首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The Batu Hijau porphyry copper-gold deposit, Sumbawa Island, Indonesia   总被引:4,自引:0,他引:4  
The Batu Hijau porphyry Cu---Au deposit lies in southwest Sumbawa Island, Indonesia. It is a world-class porphyry Cu deposit in an island are setting, and is typical of this deposit type in most features, including igneous association, morphology, hydrothermal alteration and mineralisation style.The region was not previously recognised as a porphyry Cu province; disseminated Cu sulphides were first recognised in float samples in southwest Sumbawa in 1987. Associated stream sediment sampling identified a broad area of anomalous Au and Cu in an area of greater than 5 km2 around Batu Hijau, including 169 ppb Au in BLEG samples and 580 ppm Cu in stream silts 1 km from the deposit. Mineralisation in bedrock at surface contains > 0.1 wt % Cu and > 0.1 ppm Au over an area of 0.6 km × 1.2 km, including a zone 300 m × 900 m containing > 0.3 wt % Cu. Areas with elevated Mo (> 30 ppm) form a distinctive annulus around this Cu-rich zone.Batu Hijau mineralisation is hosted in a tonalite intrusive complex, and diorite and metavolcanic wallrocks. There are no post-mineralisation igneous intrusions or breccia pipes within the deposit. The main tonalite intrusion forms a stock in the centre of the deposit, where it generally displays intensely pervasive potassic (biotite with magnetite-quartz) alteration and hosts most of the higher grade mineralisation. Younger tonalite dykes intruding the centre of this stock are generally less altered and mineralised than the older tonalite.The core zone of potassic alteration grades outward into extensive propylitic alteration (chlorite-epidote), with both variably overprinted by widespread fracture controlled intermediate argillic alteration (sericite-chlorite), and minor phyllic (sericite-pyrite) and sodic (albite) alteration. Argillic (sericite-kaolinite) and advanced argillic (kaolinite-alunite-pyrophyllite) assemblages occur near surface.Copper and Au grades within the orebody show a positive correlation with quartz stockwork intensity, although disseminated Cu sulphides are also common. Chalcopyrite and bornite are the principle hypogenal minerals, with minor chalcocite. Oxidation extends to a depth of 5 m to 85 m below surface across the deposit, and is underlain by weak supergene mineralisation. Drill testing of the deposit down to 650 m below surface reveals a single cylindrical to conical orebody of 334 million tonnes grading 0.8 wt % Cu and 0.69 gm per tonne Au; the depth extent of mineralisation is unknown.  相似文献   

2.
Seven 187Re-187Os ages were determined for molybdenite and pyrite samples from two well-dated Precambrian intrusions in Fennoscandia to examine the sustainability of the Re-Os chronometer in a metamorphic and metasomatic setting. Using a new 187Re decay constant (1.666 × 10−11y−1) with a much improved uncertainty (±0.31%), we determined replicate Re-Os ages for molybdenite and pyrite from the Kuittila and Kivisuo prospects in easternmost Finland and for molybdenite from the Kabeliai prospect in southernmost Lithuania. These two localities contain some of the oldest and youngest plutonic activity in Fennoscandia and are associated with newly discovered economic Au mineralization (Ilomantsi, Finland) and a Cu-Mo prospect (Kabeliai, Lithuania). Two Re-Os ages for vein-hosted Kabeliai molybdenite average 1486 ± 5 Ma, in excellent agreement with a 1505 ± 11 Ma U-Pb zircon age for the hosting Kabeliai granite pluton. The slightly younger age suggests the introduction of Cu-Mo mineralization by a later phase of the Kabeliai magmatic system. Mean Re-Os ages of 2778 ± 8 Ma and 2781 ± 8 Ma for Kuittila and Kivisuo molybdenites, respectively, are in reasonable agreement with a 2753 ± 5 Ma weighted mean U-Pb zircon age for hosting Kuittila tonalite. These Re-Os ages agree well with less precise ages of 2789 ± 290 Ma for a Rb-Sr whole-rock isochron and 2771 ± 75 Ma for the average of six Sm-Nd TDM model ages for Kuittila tonalite. Three Re-Os analyses of a single pyrite mineral separate, from the same sample of Kuittila pluton that yielded a molybdenite separate, provide individual model ages of 2710 ± 27, 2777 ± 28, and 2830 ± 28 Ma (Re = 17.4, 12.1, and 8.4 ppb, respectively), with a mean value of 2770 ± 120 Ma in agreement with the Kuittila molybdenite age. The Re and 187Os abundances in these three pyrite splits are highly correlated (r = 0.9994), and provide a 187Re-187Os isochron age of 2607 ± 47 Ma with an intercept of 21 ppt 187Os (MSWD = 1.1). It appears that the Re-Os isotopic system in pyrite has been reset on the millimeter scale and that the 21 ppt 187Os intercept reflects the in situ decay of 187Re during the ∼160 to 170 m.y. interval from ∼2778 Ma (time of molybdenite ± pyrite deposition) to ∼2607 Ma (time of pyrite resetting). When the Re-Os data for molybdenites from the nearby Kivisuo prospect are plotted together with the Kuittila molybdenite and pyrite data, a well-constrained five-point isochron with an age of 2780 ± 8 Ma and a 187Os intercept (−2.4 ± 3.8 ppt) of essentially zero results (MSWD = 1.5). We suggest that the pyrite isochron age records a regional metamorphic and/or hydrothermal event, possibly the time of Au mineralization. A proposed Re-Os age of ∼2607 Ma for Au mineralization is in good agreement with radiometric ages by other methods that address the timing of Archean Au mineralization in deposits worldwide (so-called “late Au model”). Molybdenite, in contrast, provides a robust Re-Os chronometer, retaining its original formation age of ∼2780 Ma, despite subsequent metamorphic disturbances in Archean and Proterozoic time. Received: 25 September 1996 / Accepted: 27 August 1997  相似文献   

