首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The concentrations of Cu, Ni and Cd were determined in Funka Bay during a spring phytoplankton bloom, consisting of diatoms. Just after the bloom, both dissolved Cd and nutrients were removed in the euphotic zone. However, the removal ratio of Cd to phosphate was very different from that in seawater. The removal of Cd took place at a Cd/phosphate ratio of 0.07×10−3, which was lower than in seawater before the bloom (0.25×10−3), leading to an increase in this ratio in seawater exceeding 0.7×10−3 at the end of the bloom. Elevated concentrations of Cd and phosphate were observed in the deeper layer after the bloom due to the decomposition of detrital materials produced in the bloom. The ratio of Cd/phosphate in the regeneration step was 0.24×10−3 which was different from the removal ratio of 0.07×10−3. These observations suggest that the high Cd/phosphate ratio in the regeneration would reflect a relatively high regeneration rate of Cd than that of phosphate. No significant decrease in Cu and Ni concentrations was observed during the development of the bloom, suggesting that biological removal of these metals was not so significant during the spring bloom. The concentrations of Cd, Cu and silicate in surface waters increased after the bloom with decreasing salinity due to the influence of a spring thaw.  相似文献   

2.
Chlorophyll-a (chl-a) concentration has an important economic effect in coastal and marine environments on fisheries resources and marine aquaculture development. Monthly climatologies the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) derived chl-a from February 1998 to August 2004 around Funka Bay were used to investigate the spatial and temporal variability of chl-a concentrations. SeaWiFS-derived suspended sediment, MODIS derived sea surface temperature (SST), solar radiation and wind data were also analyzed. Results showed two distinct chlorophyll blooms in spring and autumn. Chl-a concentrations were relatively low (<0.3 mg m3) in the bay during summer, with high concentrations occurring along the coast, particularly near Yakumo and Shiraoi. In spring, chl-a concentrations increased, and a large (>2 mg m3) phytoplankton bloom occurred. The spatial and temporal patterns were further confirmed by empirical orthogonal function (EOF) analysis. About 83.94% of the variability could be explained by the first three modes. The first chl-a mode (77.93% of the total variance) explained the general seasonal cycle and quantified interannual variability in the bay. The spring condition was explained by the second mode (3.89% of the total variance), while the third mode (2.12% of the total variance) was associated with autumn condition. Local forcing such as the timing of intrusion of Oyashio water, wind condition and surface heating are the mechanisms that controlled the spatial and temporal variations of chlorophyll concentrations. Moreover, the variation of chlorophyll concentration along the coast seemed to be influenced by suspended sediment caused by resuspension or river discharge.  相似文献   

3.
4.
Undisturbed sediment cores were collected by a modified gravity corer from Funka Bay. The sedimentation rate is determined by both210Pb and pumice chronological methods. The sedimentation rates by210Pb method are concordant with those by pumice methods. The derived rate varies from 0.06 to 0.22 g cm–2 y–1, and an average is 0.09 g cm–2 y–1.  相似文献   

5.
Nutrient regeneration and oxygen consumption after a spring bloom in Funka Bay were studied on monthly survey cruises from February to November 1998 and from March to December 1999. A high concentration of ammonium (more than 4 μmol l−1) was observed near the bottom (80–90 m) after April. Phosphate and silicate gradually accumulated and dissolved oxygen decreased in the same layer. Salinity near the bottom did not change until summer, leading to the presumption that the system in this layer is semi-closed, so regenerated nutrients were preserved until September. Nitrification due to the oxidation of ammonium to nitrate was observed after June. Nitrite, an intermediate product, was detected at 4–7 μmol L−1 in June and July 1999. Assuming that decomposition is a first order reaction, the rate constant for decomposition of organic nitrogen was determined to be 0.014 and 0.008 d−1 in 1998 and 1999, respectively. The ammonium oxidation rate increased rapidly when the ambient ammonium concentration exceeded 5 μmol L−1. We also performed a budget calculation for the regeneration process. The total amount of N regenerated in the whole water column was 287.4 mmol N m−2 in 4 months, which is equal to 22.8 gC m−2, assuming the Redfield C to N ratio. This is 34% of the primary production during the spring bloom and is comparable to the export production of 25 gC m−2 measured by a sediment trap at 60 m (Miyake et al., 1998).  相似文献   

