首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This study reports K/Ar ages for basalts from four areas in central Iceland where erosion of structural highs has exposed stratigraphically older levels of the lava pile. The four areas are the Eyjafjördur regional anticline and the Tjörnes horst in north Iceland and the Borgarnes and Hreppar regional anticlines in south Iceland. Three of the areas have their older plateau basalts within the range of at least 8.5–9.5 m.y. old. Only the Hreppar area does not have any exposed rocks much older than about 2.5 m.y. The Tjörnes data confirm that the exposed Husavik faults have played a major role in the transform displacement of the Tjörnes Fracture Zone. The results are further evidence that the spreading axes through Iceland have had a history of shifting their location. Analysis of our results suggests that the regional anticlines of Iceland, a seeming structural anomaly in a spreading regime, have resulted from shifting spreading axes which transitionally coexist and create regional anticlines in between.  相似文献   

3.
A Pleistocene subaqueous, volcanic sequence in South Iceland consists of flows of basaltic hyaloclastite and lava with interbedded sedimentary diamictite units. Emplacement occurred on a distal submarine shelf in drowned valleys along the southern coast of Iceland. The higher sea level was caused by eustatic sea-level change, probably towards the end of a glaciation. This sequence, nearly 700 m thick, rests unconformably on eroded flatlying lavas and sedimentary rocks of likely Tertiary age. A Standard Depositional Unit, describing the flows of hyaloclastite, starts with compact columnar-jointed basalt overlain by cubejointed basalt, and/or pillow lava. This in turn is overlain by thick unstructured hyaloclastite containing aligned basalt lobes, and bedded hyaloclastite at the top. A similar lithofacies succession is valid for proximal to distal locations. The flows were produced by repeated voluminous extrusions of basaltic lava from subaquatic fissures on the Eastern Rift Zone of Iceland. The fissures are assumed to lie in the same general area as the 1783 Laki fissure which produced 12 km3 of basaltic lava. Due to very high extrusion rates, the effective water/melt ratio was low, preventing optimal fragmentation of the melt. The result was a heterogeneous mass of hyaloclastite and fluid melt which moved en masse downslope with the melt at the bottom of the flow and increasingly vesicular hyaloclastite fragments above. The upper and distal parts of the flow moved as low-concentration turbulent suspensions that deposited bedded hyaloclastite.  相似文献   

4.
In the subglacial eruption at Gjálp in October 1996 a 6 km long and 500 m high subglacial hyaloclastite ridge was formed while large volumes of ice were melted by extremely fast heat transfer from magma to ice. Repeated surveying of ice surface geometry, measurement of inflow of ice, and a full Stokes 2-D ice flow model have been combined to estimate the heat output from Gjálp for the period 1996–2005. The very high heat output of order 106 MW during the eruption was followed by rapid decline, dropping to  2500 MW by mid 1997. It remained similar until mid 1999 but declined to 700 MW in 1999–2001. Since 2001 heat output has been insignificant, probably of order 10 MW. The total heat carried with the 1.2 × 1012 kg of basaltic andesite erupted (0.45 km3 DRE) is estimated to have been 1.5 × 1018 J. About two thirds of the thermal energy released from the 0.7 km3 edifice in Gjálp occurred during the 13-day long eruption, 20% was released from end of eruption until mid 1997, a further 10% in 1997–2001, and from mid 2001 to present, only a small fraction remained. The post-eruption heat output history can be reconciled with the gradual release of 5 × 1017 J thermal energy remaining in the Gjálp ridge after the eruption, assuming single phase liquid convection in the cooling edifice. The average temperature of the edifice is found to have been approximately 240 °C at the end of the eruption, dropping to  110 °C after 9 months and reaching  40 °C in 2001. Although an initial period of several months of very high permeability is possible, the most probable value of the permeability from 1997 onwards is of order 10− 12 m2. This is consistent with consolidated/palagonitized hyaloclastite but incompatible with unconsolidated tephra. This may indicate that palagonitization had advanced sufficiently in the first 1–2 years to form a consolidated hyaloclastite ridge, resistant to erosion. No ice flow traversing the Gjálp ridge has been observed, suggesting that it has effectively been shielded from glacial erosion in its first 10 years of existence.  相似文献   