3.
Over 450 samples were collected around four Proterozoic porphyry-type occurrences and analyzed for 30 elements. Relatively broad primary halos are associated with all four occurrences in spite of their moderate size and grade. The halos are characteristic of each particular occurrence depending on the geological and geochemical conditions. Copper forms extensive and highly contrasted anomalies, whereas Mo anomalies are of limited size. Gold, Zn, Pb, As, and Sb seem to be useful pathfinders for slightly eroded or blind occurrences. Pyritization and wall-rock alteration are weaker than in Phanerozoic porphyry deposits, consequently, S halos are small and often erratic. K2O, Rb, and SiO2 produce weak anomalies near the core of the occurrences. A density of a few tens of samples per km2 is required for detailed follow-up exploration.The host granitoids have normal chemical compositions outside the mineralized areas with low and constant background contents of ore elements and are thus very suitable for lithogeochemical exploration. On a regional scale a density of one to five samples per km2 is sufficient to identify mineralized intrusive phases and areas, because the porphyrytype occurrences were formed by extensive hydrothermal processes, which produced scattered anomalies over large areas.  相似文献   

4.
A small Cu---Co---Au occurrence was found by means of till geochemistry. The metal anomalies in the till are highly local and the fineness of the gold grains and their association with goethite suggest that Au may first have been dissolved and then reprecipitated. The till very probably contains remnants of an older preglacial weathering crust. There are also high concentrations of Cu, Co, As, Mo and Zn in the humus horizon. Only one humus sample had a Au content above the detection limit, 0.02 ppm. The heavy-mineral samples from the near-surface part of the till proved useful in the regional prospecting phase.  相似文献   

5.
The dominantly high-K, moderate to high SiO2 containing, variably fractionated, volcanic-arc granitoids (± sheared) from parts of Bundelkhand craton, northcentral India are observed to contain molybdenite (Mo) in widely separated 23 locations in the form of specks, pockets, clots and stringers along with quartz ± pyrite ± arsenopyrite ± chalcopyrite ± bornite ± covellite ± galena ± sphalerite and in invisible form as well. The molybdenite mineralization is predominantly associated with Bundelkhand Tectonic Zone, Raksa Shear Zone, and localized shear zones. The incidence of molybdenite is also observed within sheared quartz and tonalite–trondhjemite–granodiorite (TTG) gneisses. The fluid inclusion data show the presence of bi-phase (H2O–CO2), hypersaline and moderate temperature (100°–300°C) primary stretched fluid inclusions suggesting a possible hydrothermal origin for the Mo-bearing quartz occurring within variably deformed different granitoids variants of Archean Bundelkhand craton.  相似文献   

