首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 436 毫秒
1.
Garaimov  V.I.  Kundu  M.R. 《Solar physics》2002,207(2):355-367
We present the results of an analysis of a flare event of importance M2.8 that occurred at 00:56 UT 28 August 1999. The analysis is based upon observations made with the Nobeyama radioheliograph (NoRH) and polarimeters (NoRP), TRACE, SOHO/MDI, EIT, and Yohkoh/SXT. The images show a very complex flaring region. Pre-flare TRACE and EIT images at 00:24 UT show a small brightening in the region before the flare occurred. The active region in which the flare occurred had evolving magnetic fields, and new magnetic flux seems to have emerged. The X-ray and radio time profiles for this event show a double-peaked structure. The polarimeter data showed that the maximum radio emission (1200 s.f.u.) occurred at 9.4 GHz. At 17 GHz the NoRH images appear to show four different radio sources including the main spot and the main flare loop. Most of the microwave emission seems to originate from the main flare loop. Comparison of BATSE and microwave time profiles at 17 and 34 GHz from the main sunspot source shows that these profiles have similar structures and they coincide with the hard X-ray peaks. The maximum of the flare loop emission was delayed by 10 s relative to the second maximum of the sunspot associated flare emission. Analysis of SXT images during the post-flare phase shows a complex morphology – several intersecting loops and changes in the shape of the main flare loop.  相似文献   

2.
The multi-wavelength analysis is performed on a flare on September 9, 2002 with data of Owens Valley Solar Arrays (OVSA), Big Bear Solar Observatory (BBSO), Ramaty High Energy Solar Spectroscopic Imager (RHESSI), and Extreme UV Imager Telescope (EIT), and The Michelson Doppler Imager (MDI) on board of the Solar and Heliospheric Observatory (SOHO). The radio sources at 4.8 and 6.2 GHz located in the intersection of two flaring loops at 195 of SOHO/EIT respectively with two dipole magnetic fields of SOHO/MDI, in which one EIT loop was coincident with an X-ray loop of RHESSI at 12–25 keV, and two Hαbright kernels a1 and a2 of BBSO, respectively at the two footpoints of this loop; the second EIT loop connected another two Hαkernels b1 and b2 and radio sources at 7.8 and 8.2 GHz of OVSA. The maximum phase of microwave bursts was evidently later than that of hard X-ray bursts and Hαkernels a1 and a2, but consistent with that of Hαkernels b1 and b2. Moreover, the flare may be triggered by the interaction of the two flaring loops, which is suggested by the cross-correlation of radio, optical, and X-ray light curves of a common quasi-periodic oscillation in the rising phase, as well as two peaks at about 7 and 9 GHz of the microwave spectra at the peak times of the oscillation, while the bi-directional time delays at two reversal frequencies respectively at 7.8 and 9.4 GHz (similar to the peak frequencies of the microwave spectra) may indicate two reconnection sites at different coronal levels. The microwave and hard X-ray footpoint sources located in different EUV and optical loops may be explained by different magnetic field strength and the pitch angle distribution of nonthermal electrons in these two loops.  相似文献   

3.
Keizo Kai 《Solar physics》1987,111(1):81-87
The microwave images of solar flares obtained with the VLA are reviewed from a standpoint that the microwave source is near the top or foot point(s) of a flaring loop. The review is focused on whether extended structure is missed due to the lack of short baseline components leading to an incorrect interpretation of the processed images. We conclude that at short cm (< 2 cm) there is no conclusive evidence for the source near the loop top whereas at longer cm (6, 20 cm) the source tends to occupy a significant portion of a loop. The observed bipolar structure could be unambiguously interpreted as evidence for the source at the loop top, only when it is confirmed that a more extended structure has not been missed.Proceedings of the Second CESRA Workshop on Particle Acceleration and Trapping in Solar Flares, held at Aubigny-sur-Nère (France), 23–26 June, 1986.  相似文献   

