTC result was less than 10 min for more than 95% of the observations. The accuracy of the derived ultra-rapid UT1-UTC results is approximately a factor of three worse than results from optimized one-baseline sessions and/or complete analysis of large VLBI networks. This is, however, due to that the one-baseline picked from the CONT campaigns is not optimized for earth rotation determination. Our results prove that the 24/7 operation mode planned for VGOS, the next-generation VLBI system, is possible already today. However, further improvements in data connectivity of stations and correlators as well in the automated analysis are necessary to realize the ambitious VGOS plans.  相似文献   

13.
The Vienna Mapping Functions 1 (VMF1) as provided by the Institute of Geodesy and Geophysics (IGG) at the Vienna University of Technology are the most accurate mapping functions for the troposphere delays that are available globally and for the entire history of space geodetic observations. So far, the VMF1 coefficients have been released with a time delay of almost two days; however, many scientific applications require their availability in near real-time, e.g. the Ultra Rapid solutions of the International GNSS Service (IGS) or the analysis of the Intensive sessions of the International VLBI Service (IVS). Here we present coefficients of the VMF1 as well as the hydrostatic and wet zenith delays that have been determined from forecasting data of the European Centre for Medium-Range Weather Forecasts (ECMWF) and provided on global grids. The comparison with parameters derived from ECMWF analysis data shows that the agreement is at the 1 mm level in terms of station height, and that the differences are larger for the wet mapping functions than for the hydrostatic mapping functions and the hydrostatic zenith delays. These new products (VMF1-FC and hydrostatic zenith delays from forecast data) can be used in real-time analysis of geodetic data without significant loss of accuracy.  相似文献   

14.
Closure quantities measured by very-long-baseline interferometry (VLBI) observations are independent of instrumental and propagation instabilities and antenna gain factors, but are sensitive to source structure. A new method is proposed to calculate a structure index based on the median values of closure quantities rather than the brightness distribution of a source. The results are comparable to structure indices based on imaging observations at other epochs and demonstrate the flexibility of deriving structure indices from exactly the same observations as used for geodetic analysis and without imaging analysis. A three-component model for the structure of source 3C371 is developed by model-fitting closure phases. It provides a real case of tracing how the structure effect identified by closure phases in the same observations as the delay observables affects the geodetic analysis, and investigating which geodetic parameters are corrupted to what extent by the structure effect. Using the resulting structure correction based on the three-component model of source 3C371, two solutions, with and without correcting the structure effect, are made. With corrections, the overall rms of this source is reduced by 1 ps, and the impacts of the structure effect introduced by this single source are up to 1.4 mm on station positions and up to 4.4 microarcseconds on Earth orientation parameters. This study is considered as a starting point for handling the source structure effect on geodetic VLBI from geodetic sessions themselves.  相似文献   

15.
Summary Since 1989 several mobile VLBI campaigns have been carried out in Europe with a total of 14 sites occupied. The Norwegian stations at Tromsø and Trysil are the only mobile VLBI stations in Europe observed in more than one epoch, so they have produced the most interesting data from these campaigns. Tromsø is the only station observed in the two summer campaigns (1989 and 1992), while Trysil has been the winter site for MV-2 since late 1991 until the spring of 1993. In this paper we describe the mobile VLBI campaigns in Norway including the observational work and the detailed geodetic analysis performed with OCCAM V3.3. We have also analyzed a series of GPS data sets from Tromsø in order to check the reliability of the VLBI results for that station. The results reveal the need for a very careful design of mobile VLBI experiments, in particular regarding the consistency of the network and of the observation schedules, and the special care that is required in the analysis of the mobile VLBI data in order to achieve significant conclusions.  相似文献   

16.
The source position time-series for many of the frequently observed radio sources in the NASA geodetic very long baseline interferometry (VLBI) program show systematic linear and non-linear variations of as much as 0.5 mas (milli-arc-seconds) to 1.0 mas, due mainly to source structure changes. In standard terrestrial reference frame (TRF) geodetic solutions, it is a common practice to only estimate a global source position for each source over the entire history of VLBI observing sessions. If apparent source position variations are not modeled, they produce corresponding systematic variations in estimated Earth orientation parameters (EOPs) at the level of 0.02–0.04 mas in nutation and 0.01–0.02 mas in polar motion. We examine the stability of position time-series of the 107 radio sources in the current NASA geodetic source catalog since these sources have relatively dense observing histories from which it is possible to detect systematic variations. We consider different strategies for handling source instabilities where we (1) estimate the positions of unstable sources for each session they are observed, or (2) estimate spline parameters or rate parameters for sources chosen to fit the specific variation seen in the position-time series. We found that some strategies improve VLBI EOP accuracy by reducing the biases and weighted root mean square differences between measurements from independent VLBI networks operating simultaneously. We discuss the problem of identifying frequently observed unstable sources and how to identify new sources to replace these unstable sources in the NASA VLBI geodetic source catalog.  相似文献   