6.
Geochemical investigations of till is a widely used method in metal exploration as the till commonly inherits the geochemical signature (including the metal contents) of the parent bedrock. In this investigation, over 2000 till samples were collected in the Sarvlaxviken area, southern Finland, where several polymetallic (Cu, Zn, Pb, As, Sn, W and In) veins recently have been discovered in Proterozoic crust along the border between Late Svecofennian granites and the Wiborg Batholith. The bedrock is commonly covered by compact and poorly sorted basal till, formed during the Late Weichselian glaciation event. Several glacial-transported boulders, with high contents of Cu, Zn, As, Sn, Mo and Bi and derived from the local bedrock, have also been discovered on top of the till and provide evidence for concealed mineralisation in the local bedrock under the till cover. The frequent distribution of till in the Sarvlaxviken area provides excellent conditions for the search of such hidden mineralisation by means of systematic till sampling, even if large farm field areas, composed of clay-rich sediments, and seawater-covered areas (Sarvlaxviken bay), had to be avoided in the sampling program. The till samples were collected during university courses and training programs led by the authors and were analysed in a cost-efficient and certified laboratory. Obtained geochemical data were statistically processed by using K-means clustering algorithms which can be used to treat large sets of geochemical data. The results provided anomalies that mainly occur in till with a thickness of <1 m and are considered to be derived from a local bedrock source. The discovered anomalies provide strong evidence for numerous undiscovered veins beneath the till cover.  相似文献   

7.
李炳华 《物探与化探》1998,22(4):262-266254
在陕西秦岭巴山地区9万km2内,通过1:20万区域化探扫面,发现了一批多元素综合异常,并根据地质构造背景分析划分出五个异常带(区)。其中新发现的北秦岭Au、Ag、Pb、Zn异常带,规模大、元素组合复杂且含量高,为一重要的金、多金属成矿带。1986年开始,在该区大力开展区域化探异常查证工作。通过1:5万水系沉积物测量,圈定了以金元素为主的化探异常。在主体异常部位系统地开展了1:1万土壤测量和槽探工程,于当年就在周至县马鞍桥发现了金矿体。随后又根据化探异常特征,布置了钻探和坑探工程验证。经进一步检查和详查,确认马鞍桥金矿为一大型金矿床。  相似文献   

8.
西秦岭温泉斑岩钼矿床岩浆-热液演化   总被引:5,自引:3,他引:2  
邱昆峰  宋开瑞  宋耀辉 《岩石学报》2015,31(11):3391-3404
西秦岭北缘广泛出露印支期中酸性侵入岩和相关的斑岩-矽卡岩矿床。温泉矿床位于该矿带东段,是其内已探明规模最大的斑岩钼矿床。温泉矿床发育多阶段热液脉体,黄铁矿作为其中的贯通性金属硫化物,其化学组成蕴含着岩浆-热液演化及金属沉淀过程等诸多信息,对于斑岩系统模型的厘定具有重要意义。温泉矿床热液脉体时序为:钾长石-黑云母-石英脉(A脉)、石英-黄铜矿脉、石英-辉钼矿脉(B脉)和石英-绢云母-黄铁矿脉(D脉)。A脉是斑岩系统岩浆-热液演化的最早期脉体,主要矿物组合为钾长石+黑云母+石英+黄铁矿±磁铁矿±磷灰石±黄铜矿,代表了引起早期基性岩浆矿物被蚀变为黑云母的流体通道;B脉与钾长石化蚀变关系密切,围岩中斜长石斑晶大量被蚀变为钾长石;石英-辉钼矿脉切割所有早期黑云母化-钾化蚀变阶段的石英-硫化物网脉,并形成于所有斑岩侵位之后,少量黄铁矿和黄铜矿共生于辉钼矿裂隙及边部;D脉是斑岩系统岩浆-热液成矿作用的最晚期事件,其主要被黄铁矿和石英及少量黄铜矿填充,发育晚期的绢英岩化和泥化蚀变,长石多发生破坏性蚀变。四个阶段石英网脉中黄铁矿电子探针分析显示,A脉的黄铁矿中Cu、Mo和Au含量均较低,有少量的金属硫化物(黄铁矿+黄铜矿)沉淀,但通常不能形成规模矿体;石英-黄铜矿脉的黄铁矿中Cu含量明显较高,且多与高品位Cu矿体的空间产出位置相一致,可能是斑岩系统伴随钾化蚀变作用主要的铜沉淀阶段;B脉的黄铁矿中Mo含量明显较高,与高品位钼矿体空间产出关系密切,可能代表了斑岩系统钼成矿作用的主要阶段;D脉的黄铁矿中Au含量明显升高,可能代表了金在斑岩系统岩浆-热液成矿作用的最晚期事件中的沉淀。  相似文献   