4.
Photographic and photoelectric observations of comet P/Halley's ion gas coma from CO+ at 4250 ? were part of the Bochum Halley Monitoring Program, conducted from 1986 February 17, to April 17 at the European Southern Observatory on La Silla (Chile). In this spectral range it is possible to watch the continuous formation, motion and expansion of plasma structures. To observe the morphology of these structures 32CO+ photos (glass plates) from P/Halley's comet have been analysed. They have a field of view of 28°.6× 28°.6 and were obtained from 1986 March 29, to April 17 with exposure times between 20 and120 minutes. All photos were digitized with a PDS 2020 GM (Photometric Data System) microdensitometer at the Astronomisches Institut derWestf?lischen Wilhelms-Universit?t in Münster (one pixel= 25 μm × 25 μm ≈ 46′.88×46′.88). After digitization the data were reduced to relative intensities, and the part with proper calibrations were also converted to absolute intensities, expressed in terms of column densities using the image data systems MIDAS (Munich Image Data Analysis System; ESO – Image Processing Group, 1988) and IHAP (Image Handling And Processing; Middleburg, 1983). With the help of the Stellingwerf-Theta-Minimum-Method (Stellingwerf, 1978) a period of (2.22 ± 0.09) days results from analysis of structures in the plasma-coma by subtracting subsequent images. This method is also compared with the Fourier method. There may be a second cycle with a period of about 3.6 days. The idea behind subtracting subsequent images is that rotation effects are only 10% phenomena on gas distribution. Difference images are than used to suppress the static component of the gas cloud. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
We present multiwavelength observations of a large-amplitude oscillation of a polar-crown filament on 15 October 2002, which has been reported by Isobe and Tripathi (Astron. Astrophys. 449, L17, 2006). The oscillation occurred during the slow rise (≈1 km s−1) of the filament. It completed three cycles before sudden acceleration and eruption. The oscillation and following eruption were clearly seen in observations recorded by the Extreme-Ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO). The oscillation was seen only in a part of the filament, and it appears to be a standing oscillation rather than a propagating wave. The amplitudes of velocity and spatial displacement of the oscillation in the plane of the sky were about 5 km s−1 and 15 000 km, respectively. The period of oscillation was about two hours and did not change significantly during the oscillation. The oscillation was also observed in Hα by the Flare Monitoring Telescope at the Hida Observatory. We determine the three-dimensional motion of the oscillation from the Hα wing images. The maximum line-of-sight velocity was estimated to be a few tens of kilometers per second, although the uncertainty is large owing to the lack of line-profile information. Furthermore, we also identified the spatial displacement of the oscillation in 17-GHz microwave images from Nobeyama Radio Heliograph (NoRH). The filament oscillation seems to be triggered by magnetic reconnection between a filament barb and nearby emerging magnetic flux as was evident from the MDI magnetogram observations. No flare was observed to be associated with the onset of the oscillation. We also discuss possible implications of the oscillation as a diagnostic tool for the eruption mechanisms. We suggest that in the early phase of eruption a part of the filament lost its equilibrium first, while the remaining part was still in an equilibrium and oscillated.  相似文献   

6.
We continue our study (Grechnev et al., 2013, doi: 10.1007/s11207-013-0316-6 ; Paper I) on the 18 November 2003 geoffective event. To understand possible impact on geospace of coronal transients observed on that day, we investigated their properties from solar near-surface manifestations in extreme ultraviolet, LASCO white-light images, and dynamic radio spectra. We reconcile near-surface activity with the expansion of coronal mass ejections (CMEs) and determine their orientation relative to the earthward direction. The kinematic measurements, dynamic radio spectra, and microwave and X-ray light curves all contribute to the overall picture of the complex event and confirm an additional eruption at 08:07?–?08:20 UT close to the solar disk center presumed in Paper I. Unusual characteristics of the ejection appear to match those expected for a source of the 20 November superstorm but make its detection in LASCO images hopeless. On the other hand, none of the CMEs observed by LASCO seem to be a promising candidate for a source of the superstorm being able to produce, at most, a glancing blow on the Earth’s magnetosphere. Our analysis confirms free propagation of shock waves revealed in the event and reconciles their kinematics with “EUV waves” and dynamic radio spectra up to decameters.  相似文献   