5.
Data on subsurface temperature conditions from borehole measurements in various parts of Iceland were presented. The subsurface temperature field is in many areas found to be controlled by the movement of water in the upper part of the crust, and so is also the surface heat flow by conduction. Data were presented to show that conditions for free convection of water may well exist in the neovolcanic zone of Iceland. It is suggested that this phenomenon may account for the anomalous heat flow pattern observed on the Mid-Atlantic Ridge. For a more detailed account of this paper the reader is referred to the following: Gudmar Pálmason, 1967,On heat flow in Iceland in relation to the Mid-Atlantic Ridge. In:Iceland and mid-ocean ridges (Ed.S. Björnsson), Vis. Isl. (Societas Scientiarum Islandica), Reykjavik.  相似文献   

6.
At the Krafla central volcano in north-east Iceland, two main phases of rhyolite volcanism are identified. The earlier phase (last interglacial) is related to the formation of a caldera, whereas the second phase (last glacial) is related to the emplacement of a ring dike. Subsequently, only minor amounts of rhyolite have been erupted. The volcanic products of Krafla are volumetrically bimodal. Geochemically, there is a series of basaltic to basalto-andesitic rocks and a cluster of rhyolitic rocks. Rocks of intermediate to silicic composition (icelandites and dacites) show clear signs of mixing. The rhyolites are Fe-rich (tholeiitic), and aphyric to slightly porphyritic (plagioclase, augite, pigeonite, fayalitic olivine and magnetite). They are minimum melts on the quartz-plagioclase cotectic plane in the granite system (Qz-Or-Ab-An). The rhyolites at Krafla were produced by near-solidus, rather than nearliquidus fractionation. They are interpreted as silicic minimum melts of hydrothermally altered crust, mainly of basaltic composition. They were primarily generated on the peripheries of an active basaltic magma chamber or intrusive domain, where sufficient volumes of crust were subjected to temperatures favorable for rhyolite genesis (850–950° C). The silicic melts were extracted crystal-free from their source in response to crustal deformation.  相似文献   

7.
Two large (106–107 m3 erupted volume) hydrothermal explosions occurred from craters on the eastern margin of Kawerau Geothermal Field at c. 14,500 and 9,000 yrs B.P. Explosion products are interbedded within C14 dated pyroclastic fall deposits and contain clasts of hydrothermally altered ignimbrite, rhyolite and tuff, in a silty hydrothermal clay matrix. No magmatic ejecta are found. Some ejected blocks record earlier pre-eruption episodes of shallow hydraulic fracturing and silica cementation. Drillhole stratigraphy indicates that explosion extended to about 190 m below present ground level. The explosion is analysed as a rock/water interaction with eruptive energy provided by flashing of about half the available water. Although surface heat flow and shallow temperatures are now low at eastern Kawerau, the hydrothermal explosions demonstrate the previous existence of a high temperature shallow geothermal system, probably related to a major fault feeding water up through the basement.  相似文献   

8.
Active thermal springs associated with the late Pleistocene Calabozos caldera complex occur in two groups: the Colorado group which issues along structures related to caldera collapse and resurgence, and the Puesto Calabozos group, a nearby cluster that is chemically distinct and probably unrelated to the Colorado springs. Most of the Colorado group can be related to a hypothetical parent water containing ∼400 ppm Cl at ∼250°C by dilution with ≥50% of cold meteoric water. The thermal springs in the most deeply eroded part of the caldera were derived from the same parent water by boiling.The hydrothermal system has probably been active for at least as long as 300,000 years, based on geologic evidence and calculations of paleo-heat flow. There is no evidence for economic mineralization at shallow depth. The Calabozos hydrothermal system would be an attractive geothermal prospect were its location not so remote.  相似文献   