9.
The Agnew supracrustal belt consists of a greenstone sequence (interlayered metabasalt, differentiated gabbroic sills, ultramafic bodies, and black volcanogenic sediment) unconformably overlain by granitoid-clast conglomerate and meta-arkose. The base of the preserved sequence is intruded by grey tonalite with a crudely concordant upper contact, and by small discordant bodies of leucogranite.An early deformation (D1) produced isoclinal folds and a regional penetrative foliation. These structures were probably gently dipping when formed. D2 produced large-scale NNW-trending upright folds, a regional foliation, and a vertical N-trending ductile fault on the west side of the belt. D2 structures indicate a combination of ENE-WSW shortening, and right-lateral shear along the ductile fault. Both D1 and D2 were accompanied by metamorphism under upper greenschist to lower amphibolite facies conditions.The interpreted sequence of tectonic events is (1) deposition of the greenstone sequence on an unknown basement; (2) intrusion of large volumes of tonalite, separating the supracrustal rocks from their basement; (3) erosion of mafic rocks and tonalite to produce the clastic sedimentary sequence; (4) the first deformation; (5) intrusion of small volumes of leucogranite; (6) the second deformation.The bulk of the granitoid rocks were emplaced before the first recognisable deformation. Thus the granitoid magma cannot have been produced by partial melting of previously downbuckled ‘greenstone belt’ rocks, nor can the large-scale upright folds (D2) be a result of forceful emplacement of the magma — two common postulates for Archaean terrains. The D2 folds are closely related to the ductile fault bounding the zone: these structures, which give the present N-trending tectonic belt its form, are the youngest features in the terrain.  相似文献   

10.
Many metallic ore deposits of the Late Cretaceous to Early Tertiary periods are distributed in the Gyeongsang Basin. Previous and newly analyzed sulfur isotope data of 309 sulfide samples from 56 ore deposits were reviewed to discuss the genetic characteristics in relation to granitoid rocks. The metallogenic provinces of the Gyeongsang Basin are divided into the Au–Ag(–Cu–Pb–Zn) province in the western basin where the sedimentary rocks of the Shindong and Hayang groups are distributed, Pb–Zn(–Au–Ag–Cu), Cu–Pb–Zn(–Au–Ag), and Fe–W(–Mo) province in the central basin where the volcanic rocks of the Yucheon Group are dominant, and Cu(–Mo–W–Fe) province in the southeastern basin where both sedimentary rocks of the Hayang Group and Tertiary volcanic rocks are present. Average sulfur isotope compositions of the ore deposits show high tendencies ranging from 2.2 to 11.7‰ (average 5.4‰) in the Pb–Zn(–Au–Ag–Cu) province, ?0.7 to 11.5‰ (average 4.6‰) in the Cu–Pb–Zn(–Au–Ag) province, and 3.7 to 11.4‰ (average 7.5‰) in the Fe–W(–Mo) province in relation to magnetite‐series granitoids, whereas they are low in the Au–Ag(–Cu–Pb–Zn) province in relation to ilmenite‐series granitoids, ranging from ?2.9 to 5.7‰ (average 1.7‰). In the Cu(–Mo–W–Fe) province δ34S values are intermediate ranging from 0.3 to 7.7‰ (average 3.6‰) and locally high δ34S values are likely attributable to sulfur derived from the Tertiary volcanic rocks during hydrothermal alteration through faults commonly developed in this region. Magma originated by the partial melting of the 34S‐enriched oceanic plate intruded into the volcanic rocks and formed magnetite‐series granitoids in the central basin, which contributed to high δ34S values of the metallic deposits. Conversely, ilmenite‐series granitoids were formed by assimilation of sedimentary rocks rich in organic sulfur that influenced the low δ34S values of the deposits in the western and southeastern provinces.  相似文献   

11.
Gold grains were studied in 102 till and gravel samples from an area with Au anomalies in the fine fraction of till. The form and size of gold nuggets were studied under the microscope, and the composition of selected grains was determined on a microprobe. The number of visible nuggets per sample was less than 10 per 81. In size, the nuggets were between 0.07 and 1 mm. Most of them were indefinite but flat in form, although idiomorphic gains were also observed. In composition, the gold grains in bedrock differed somewhat from those in till and gravel. Some of the nuggets found in gravel and in till were probably secondary in origin. The possibility that all the grains are not primary is emphasized in the interpretation of geochemical results.  相似文献   