17.
Missing or incorrect consideration of azimuthal asymmetry of troposphere delays is a considerable error source in space geodetic techniques such as Global Navigation Satellite Systems (GNSS) or Very Long Baseline Interferometry (VLBI). So-called horizontal troposphere gradients are generally utilized for modeling such azimuthal variations and are particularly required for observations at low elevation angles. Apart from estimating the gradients within the data analysis, which has become common practice in space geodetic techniques, there is also the possibility to determine the gradients beforehand from different data sources than the actual observations. Using ray-tracing through Numerical Weather Models (NWMs), we determined discrete gradient values referred to as GRAD for VLBI observations, based on the standard gradient model by Chen and Herring (J Geophys Res 102(B9):20489–20502, 1997.  https://doi.org/10.1029/97JB01739) and also for new, higher-order gradient models. These gradients are produced on the same data basis as the Vienna Mapping Functions 3 (VMF3) (Landskron and Böhm in J Geod, 2017.  https://doi.org/10.1007/s00190-017-1066-2), so they can also be regarded as the VMF3 gradients as they are fully consistent with each other. From VLBI analyses of the Vienna VLBI and Satellite Software (VieVS), it becomes evident that baseline length repeatabilities (BLRs) are improved on average by 5% when using a priori gradients GRAD instead of estimating the gradients. The reason for this improvement is that the gradient estimation yields poor results for VLBI sessions with a small number of observations, while the GRAD a priori gradients are unaffected from this. We also developed a new empirical gradient model applicable for any time and location on Earth, which is included in the Global Pressure and Temperature 3 (GPT3) model. Although being able to describe only the systematic component of azimuthal asymmetry and no short-term variations at all, even these empirical a priori gradients slightly reduce (improve) the BLRs with respect to the estimation of gradients. In general, this paper addresses that a priori horizontal gradients are actually more important for VLBI analysis than previously assumed, as particularly the discrete model GRAD as well as the empirical model GPT3 are indeed able to refine and improve the results.  相似文献   

18.
New global positioning system reference station in Brazil   总被引:1,自引:0,他引:1  
Co-located very long baseline interferometry (VLBI) and global positioning system (GPS) reference stations were installed near Fortaleza, Brazil, in 1993. Both have been important in the realization and maintenance of the International Terrestrial Reference Frame. A new-generation GPS system was installed in 2005 to replace the original station. Experience gained in the prior 12 years was used to improve the design of the GPS antenna mount. Preliminary indications are greatly improved data quality from the new station. Simultaneous observations from the nearly half-year of overlapping operation have been used to determine the local tie between the new and old GPS reference points to about 1 mm accuracy. This can be used to update the 1993 survey tie between the original GPS and the VLBI points, although there are questions about the accuracy of that measurement based on a comparison with space geodetic data. A test of removing the conical radome over the old GPS antenna indicates that it has biased the station height by about 16 mm downward, which probably accounts for most of the previous survey discrepancy.  相似文献   

19.
Geodetic VLBI correlation in software   总被引:1,自引:1,他引:0  
Correlation algorithms for geodetic very long baseline interferometry (VLBI) can now be effectively implemented on parallel computers of modest size. We have undertaken a detailed comparison of the output from a trusted geodetic correlator, one that has supported global geodetic VLBI observations for many years, with the output of a software correlator implemented on a small parallel computing cluster. We show that the correlator outputs agree closely, within expected error bounds, after accounting for the differences in the adopted geometric delay models, and therefore that use of the software correlator is feasible for geodetic VLBI processing, as a first step toward routine geodetic data processing. Recent developments in software correlation for geodesy are discussed, including the possibility of real-time processing options.  相似文献   

20.
Summary The ionospheric effect is one of the main sources of error in Very Long Baseline Interferometry (VLBI) and Global Positioning System (GPS) high precision geodesy. Although the use of two frequencies allows the estimation of this effect, in some cases dual observations are not possible due to the available equipment or the type of observation. This paper presents the ionospheric calibration of single frequency VLBI and GPS observations based on the ionospheric electron content estimated from dual frequency GPS data. The ionospheric delays obtained with this procedure and the VLBI baseline length results have been compared with those obtained with dual frequency data. For the European geodetic VLBI baselines, both solutions agree at the 3–5 parts in 10–9 level. The noise introduced by the GPS-based calibration is in the order of 3 cm for the VLBI observables and of 10 cm for the GPS observables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号