9.
Lake Baringo, a freshwater lake in the central Kenya Rift Valley, is fed by perennial and ephemeral rivers, direct rainfall, and hot springs on Ol Kokwe Island near the centre of the lake. The lake has no surface outlet, but despite high evaporation rates it maintains dilute waters by subsurface seepage through permeable sediments and faulted lavas. New geochemical analyses (major ions, trace elements) of the river, lake, and hot spring waters and the suspended sediments have been made to determine the main controls of lake water quality. The results show that evaporative concentration and the binary mixing between two end members (rivers and thermal waters) can explain the hydrochemistry of the lake waters. Two zones are recognized from water composition. The southern part of the lake near sites of perennial river inflow is weakly influenced by evaporation, has low total dissolved species (TDS), and has a seasonally variable load of mainly detrital suspended sediments. In contrast, waters of the northern part of the lake show evidence for strong evaporation (TDS of up to eight times inflow). Authigenic clay minerals and calcite may be precipitating from those more concentrated fluids. The subaerial hot‐spring waters have a distinctive chemistry and are enriched in some elements that are also present in the lake water. Comparison of the chemical composition of the inflowing surface waters and lake water shows (1) an enrichment of some species (HCO3?, Cl, SO42?, F, Na, B, V, Cr, As, Mo, Ba and U) in the lake, (2) a depletion in SiO2 in the lake, and (3) a possible hydrothermal origin for most F. The rare earth element distribution and the F/Cl and Na/Cl ratios give valuable information on the rate of mixing of the river and hydrothermal fluids in the lake water. Calculations imply that thermal fluids may be seeping upward locally into the lake through grid‐faulted lavas, particularly south of Ol Kokwe Island. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
The Austurhorn intrusive complex in southeastern Iceland represents an exhumed Tertiary central volcano. The geometry of the intrusion and geochemistry of the mafic and felsic rocks indicate Austurhorn was a volcanic center analogous to Eyjafjallajökull and Torfajökull in Iceland's eastern neovolcanic zone (EVZ). Early transitional tholeiitic basalt magmatism at Austurhorn formed a shallow crustal chamber 5 km in diameter. Apparent rhythmic modal layering of, and intrusive contacts within, the gabbro indicate the mafic chamber was replenished frequently as it cooled and crystallized. Felsic activity postdated near-solidification of the gabbro; numerous granitic magmas intruded along gabbro margins and within the adjacent crust. Field relations indicate that infrequent felsic replenishment prevented convective mixing of the Austurhorn chamber during this time, although commingled mafic and felsic magmas are observed in an extensive net veined complex. Late stage mafic dikes intrude the entire complex, suggesting that magmatic heat was abundantly available throughout the evolution of the Austurhorn system. Plagioclase and clinopyroxene compositions in mafic through felsic rocks, including gabbros, support a model of progressive differentiation. Field relations constrain the felsic magmas to originate at P1 kbar, presumably by fractional crystallization. The structure and geochemistry of the Austurhorn intrusive complex suggest formation in an immature rift environment similar to the modern EVZ. The proposed rift segment was parallel to the western and eastern neovolcanic zones, and probably resulted from a reorganization of plate boundaries 7 Ma (Saemundsson 1979; Helgason 1985; Jancin et al. 1985) triggered by activity of the Iceland mantle plume.  相似文献   