6.
Uranium in coastal sediments of Tokyo Bay and Funka Bay   总被引:2,自引:0,他引:2  
The sediment cores from Tokyo Bay and Funka Bay were analyzed for U and its isotopic ratio,234U/238U, after dissolving them in 0.1 M HCl, and 30% H2O2 in 0.05 M HCl. A small fraction of U in the anoxic sediments was dissolved in 0.1M HCl and even the added yield tracer,232U, was lost. The isotopic ratio of H2O2 soluble U in the sediments was equal to that of seawater, suggesting that the H2O2 soluble U in the sediments is authigenic. The 6M HCl solution dissolved part of the lithogenic U besides the authigenic U. The depth profiles of U from the two bays resembled each other. The authigenic U comprised more than half of the total U even at the surface and increased with depth down to 70 cm, showing small maxima at about 20 cm. The concentration of refractory U was nearly constant with depth and similar to that of the pelagic sediments. The highest U concentration, 6 µg g–1 which was about 5 times that of the pelagic sediments, was observed in the layer between 70 and 160 cm depth in Tokyo Bay. The annual sedimentation rates of U in the Tokyo Bay sediments were 2.6 tons at the surface and 7.0 tons at the 70–160 cm depth. The increase in U with depth should be due to the deposition of interstitial U either diffusing downward from the surface indicating the trapping of seawater U, or otherwise diffusing upward from the deeper layer indicating the internal cycling of U within the sediments.  相似文献   

7.
The downward flux of Mn through the water column was directly measured using sediment traps. The Mn flux from the bottom sediment to the water column, and the removal rate of Mn in the bottom water were estimated from Mn gradients in the bottom water. The sediment traps were deployed more than ten times at the same station in Funka Bay, Japan. The trapped settling matter and filtered suspended matter samples were analyzed for Mn, Fe, Al and ignition loss. The observed downward flux of Mn through the water column in winter (1.3–2.8 μg/cm2 /day) was generally an order of magnitude larger than that in summer (0.13–0.45 μg/cm2 /day), and the Mn fluxes for both seasons were also greater than the accumulation rate of Mn in the bottom sediments (0.10 μg/cm 2/day). More Al was contained in the trapped settling matter than in the suspended matter, while Mn showed the opposite behavior. The Fe/Mn ratio of the residual fraction (obtained by subtracting the sediment component of the settling matter) was rather well correlated with the corresponding ratio in suspended matter. Settling particles are expected to scavenge suspended matter during their passage through the water column. The flux of Mn across the sediment—water interface was estimated from its vertical profiles in the water column to be 0.1–0.3 μg/cm2 day. The residence time of Mn in bottom water was about one to several months. These results suggest that Mn is actively recycled between the water column and the sediments of the coastal sea.  相似文献   

8.
To study biological effects on the particulate removal of chemical elements from seawater, sediment trap experiments were carried out successively ten times throughout the spring phytoplankton bloom in Funka Bay. Sediment traps were deployed every one to two weeks at 1, 40 and 80 m depths. The settling particles obtained were analyzed for trace metals, phosphate and silicate. The propagation of diatoms in spring results in larger particulate fluxes than that of dinoflagellates. The biogenic silicate concentration is higher in the earlier period, when diatoms are predominant, than in the subsequent period, when dinoflagellates are predominant. The concentrations of aluminum, iron, manganese and cobalt in the settling particles comprising largely biogenic particles are lower during phytoplankton bloom. The concentration of copper is not reduced by the addition of biogenic particles, and its vertical flux is approximately proportional to the total flux, indicating that its concentration in the biogenic particles is nearly equal to that in the non-biogenic particles. The results for nickel and lead show the same tendency as for copper. Cadmium is more concentrated in biogenic particles than in non-biogenic particles, and the concentration of cadmium in the settling particles decreases with depth, similarly to phosphate and organic matter. Thus, metals in seawater are segregated by biological affinities, and the degree of incorporation into biogenic particles is in the order Cd > Pb, Ni, Cu > Co > Mn, Fe, Al. Biogenic particles are the most important agent controlling the vertical distribution of metals in the ocean. They remove the metals from the surface water, transport them through the water column, and regenerate them in the deep.  相似文献   