7.
Kosugi  Takeo 《Solar physics》1987,113(1-2):327-332

Recent observational studies on solar flares made by solar radio groups in Japan during the period around the maximum of Cycle 21 are briefly reviewed. Much attention is paid especially to comparison studies of microwave observations with hard X-ray and γ-ray observations.

  相似文献   

8.
A new model for solar spike bursts is considered based on the interaction of Langmuir waves with ion-sound waves: l+st. Such a mechanism can operate in shock fronts, propagating from a magnetic reconnection region. New observations of microwave millisecond spikes are discussed. They have been observed in two events: 4 November 1997 between 05:52–06:10 UT and 28 November 1997 between 05:00–05:10 UT using the multichannel spectrograph in the range 2.6–3.8 GHz of Beijing AO. Yohkoh/SXT images in the AR and SOHO EIT images testify to a reconstruction of bright loops after the escape of a CME. A fast shock front might be manifested as a very bright line in T e SXT maps (up to 20 MK) above dense structures in emission measure (EM) maps. Moreover one can see at the moment of spike emission (for the 28 November 1997 event) an additional maximum at the loop top on the HXR map in the AR as principal evidence of fast shock propagation. The model gives the ordinary mode of spike emission. Sometimes we observed a different polarization of microwave spikes that might be connected with the depolarization of the emission in the transverse magnetic field and rather in the vanishing magnetic field in the middle of the QT region. Duration and frequency band of isolated spikes are connected with parameters of fast particle beams and shock front. Millisecond microwave spikes are probably a unique manifestation of flare fast shocks in the radio emission.  相似文献   

9.
Su  Y.N.  Huang  G.L. 《Solar physics》2004,219(1):159-168
The polarization is analyzed in four microwave bursts with one loop-top and two footpoint sources observed at 17 GHz with the Nobeyama Radioheliograph (NoRH). The loop-like structure of the four events is confirmed by simultaneous SOHO/MDI magnetograms and TRACE/EUV images or Yohkoh/SXT images. The heliocentric distance of the four events is greater than 30°. The three microwave sources in each given burst are polarized in the same sense. This may be interpreted in terms of extraordinary mode emission, taking into account the polarity of the underlying magnetic field and propagation effects, which may lead to inversion of the sense of polarization in the limbward foot and loop-top source of the flaring loop.  相似文献   

10.

This study constitutes the second phase of an effort devoted to the relative motion of two spheroidal rigid bodies.

An isolated binary system was considered whose components are bodies: (1) of comparable size; (2) of constant density; and (3) having the shape of an oblate ellipsoid of revolution with small meridional eccentricity.

The equations that determine the relative motion of the centroids and the angular motion for the two sets of body axes constitute a simultaneous system of seven nonlinear, second-order differential equations, for which solutions were obtained as power series in the two meridional eccentricities.

A recurrent procedure was formulated to ascertain the various approximations in terms of lower order terms; it gave rise to linear differential equations with constant coefficients for the angular variables and to differential equations of the Hill type for the other coordinates. The zero-order approximation for the motion of the centroids was assumed to be a Kepler elliptic orbit of small eccentricity.

The following contributions were made:

  1. (1)

    The general solution to the zero-order approximation of the rotational motion was obtained in terms of elementary functions;

  2. (2)

    Certain functionals, related to the Kepler motion and depending on two parameters, were expressed in terms of the mean anomaly up to the sixth power of the orbital eccentricity in order to evaluate the lower order terms of the various approximations;

  3. (3)

    The secular terms were eliminated from the first-order approximation;

  4. (4)

    The second-order approximation was also obtained; and

  5. (5)

    An alternate procedure was suggested that might be more appropriate for achieving higher order approximations.