11.
Tangkuban Parahu is an active stratovolcano located 17 km north of the city of Bandung in the province west Java, Indonesia. All historical eruptive activity at this volcano has been confined to a complex of explosive summit craters. About a dozen eruptions-mostly phreatic events- and 15 other periods of unrest, indicated by earthquakes or increased thermal activity, have been noted since 1829. The last magmatic eruption occurred in 1910. In late 1983, several small phreatic explosions originated from one of the summit craters. More recently, increased hydrothermal and earthquake activity occurred from late 1985 through 1986. Tilt measurements, using a spirit-level technique, have been made every few months since February 1981 in the summit region and along the south and east flanks of the volcano. Measurements made in the summit region indicated uplift since the start of these measurements through at least 1986. From 1981 to 1983, the average tilt rate at the edges of the summit craters was 40–50 microradians per year. After the 1983 phreatic activity, the tilt rate decreased by about a factor of five. Trilateration surveys across the summit craters and on the east flank of the volcano were conducted in 1983 and 1986. Most line length changes measured during this three-year period did not exceed the expected uncertainty of the technique (4 ppm). The lack of measurable horizontal strain across the summit craters seems to contradict the several years of tilt measurements. Using a point source of dilation in an elastic half-space to model tilt measurements, the pressure center at Tangkuban Parahu is located about 1.5 km beneath the southern part of the summit craters. This is beneath the epicentral area of an earthquake swarm that occurred in late 1983. The average rate in the volume of uplift from 1981 to 1983 was 3 million m3 per year; from 1983 to 1986 it averaged about 0.4 million m3 per year. Possible causes for this uplift are increased pressure within a very shallow magma body or heating and expansion of a confined aquifier.  相似文献   

12.
Tangkuban Parahu is an active stratovolcano located 17 km north of the city of Bandung in the province west Java, Indonesia. All historical eruptive activity at this volcano has been confined to a complex of explosive summit craters. About a dozen eruptions-mostly phreatic events- and 15 other periods of unrest, indicated by earthquakes or increased thermal activity, have been noted since 1829. The last magmatic eruption occurred in 1910. In late 1983, several small phreatic explosions originated from one of the summit craters. More recently, increased hydrothermal and earthquake activity occurred from late 1985 through 1986. Tilt measurements, using a spirit-level technique, have been made every few months since February 1981 in the summit region and along the south and east flanks of the volcano. Measurements made in the summit region indicated uplift since the start of these measurements through at least 1986. From 1981 to 1983, the average tilt rate at the edges of the summit craters was 40–50 microradians per year. After the 1983 phreatic activity, the tilt rate decreased by about a factor of five. Trilateration surveys across the summit craters and on the east flank of the volcano were conducted in 1983 and 1986. Most line length changes measured during this three-year period did not exceed the expected uncertainty of the technique (4 ppm). The lack of measurable horizontal strain across the summit craters seems to contradict the several years of tilt measurements. Using a point source of dilation in an elastic half-space to model tilt measurements, the pressure center at Tangkuban Parahu is located about 1.5 km beneath the southern part of the summit craters. This is beneath the epicentral area of an earthquake swarm that occurred in late 1983. The average rate in the volume of uplift from 1981 to 1983 was 3 million m3 per year; from 1983 to 1986 it averaged about 0.4 million m3 per year. Possible causes for this uplift are increased pressure within a very shallow magma body or heating and expansion of a confined aquifier.  相似文献   

13.
Drastic channel adjustments have affected the main alluvial rivers of Tuscany (central Italy) during the 20th century. Bed‐level adjustments were identified both by comparing available topographic longitudinal profiles of different years and through field observations. Changes in channel width were investigated by comparing available aerial photographs (1954 and 1993–98). Bed incision represents the dominant type of vertical adjustment, and is generalized along all the fluvial systems investigated. The Arno River system is the most affected by bed‐level lowering (up to 9 m), whereas lower incision (generally less than 2 m) is observed along the rivers of the southern part of the region. Human disturbances appear to be the dominant factors of adjustments: the main phase of vertical change occurred during the period 1945–80, in concomitance with the phase of maximum sediment mining activity at the regional scale. The second dominant type of adjustment that involved most of the rivers in the region consists of a narrowing of the active channel. Based on measurements of channel width conducted on aerial photographs, 38% of the reaches analysed experienced a narrowing greater than 50% of the initial channel width. The largest values of channel narrowing were observed along initially braided or sinuous with alternate bars morphologies in the southern portion of the region. A regional scheme of channel adjustments is derived, based on initial channel morphology and on the amounts of incision and narrowing. Different styles of channel adjustments are described. Rivers that were originally sinuous with alternate bars to braided generally became adjusted by a moderate incision and a moderate to intense narrowing; in contrast, sinuous‐meandering channels mainly adjusted vertically, with a minor amount of narrowing. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
A survey of low-temperature geothermal activity in Iceland shows that there is a strong positive correlation between the temperature and the mass flow of the systems. The relation is very clearly displayed by the thermal systems in Central Northern Iceland. Subdividing the temperature interval from 20/dgC to 100°C into 8 intervals of equal length and plotting the average system flow in each interval against the average temperature of the interval we find that the mass flow increases with the temperature. At the lower end this relation is the result of a conductive cooling of the thermal water as it ascends to the surface. At temperatures above 50°C convective effects appear to be the dominant cause. A very simple lumped element analysis of the low-temperature systems results in reasonable estimates of important flow parameters. The convective downward migration of fracture spaces along the walls of mafic dikes appears to be a dominant thermomechanical process in the development of the low-temperature systems in Northern Iceland.  相似文献   