12.
《Resource Geology》2018,68(4):395-424
Petrochemical characteristics of Permo‐Triassic granitoids from five regions (i) Mung Loei, (ii) Phu Thap Fah – Phu Thep, (iii) Phetchabun, (iv) Nakon Sawan – Lobburi, and (v) Rayong – Chantaburi along the Loei Fold Belt (LFB), northeastern Thailand were studied. The LFB is a north–south trending 800 km fold belt that hosts several gold and base‐metal deposits. The granitoids consist of monzogranite, granodiorite, monzodiorite, tonalite, quartz‐syenite, and quartz‐rich granitoids. These are composed of quartz, plagioclase, and K‐feldspar with mafic minerals such as hornblende and biotite. Accessory minerals, such as titanite, zircon, magnetite, ilmenite, apatite, garnet, rutile, and allanite are also present. Magnetic susceptibilities in the SI unit of granitoids vary from 6.5 × 10−3 to 15.2 × 10−3 in Muang Loei, from 0.1 × 10−3 to 29.4 × 10−3 in Phu Thap Fah – Phu Thep, from 2.7 × 10−3 to 34.6 × 10−3 in Petchabun, from 2.4 × 10−3 to 14.1 × 10−3 in Nakon Sawan – Lobburi, and from 0.03 × 10−3 to 2.8 × 10−3 in Rayong – Chantaburi. Concentration of major elements suggests that these intermediate to felsic plutonic rocks have calc‐alkaline affinities. Concentration of REE of the granitoids normalized to chondrite displays moderately elevated light REE (LREE) and relatively flat heavy (HREE) patterns, with distinct depletion of Eu. Rb versus Y/Nb and Nb/Y tectonic discrimination diagrams illustrate that the granitoids from Muang Loei, Phu Thap Fah – Phu Thep, Phetchabun, Nakon Sawan – Lobburi, and Rayong – Chantaburi formed in continental volcanic‐arc setting. New age data from radiometric K‐Ar dating on K‐feldspar from granodiorite in Loei and Nakhon Sawan areas yielded 171 ± 3 and 221 ± 5 Ma, respectively. K‐Ar dating on hornblende separated from diorite in Lobburi yielded 219 ± 8 Ma. These ages suggest that magmatism of Muang Loei occurred in the Middle Jurassic, and Nakon Sawan – Lobburi occurred in Late Triassic. Both Nb versus Y and Rb versus (Y + Nb) diagrams and age data indicate that Nakon Sawan – Lobburi granitoids intruded in Late Triassic at Nong Bua, Nakon Sawan province and Khao Wong Phra Jun, Lobburi province in volcanic arc setting. Muang Loei granitoids at the Loei province formed later in Middle Jurassic also in volcanic arc setting. The negative δ34SCDT values of ore minerals from the skarn deposit suggest that the I‐type magma has been influenced by light biogenic sulfur from local country rocks. The Au‐Cu‐Fe‐Sb deposits correlate with the magnetite‐series granitoids in Phetchabun, Nakon Sawan – Lobburi and Rayong – Chantaburi areas. Metallogeny of the Au and Cu‐Au skarn deposits and the epithermal Au deposit is related to adakitic rocks of magnetite‐series granitoids from Phetchabun and Nakon Sawan areas. All mineralizations along the LFB are generated in the volcanic arc related to the subduction of Paleo‐Tethys. The total Al (TAl) content of biotite of granitoids increases in the following order: granitoids associated with Fe and Au deposit < with Cu deposit < barren granitoids. XMg of biotite in granitoids in Muang Loei indicates the crystallization of biotite in magnetite‐series granitoids under high oxygen fugacity conditions. On the other hand, low XMg (<0.4) of biotite in magnetite‐series granitoids in Phu Thap Fah – Phu Thep and Rayong – Chantaburi indicates a reduced environment and low oxygen fugacity, associated with Au skarn deposit (Phu Thap Fah) and Sb‐Au deposit (Bo Thong), respectively. The magnetite‐series granitoids at Phu Thap Fah having low magnetic susceptibilities and low XMg of biotite were formed by reduction of initially oxidizing magnetite‐series granitic magma by interaction with reducing sedimentary country rocks as suggested by negative δ34SCDT values.  相似文献   