  相似文献   

11.
Enome  S. 《Solar physics》1987,113(1-2):49-56

Results of simultaneous high-resolution microwave and X-ray two-dimensional imaging observations are briefly reviewed. It is shown that seven events published in the literature are not homogeneous but rather diverse with respect to spatial structure, mutual relations on position or shape. An outlook is presented for the next solar cycle to obtain a large data set for extensive study of energetic solar phenomena.

  相似文献   

12.
Large expanses of linear dunes cover Titan’s equatorial regions. As the Cassini mission continues, more dune fields are becoming unveiled and examined by the microwave radar in all its modes of operation (SAR, radiometry, scatterometry, altimetry) and with an increasing variety of observational geometries. In this paper, we report on Cassini’s radar instrument observations of the dune fields mapped through May 2009 and present our key findings in terms of Titan’s geology and climate. We estimate that dune fields cover ∼12.5% of Titan’s surface, which corresponds to an area of ∼10 million km2, roughly the area of the United States. If dune sand-sized particles are mainly composed of solid organics as suggested by VIMS observations (Cassini Visual and Infrared Mapping Spectrometer) and atmospheric modeling and supported by radiometry data, dune fields are the largest known organic reservoir on Titan. Dune regions are, with the exception of the polar lakes and seas, the least reflective and most emissive features on this moon. Interestingly, we also find a latitudinal dependence in the dune field microwave properties: up to a latitude of ∼11°, dune fields tend to become less emissive and brighter as one moves northward. Above ∼11° this trend is reversed. The microwave signatures of the dune regions are thought to be primarily controlled by the interdune proportion (relative to that of the dune), roughness and degree of sand cover. In agreement with radiometry and scatterometry observations, SAR images suggest that the fraction of interdunes increases northward up to a latitude of ∼14°. In general, scattering from the subsurface (volume scattering and surface scattering from buried interfaces) makes interdunal regions brighter than the dunes. The observed latitudinal trend may therefore also be partially caused by a gradual thinning of the interdunal sand cover or surrounding sand sheets to the north, thus allowing wave penetration in the underlying substrate. Altimetry measurements over dunes have highlighted a region located in the Fensal dune field (∼5° latitude) where the icy bedrock of Titan is likely exposed within smooth interdune areas. The hemispherical assymetry of dune field properties may point to a general reduction in the availability of sediments and/or an increase in the ground humidity toward the north, which could be related to Titan’s asymmetric seasonal polar insolation. Alternatively, it may indicate that either the wind pattern or the topography is less favorable for dune formation in Titan’s northern tropics.  相似文献   

13.
Dulk  G. A.  Sheridan  K. V. 《Solar physics》1974,36(1):191-202

Maps of the brightness distribution of the ‘quiet Sun’ at 80 and 160 MHz reveal the presence of features both brighter and darker than average. The ‘dark’ regions are well correlated with dark regions on UV maps; we deduce that they result from ‘coronal holes’. The ‘bright’ regions are associated with quiescent filaments and not plages or bright regions on microwave or UV maps; we deduce that they result from ‘coronal helmets’.

When coronal holes appear near the centre of the disk we can estimate the density and kinetic temperature in the holes from the radio observations. For a hole observed on 1972 July 20–21, we find T ≈ 0.8 × 106 inside the hole and T ≈ 1.0 × 106 in average regions outside the hole. Inside the hole the density is estimated to be about one-quarter of that in Newkirk's model of the spherically symmetric corona.

Variations in brightness at a fixed height above the limb are generally well correlated with scans at a similar height made with a K-coronameter. Occasional differences may result from streamers protruding beyond the limb from the back of the Sun. These can be seen by the K-coronameter but, because of refraction of the radio rays, not by the radio-heliograph.

