共查询到18条相似文献,搜索用时 78 毫秒
1.
2.
袁红磊;花向红;龚国栋;丁凌航 《测绘地理信息》2018,43(2):73-75
介绍了小波分析与时间序列组合模型的优点,给出了利用该组合方法对建筑物变形监测数据进行分析和预测的思路,并对长江紫都C 块1#楼的沉降监测数据进行了分析和预测。结果表明,该方法能有效分析和预测建筑物的沉降变形情况,建筑物各沉降点的累积沉降量均在允许的范围内,随时间的推移,沉降累积量趋于平稳,该建筑物基本稳定。 相似文献
3.
5.
6.
7.
灰色模型可在"贫信息"的条件下发现变形观测数据中的规律,但不能去除数据中噪声的影响;而小波分析可有效识别并剔除变形监测数据中的噪声(误差),使变形规律更加明显;结合两种方法的优势能增强数据分析的可靠性,提高预测精度.将小波去噪与灰色模型相结合,研究了该分析方法在高铁隧道变形监测中的应用,并得到了较可靠的预测结果. 相似文献
8.
高铁路基需严格控制工后不均匀沉降。鉴于高铁路基沉降预测值精度受观测噪声和预测拟合函数的影响,本文提出了基于小波函数去噪,对去噪数据进行灰色Verhulst模型预测的方法,并阐述了高铁路基沉降预测评价方法。通过工程实例对比分析了去噪灰色Verhulst模型、GM(1,1)模型、双曲线模型在沉降数据处理中的拟合精度和预测精度。结果表明:GM(1,1)模型拟合精度高,预测精度低,不适用于长期预测;双曲线法预测精度最低,预测曲线不包含路基饱和发展过程;小波去噪灰色Verhulst模型符合高铁路基沉降规律,预测精度高,可以广泛用于路基沉降预测。 相似文献
9.
10.
采用时间序列分析方法,对长春市地铁一号线——繁荣路站基坑变形监测点连续28期的数据进行分析处理,建立自回归模型,并对后4期数据进行预报,其一步拟合中误差为σ=±0.2 mm,具有较高精度。通过对数据的分析,论证了时间序列分析方法在地铁沉降监测中的可行性与有效性。 相似文献
11.
王建生 《测绘科学技术学报》2011,28(2):150-152
研究了利用时间序列分析方法进行变形预报.首先叙述了变形观测数据预处理、时间序列平稳性检验、模型的选用和检验;然后针对一组实测数据,利用多项式提取趋势项,分析回归残差,建立了AR(2)预报模型,并利用模型进行了预报;最后将预报结果与实测数据比较,证明了预报模型的有效性. 相似文献
12.
研究了利用时间序列分析方法进行变形预报。首先叙述了变形观测数据预处理、时间序列平稳性检验、模型的选用和检验;然后针对一组实测数据,利用多项式提取趋势项,分析回归残差,建立了AR(2)预报模型,并利用模型进行了预报;最后将预报结果与实测数据比较,证明了预报模型的有效性。 相似文献
13.
在变形监测数据处理中,为了提高预报的精度,本文引入了时间序列分析中的ARMA模型,通过工程实例对该模型的预报精度进行检测,该工程实例的变形监测数据共有30期,本文通过前25期的数据进行ARMA建模并对第26至30期的变形量进行预报,与相应的实际观测值进行对比求差。对比结果显示预报结果良好,一步预报最大残差值在1mm,时间序列分析方法在变形监测数据处理领域应用效果良好。 相似文献
14.
时间序列分析在变形监测数据处理中的应用 总被引:6,自引:0,他引:6
从时间序列分析的基本原理及方法出发,详细论述了如何使用这种方法对变形监测数据进行识模、建模、与预报.并通过实例计算验证了此种方法具有较高的拟合和预报精度,较好地描述了变形监测点的变化规律. 相似文献
15.
16.
17.