9.
Size-fractionated primary productivity and chlorophylla concentration were studied at two stations in the temperate neritic water of Funka Bay, Japan, from April 1984 to May 1985. Size distributions of phytoplankton were discussed in relation to nutrient availability. In the central part of the bay, 66% of the annual primary production occurred during the spring phytoplankton bloom with 95% of the spring production being accounted for by the greater than 10µm size fraction, which was dominated by diatoms. The increase in this large fraction was enhanced at both stations when nutrient concentrations increased in the bay's upper layer. Under low nutrient concentrations during summer, small phytoplankters (<2µm) accounted for 40 to 75% (average 60%) of the total14C uptake at the central station, and from 25 to 59% (average, 45%) at the coastal station. However, a sudden nutrient enrichment at the coastal station during the summer triggered the growth of the large size fraction. These seasonal and regional changes in total14C uptake were attributed to the large size fraction, composed mainly of diatoms. From the decreases in various nutrients during diatom blooms, it was further suggested that the predominance of diatoms was determined, not only by nutrient concentrations, but also by their relative availability.Contribution No. 205 from the Research Institute of North Pacific Fisheries, Faculty of Fisheries, Hokkaido University.  相似文献   

10.
Sediment trap experiments were carried out 39 times during the years from 1977 to 1981 in Funka Bay, Hokkaido, Japan. The observed total particulate flux varies seasonally, that is, the particulate fluxes in winter and spring are larger than those in summer. The fluxes in all seasons increased with depth. Major components of settling particles are aluminosilicate in winter, biogenic silicate in spring and organic matter and terrestrial material in summer, respectively. The fluxes of each chemical component observed with sediment traps are normalized to that of Al by assuming that the actual flux of Al is equal to the accumulation rate onto the sediment surface. Vertical changes of the normalized flux of each chemical component indicate the following: Fe was not regenerated from the settling particles in the water column. Mn was regenerated from the settling particles in the lower layer exclusively between 80 m depth and the sediment surface. Cd was actively regenerated in the upper layer above 80 m depth. Phosphate was regenerated in the upper layer, while biogenic silicate was in the lower layer. The silicate regeneration, therefore, occurs after phosphate regeneration. The material decomposing in the water column below 40 m has an atomic ratio of P ∶ Si ∶ C = 1 ∶ 52 ∶ 128.  相似文献   

11.
Sediment core samples were taken once a month from July 1980 to September 1981 at a station in Funka Bay (92-m depth) for the determination of phosphate, silicate and alkalinity in interstitial water. A remarkable seasonal variation was found for interstitial phosphate, that is, distinct maxima appeared in spring (March—April), just after a phytoplankton bloom which brought a large amount of settling particles to the bottom, and in summer (July—August) when the water was stratified and the dissolved oxygen content of the bottom water decreased due to the decomposition of organic matter. The high interstitial phosphate concentration was always accompanied by a sharp increase in alkalinity, indicating sulfate reduction. This large seasonal variation in interstitial phosphate cannot be explained by in situ decomposition of organic matter and/or the diffusive loss of interstitial phosphate. A more likely explanation is adsorption and desorption of interstitial phosphate coincident with the depth of the active sulfate reduction layer.  相似文献   