  相似文献   

14.
The main aim of this paper is to estimate, from multispectral observations, the plasma parameters in a microwave burst source which was also the site of spike emission. This information is essential for the determination of the spike emission process. By analyzing one-dimensional source distributions observed with the SSRT at 5.7 GHz and correlating them with Yohkoh X-ray and Nobeyama 17 GHz images, we have concluded that the microwave emitting region was larger than the soft X-ray loop-top source, and that the origin of the burst could be explained by gyrosynchrotron emission of non-thermal electrons in a magnetic field of approximately 100 G. It has been shown that the source of 5.7 GHz spikes observed during the burst was located close to an SXR-emitting loop with high density and temperature and a relatively low magnetic field. Thus, plasma emission is the most favourable radiation mechanism for the generation of the sub-arc-second microwave pulses.  相似文献   

15.
Handy  B.N.  Tarbell  T.D.  Wolfson  C.J.  Korendyke  C.M.  Vourlidas  A. 《Solar physics》1999,190(1-2):351-361

Since shortly after launch in April 1998, the Transition Region and Coronal Explorer (TRACE) observatory has amassed a collection of H?i Lα (1216 Å) observations of the Sun that have been not only of high spatial and temporal resolution, but also span a duration in time never before achieved. The Lα images produced by TRACE are, however, composed of not only the desired line emission, but also local ultraviolet continuum and longer wavelength contamination. This contamination has frustrated attempts to interpret TRACE observations in H?i Lα. The Very Advanced Ultraviolet Telescope (VAULT) sounding rocket payload was launched from White Sands Missile range 7 May 1999 at 20:00 UT. The VAULT telescope for this flight was a dedicated H?i Lα imaging spectroheliograph. We use TRACE observations in the 1216 Å and 1600 Å channels along with observations from the VAULT flight to develop a method for removing UV continuum and longer wavelength contamination from TRACE Lα images.

  相似文献   

16.
Silva  Adriana V.R.  Lin  R.P.  de Pater  Imke  White  Stephen M.  Shibasaki  K.  Nakajima  H. 《Solar physics》1998,183(2):389-405
We present a comprehensive analysis of the 17 August 1994 flare, the first flare imaged at millimeter (86 GHz) wavelengths. The temporal evolution of this flare displays a prominent impulsive peak shortly after 01:02 UT, observed in hard X-rays and at microwave frequencies, followed by a gradual decay phase. The gradual phase was also detected at 86 GHz. Soft X-ray images show a compact emitting region (20), which is resolved into two sources: a footpoint and a loop top source. Nonthermal emissions at microwave and hard X-ray wavelengths are analyzed and the accelerated electron spectrum is calculated. This energy spectrum derived from the microwave and hard X-ray observations suggests that these emissions were created by the same electron population. The millimeter emission during the gradual phase is thermal bremsstrahlung originating mostly from the top of the flaring loop. The soft X-rays and the millimeter flux density from the footpoint source are only consistent with the presence of a multi-temperature plasma at the footpoint.  相似文献   

17.
A. D. Fokker 《Solar physics》1980,67(1):101-108
A microwave magnitude is defined as a logarithmic measure of the energy content of a microwave event. The distributions of microwave magnitudes are derived for collections of bursts that:
  1. Occurred during two periods in solar cycle 20, one relatively early and the other relatively late;
  2. Occurred in association with optical flares in particular centres of activity.
No dependence on the phase in the solar cycle has been found. One centre of activity was found that produced a distribution different from normal. The distribution of microwave magnitudes can be satisfactorily represented by the expression n(m) = const (m/α)e ?(m/α) 2. A phenomenological model for the flare build-up process is indicated which leads to a distribution of this very shape.  相似文献   