15.
Ash produced by a volcanic eruption on Iceland can be hazardous for both the transatlantic flight paths and European airports and airspace. In order to begin to quantify the risk to aircraft, this study explored the probability of ash from a short explosive eruption of Hekla Volcano (63.98°N, 19.7°W) reaching European airspace. Transport, dispersion and deposition of the ash cloud from a three hour ‘explosive’ eruption with an initial plume height of 12 km was simulated using the Met Office's Numerical Atmospheric-dispersion Modelling Environment, NAME, the model used operationally by the London Volcanic Ash Advisory Centre. Eruptions were simulated over a six year period, from 2003 until 2008, and ash clouds were tracked for four days following each eruption.Results showed that a rapid spread of volcanic ash is possible, with all countries in Europe facing the possibility of an airborne ash concentration exceeding International Civil Aviation Organization (ICAO) limits within 24 h of an eruption. An additional high impact, low probability event which could occur is the southward spread of the ash cloud which would block transatlantic flights approaching and leaving Europe. Probabilities of significant concentrations of ash are highest to the east of Iceland, with probabilities exceeding 20% in most countries north of 50°N. Deposition probabilities were highest at Scottish and Scandinavian airports. There is some seasonal variability in the probabilities; ash is more likely to reach southern Europe in winter when the mean winds across the continent are northerly. Ash concentrations usually remain higher for longer during summer when the mean wind speeds are lower.  相似文献   

16.
The unusual location of ventifacts, on a boulder‐built jetty at the mouth of the Siuslaw River, Oregon coast, western USA, allows ventifact age and wind abrasion rates to be estimated with some precision. The jetty was built mainly between 1892–1901 and extended throughout the twentieth century. Consideration of historical shoreline position and the history of jetty construction and repair suggests the ventifacts have formed since about 1930. Morphologically the ventifacts are aligned south‐to‐north reflecting winter winds and sediment transport from the adjacent beach. Wind‐parallel grooves and ridges with sharp, sinuous crests are developed on inclined boulder surfaces on top of the jetty and reflect suspended sand transport in wind vortices. Deeply pitted surfaces on steep boulder surfaces nearest the beach reflect impact by saltating sand grains. Based on present wind regimes (1992–2000) from three regional weather stations, southerly winds above the sand transport threshold occur for 21·9–29·6 per cent of the time. Based on estimated depth of loss from boulder surfaces, wind abrasion rates are calculated to be on the order of 0·24–1·63 mm a?1. This is the first well‐constrained field estimate of ventifact age and ventifaction rate from a modern coastal environment. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
Abstract

The spatial and temporal variations in the level of Lake Abiyata and controlling natural and manmade factors are presented. This study has been made by combining evidence from hydrometeorological and lake level records, water budget analyses, aerial photograph and satellite imagery interpretations, and numerical groundwater flow modelling. The most important components of the water balance of the lake are precipitation, river inflow and evaporation. The lake level has been fluctuating considerably over a wide range (by 6 m during the last 60 years) strongly controlled by the precipitation trends in the adjacent highlands. Climatic changes and consequent reduction in the surface water inputs have resulted in the reduction of its size. Recent abstraction of water for irrigation and soda ash production have drastically changed both the lake level and its hydrochemistry. This change appears to have grave environmental consequences on the fragile rift lacustrine ecosystem.  相似文献   