12.
Hydrographic observations in Hidaka Bay, south of Hokkaido, Japan were carried out in late winter 1996 and 1997 to examine the spatial distributions and circulation features of two different water masses, i.e., Coastal Oyashio Water (COW) and Tsugaru Warm Water (TWW), and their modifications. It is known that COW is mostly composed of cold and low-salinity water of the melted drift ice coming from the Okhotsk Sea and flows into Hidaka Bay from winter to spring and TWW with high-salinity continuously supplies from the Tsugaru Strait to the North Pacific. Cold surface mixed layers (<26.2σθ, 0–100 m depth) were found mainly over the shelf slope, confirming that anti-clockwise flow of COW was formed. TWW was relatively high in salinity and low in potential vorticity, and had some patch-like water masses with a temperature and salinity maximum in the limited area in the further offshore at the deeper density levels of 26.6–26.8σθ. The fine structure of vertical temperature and salinity profiles appeared between TWW and COW is an indication of enhanced vertical mixing (double-diffusive mixing), as inferred from the estimated Turner angles. At a mouth of the Tsugaru Strait in late winter 1997, a significant thermohaline front between TWW and the modified COW was formed and a main path of TWW spreaded south along the Sanriku coast, probably as the bottom controlled flow. Hence, the patch-like TWW observed in late winter is isolated from the Tsugaru Warm Current and then rapidly modified due to a diapycnal mixing. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
14.
Since the Intermediate Oyashio Water (IOW) gradually accumulates in Sagami Bay, it can reasonably be supposed that the IOW also flows out from Sagami Bay, even though it may be altered by mixing with other waters. We have occasionally observed a water less than 34.2 psu with a potential density of 26.8 at the southeastern area off Izu Peninsula in July 1993 by the training vessel Seisui-maru of Mie University. Observational data supplied by the Japan Meteorological Agency and the Kanagawa Prefectural Fisheries Experimental Station show that the IOW of less than 34.1 psu was observed at northern stations of the line PT (KJ) off the Boso Peninsula and to the east of Oshima in the late spring 1993. Based upon these observations, it is concluded that the IOW flows out from Sagami Bay into the Shikoku Basin along southeastern area off the Izu Peninsula. The less saline water (<34.2 psu) was also observed to the west of Miyake-jima during the same cruise, and the westward intrusion of IOW from south of the Boso Peninsula to the Shikoku Basin through the gate area of the Kuroshio path over the Izu Ridge was detected. This event indicated that the IOW branched south of the Boso Peninsula and flowed into Sagami Bay and/or into the gate area over the Izu Ridge. The southward intrusion of IOW into the south of the Boso Peninsula is discussed in relation to the latitudinal location of the main axes of the Kuroshio and the Oyashio. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Zooplankton biomass consisting of large and small-size copepods, copepod nauplii and tintinnids were investigated over a period of one year at two stations in Funka Bay, Japan. The food requirement of zooplankton was also estimated using the method of Ikeda and Motoda. Estimated total carbon requirement of zooplankton in the coastal and central parts of the bay was equivalent to 52 and 38% of the annual primary production, respectively. These corresponded to zooplankton production of 12–13 gC·m–2·yr–1.The total carbon requirement at each station increased to 63 and 74% of the primary production during summer compared with 26 and 3% in spring or 19 and 17% in winter. The microzooplankton (copepod nauplii and tintinnids) accounted for about half of the carbon requirement from April to November.Food requirements reached 161% at the coastal station and 194% at the central station of the daily organic carbon production during September. Zooplankton may also feed on carbon sources other than living phytoplankton. This could account for the observed decrease in particulate organic carbon in a water column.Contribution No. 202 from the Research Institute of North Pacific Fisheries, Faculty of Fisheries, Hokkaido University.  相似文献   

16.
The concentration of nutrients was measured during the spring phytoplankton bloom in Funka Bay over a 5-year period (1988–92). During the winter mixing period, nutrient concentrations were similar in every year except in 1990 when a high concentration of silicate was observed. There was interannual variation in the onset of the bloom, presumably depending on the stability of the water column. The bloom developed in early March when the Oyashio water (OW), which has a lower density than the existing winter water, flowed into the bay and the pycnocline formed near the bottom of the euphotic zone. In this case, high chl a was found only in the euphotic zone and nutrient utilization was limited to this zone. In the year when the inflow of OW was not observed by April, the bloom took place at the end of March without strong stratification and high chl a was found in the whole water column, accompanied by a decrease in nutrients. Interannual differences were found not only at the beginning of the decrease, but also in the thickness of the layer which showed a decrease in nutrients. Primary production from the beginning to the end of the spring bloom was estimated from the nutrient budget before and after the spring bloom. The integrated production over the spring bloom period ranged from 25 to 73 g C m-2, which accounts for 19–56% of the annual production in this bay. We found that the timing of the bloom was strongly dependent on the inflow of OW, but the amount of production was not clearly related to this timing.  相似文献   