18.
Using magnetograms, EUV and Hα images, Owens Valley Solar Array microwave observations, and 212-GHz flux density derived from the Solar Submillimeter Telescope data, we determine the spatial characteristics of the 1B/M6.9 flare that occurred on November 28, 2001, starting at 16:26 UT in active region (AR) NOAA 9715. This flare is associated with a chromospheric mass ejection or surge observed at 16:42 UT in the Hα images. We compute the coronal magnetic field under the linear force-free field assumption, constrained by the photospheric data of the Michelson Doppler Imager and loops observed by the Extreme Ultraviolet Imaging Telescope. The analysis of the magnetic field connectivity allows us to conclude that magnetic field reconnection between two different coronal/chromospheric sets of arches was at the origin of the flare and surge, respectively. The optically thick microwave spectrum at peak time shows a shape compatible with the emission from two different sites. Fitting gyrosynchrotron emission to the observed spectrum, we derive parameters for each source. Electronic Supplementary Material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

19.
Ground level enhancements (GLEs) of cosmic-ray intensity occur, on average, once a year. Because they are rare, studying the solar sources of GLEs is especially important to approach understanding their origin. The SOL2001-12-26 eruptive-flare event responsible for GLE63 seems to be challenging in some aspects. Deficient observations limited our understanding of it. Analysis of additional observations found for this event provided new results that shed light on the flare configuration and evolution. This article addresses the observations of this flare with the Siberian Solar Radio Telescope (SSRT). Taking advantage of its instrumental characteristics, we analyze the detailed SSRT observations of a major long-duration flare at 5.7 GHz without cleaning the images. The analysis confirms that the source of GLE63 was associated with an event in active region 9742 that comprised two flares. The first flare (04:30?–?05:03 UT) reached a GOES importance of about M1.6. Two microwave sources were observed, whose brightness temperatures at 5.7 GHz exceeded 10 MK. The main flare, up to an importance of M7.1, started at 05:04 UT and occurred in strong magnetic fields. The observed microwave sources reached a brightness temperature of about 250 MK. They were not static. After appearing on the weaker-field periphery of the active region, the microwave sources moved toward each other nearly along the magnetic neutral line, approaching the stronger-field core of the active region, and then moved away from the neutral line like expanding ribbons. These motions rule out an association of the non-thermal microwave sources with a single flaring loop.  相似文献   

20.
Abstract— We studied the infrared reflectance (IR), Raman, and cathodoluminescence (CL) spectroscopic signatures and scanning electron microscope‐cathodoluminescence (SEM‐CL) images of three different types of impact glasses: Aouelloul impact glass, a Muong Nong‐type tektite, and Libyan desert glass. Both backscattered electron (BSE) and CL images of the Muong Nong‐type tektite are featureless; the BSE image of the Libyan desert glass shows only weak brightness contrasts. For the Aouelloul glass, both BSE and CL images show distinct brightness contrast, and the CL images for the Libyan desert glass show spectacular flow textures that are not visible in any other microscopic method. Compositional data show that the SiO2 composition is relatively higher and the Al2O3 content is lower in the CL‐bright areas than in the CL‐dark regions. The different appearance of the three glass types in the CL images indicates different peak temperatures during glass formation: the tektite was subjected to the highest temperature, and the Aouelloul impact glass experienced a relatively low formation temperature, while the Libyan desert glass preserves a flow texture that is only visible in the CL images, indicating a medium temperature. All IR reflectance spectra show a major band at around 1040 to 1110 cm?1 (antisymmetric stretching of SiO4 tetrahedra), with minor peaks between 745 and 769 cm?1 (Si‐O‐Si angle deformation). Broad bands at 491 and 821 cm?1 in the Raman spectra in all samples are most likely related to diaplectic glass remnants, indicating early shock amorphization followed by thermal amorphization. The combination of these spectroscopic methods allows us to deduce information about the peak formation temperature of the glass, and the CL images, in particular, show glass flow textures that are not preserved in other more conventional petrographic images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号