18.
Within the neovolcanic zones of Iceland many volcanoes grew upward through icecaps that have subsequently melted. These steep-walled and flat-topped basaltic subglacial volcanoes, called tuyas, are composed of a lower sequence of subaqueously erupted, pillowed lavas overlain by breccias and hyaloclastites produced by phreatomagmatic explosions in shallow water, capped by a subaerially erupted lava plateau. Glass and whole-rock analyses of samples collected from six tuyas indicate systematic variations in major elements showing that the individual volcanoes are monogenetic, and that commonly the tholeiitic magmas differentiated and became more evolved through the course of the eruption that built the tuya. At Herdubreid, the most extensively studies tuya, the upward change in composition indicates that more than 50 wt.% of the first erupted lavas need crystallize over a range of 60°C to produce the last erupted lavas. The S content of glass commonly decreases upward in the tuyas from an average of about 0.08 wt.% at the base to < 0.02 wt.% in the subaerially erupted lava at the top, and is a measure of the depth of water (or ice) above the eruptive vent. The extensive subsurface crystallization that generates the more evolved, lower-temperature melts during the growth of the tuyas, apparently results from cooling and degassing of magma contained in shallow magma chambers and feeders beneath the volcanoes. Cooling may result from percolation of meltwater down cracks, vaporization, and cycling in a hydrothermal circulation. Degassing occurs when progressively lower pressure eruption (as the volcanic vent grows above the ice/water surface) lowers the volatile vapour pressure of subsurface melt, thus elevating the temperature of the liquidus and hastening liquid-crystal differentiation.  相似文献   

19.
Because it is located both on the Mid‐Atlantic Ridge and on a mantle plume, Iceland is a region of intense tectonics and volcanism. During the last glaciation, the island was covered by an ice sheet approximately 1000 m thick. A reconstruction of the ice flow lines, based on glacial directional features, shows that the ice sheet was partly drained through fast‐flowing streams. Fast flow of the ice streams has been recorded in megascale lineations and flutes visible on the currently deglaciated bedrock, and is confirmed by simple mass balance considerations. Locations of the major drainage routes correlate with locations of geothermal anomalies, suggesting that ice stream activity was favoured by lubrication of the bed by meltwater produced in regions of high geothermal heat flux. Similar control of ice flow by geothermal activity is expected in ice sheets currently covering tectonically and volcanically active area such as the West Antarctic ice sheet. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
Chemical interaction of thermal fluids with reservoir rock in the Roosevelt Hot Springs thermal area, Utah, has resulted in the development of characteristic trace-element dispersion patterns. Multielement analyses of surface rock samples, soil samples and drill cuttings from deep exploration wells provide a three-dimensional perspective of chemical redistribution within this structurally-controlled hot-water geothermal system.Five distinctive elemental suites of chemical enrichment are recognized, each characteristic of a particular combination of physical and chemical conditions within the geothermal system. These are: (1) concentrations of As, Sb, Be, and Hg associated with siliceous material at locations of liquid discharge, fluid mixing or boiling; (2) concentrations of Mn, Ba, W, Be, Cu, Co, As, Sb and Hg in manganese and iron oxide deposits; (3) high concentrations of Hg in argillized rock near fumaroles and lower concentrations in a broad diffuse halo surrounding the thermal center; (4) concentrations of As in sulfides and Li in silicate alteration minerals immediately surrounding high-temperature fluid flow-controlling fractures; (5) deposits of CaCO3 at depth where flashing of brine to steam has occurred due to pressure release. The geochemical enrichments are not, in general, widespread, pervasively developed zones of regular form and dimension as are typical in many ore-forming hydrothermal systems.As the geothermal system develops, changes and eventually declines through time, the chemical deposits are developed, remobilized or superimposed upon each other, thus preserving within the rocks a record of the history of the geothermal system. Recognition of trace-element distribution patterns during the exploration of a geothermal system may aid definition of the present geometry and interpretation of the history of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号