17.
Twenty-eight sea surface microlayer samples, along with subsurface bulk water samples were collected in Funka Bay, Japan during October 2000–March 2001 and analyzed for dimethylsulfoniopropionate, dissolved (DMSPd) and particulate (DMSPp), and chlorophyll a. The aim of the study was to examine the extent of enrichment of DMSP in the microlayer and its relationship to chlorophyll a, as well as the production rate of dimethylsulfide (DMS) from DMSP and the factors that influence this. The enrichment factor (EF) of DMSPd in the surface microlayer ranged from 0.81 to 4.6 with a mean of 1.85. In contrast, EF of DMSPp in the microlayer varied widely from 0.85–10.5 with an average of 3.21. Chlorophyll a also appeared to be enriched in the microlayer relative to the subsurface water. This may be seen as an important cause of the observed enrichment of DMSP in the microlayer. The concentrations of DMSPp in the surface microlayer showed a strong temporal variation, basically following the change in chlorophyll a levels. Moreover, the microlayer concentrations of DMSPp were, on average, 3-fold higher than the microlayer concentrations of DMSPd and there was a significant correlation between them. Additionally, there was a great variability in the ratios of DMSPp to chlorophyll a over the study period, reflecting seasonal variation in the proportion of DMSP producers in the total phytoplankton assemblage. It is interesting that the production rate of DMS was enhanced in the microlayer and this rate was closely correlated with the microlayer DMSPd concentration. Microlayer enrichment of chlorophyll a and higher DMS production rate in the microlayer provide favorable evidence supporting the view that the sea surface microlayer has a greater biological activity than the underlying water.  相似文献   

18.
19.
基于2014年12月在福宁湾附近海域8个站位的同步水文泥沙观测资料,分析了冬季大潮期悬浮泥沙分布以及输运通量的变化规律,并结合理查森数、水体混合所需的势能、潮动力引起的水体势能变化率的计算结果,初步探讨了水体的垂向混合对于悬浮泥沙垂向分布的影响,研究了悬浮泥沙的输运机制。结果表明,从湾内到湾外,温度、盐度总体上呈现递增的趋势;平面上各站位悬浮泥沙浓度由湾内向湾外递减;潮周期内悬浮泥沙浓度变化存在不对称性,总体来说,湾内及湾口处(1#站除外)涨潮阶段悬浮泥沙浓度高,湾外(4#站除外)落潮阶段悬浮泥沙浓度较高。从湾内向湾外,随着水深的增加潮周期内水体的垂向混合逐渐减弱,悬沙浓度的垂向差异逐渐增大。悬浮泥沙输运在湾内及湾口整体表现为向陆输运,在湾外为向海输运。在湾内及湾口处,各分层悬浮泥沙的输运方向大多向陆,且量值较高,而湾外的悬浮泥沙输运方向在垂向上存在差异。由于潮流不对称以及悬浮泥沙的滞后效应引起的潮泵项输运对总的悬浮泥沙通量起主要贡献。  相似文献   

20.
春季和夏季渤海湾近岸海域大型砂壳纤毛虫的群落结构   总被引:1,自引:0,他引:1  
为了解渤海湾砂壳纤毛虫丰度、生物量及种类组成,于2011年春季和夏季在渤海湾天津近岸海域进行砂壳纤毛虫群落的采样调查。两个季节砂壳纤毛虫丰度、生物量、优势种及群落结构均有显著的不同。春季砂壳纤毛虫丰度的范围为0~1608个/L,生物量为0.00~20.03μg/L;夏季砂壳纤毛虫丰度的范围为2~313个/L,生物量为0.03~4.04μg/L。共鉴定出砂壳纤毛虫5属15种,其中拟铃虫属(Tintinnopsis)种类最多。春季的主要优势种为运动类铃虫(Codonellopsis mobilis,优势度为0.79),夏季的主要优势种为斯氏拟铃虫(Tintinnopsis schotti,优势度为0.28)和诺氏薄铃虫(Leprotintinnus nordqvisti,优势度为0.28)。春季砂壳纤毛虫群落的物种丰富度、Shannon指数和Pielou指数均明显低于夏季。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号