13.
Walegen Au deposit is closely correlated with granitic intrusions of Triassic age, which are composed of granite and quartz porphyries. Both granite porphyry and quartz porphyry consist of quartz, feldspar and muscovite as primary minerals. Weakly peraluminous granite porphyry(A/CNK=1.10–1.15) is enriched in LREE, depleted in HREE with Nb-Ta-Ti anomalies, and displays subduction-related geochemistry. Quartz porphyry is strongly peraluminous(A/CNK=1.64–2.81) with highly evolved components, characterized by lower TiO_2, REE contents, Mg~#, K/Rb, Nb/Ta, Zr/Hf ratios and higher Rb/Sr ratios than the granite porphyry. REE patterns of quartz porphyry exhibit lanthanide tetrad effect, resulting from mineral fractionation or participation of fluids with enriched F and Cl. LAICP-MS zircon U-Pb dating indicates quartz porphyry formed at 233±3 Ma. The ages of relict zircons from Triassic magmatic rocks match well with the detrital zircons from regional area. In addition, ε_(Hf)(t) values of Triassic magmatic zircons from the granite and quartz porphyries are -14.2 to -9.1(with an exception of +4.1) and -10.8 to -8.6 respectively, indicating a crustal-dominant source. Regionally, numerous Middle Triassic granitoids were previously reported to be formed under the consumption of Paleotethyan Ocean. These facts indicate that the granitic porphyries from Walegen Au deposit may have been formed in the processes of the closing of Paleotethyan Ocean, which could correlate with the arc-related magmatism in the Kunlun orogen to the west and the Qinling orogen to the east.  相似文献   

14.
At Avoca, Eire, Kuroko-like sulfide mineralization comprising massive stratiform cupriferous pyrite, accompanied by hanging-wall galena-sphalerite mineralization and footwall stringer pyrite, is hosted by Ordovician sediments, calc-alkaline lavas and pyroclastics. The sequence has been subjected to low-grade regional metamorphism, isoclinal folding and thrusting. The surficial cover comprises nonexotic glacial drift some 2 m thick. Previous work has demonstrated that major-element lithogeochemistry reflects the wall-rock alteration associated with the mineralization, but these signatures are absent from the overlying till. There is a poor heavy metal-expression at surface of the concealed mineralization.Analysis of wall rock, basal till and surface till samples for the chalcophile pathfinder elements As, Sb, Bi and Se (by rapid techniques which involve the introduction of their volatile hydrides into an inductively coupled plasma emission spectrometer) shows that a primary zonation of these elements around the mineralization can, in part, be traced to surface. In wall rocks, Bi enrichment is associated with the massive pyrite and footwall mineralization, Sb and Se anomalies occur in the hanging wall, and an As halo extends across all three types of mineralization. At surface, Bi and As anomalies are found over the massive pyrite and footwall zones, and an Sb anomaly occurs above the hanging-wall mineralization. The development of these patterns is attributed to mainly hydromorphic dispersion.The primary and surficial dispersion patterns of the chalcophile pathfinders should prove useful in exploration for other examples of Kuroko-type mineralization. The determination of these elements in geochemical exploration can be carried out quickly and cost-effectively.  相似文献   

15.
The Allan Lake carbonatite, found in 1977 by an airborne gamma-ray spectrometric survey, is a small (about 0.4 km2), unexposed, ankeritic-sideritic, REE-enriched carbonatite. Minor phases include biotite silico-carbonatite, orthoclase-dolomite carbonatite, apatite-rich carbonatite and narrow zones of intense chloritization. A poorly exposed fenitized aureole dominated by abundant hematitic veining and minor acmite-bearing veins grades into a brecciated border zone surrounding the carbonatite. Radial, breccia, lamprophyre and hematite-rich dykes are present within the fenitic aureole.Glacial erosion has produced a dispersal train of lithologically distinctive till which covers an area of approximately 10 km2 and is characterized by anomalous (10–20 times background), concentrations of Ba, Nb, Th, Ce, La, Zn, Mn and Fe; and elevated (5–10 times background) concentrations of Y, P, Cu, Pb, Mo, Co and U. This dispersal train is detectable by airborne and ground gamma-ray spectrometry, till geochemistry, boulder mapping and biogeochemistry.  相似文献   

16.
《Gondwana Research》2002,5(3):581-589
Magnetic susceptibilities were measured on a representative collection of Archaean granitoids of the Barberton region using a portable KT5 magnetic susceptibility meter. The studied granitoids comprise, (1) syn-tectonic tonalite-trondhjemite-granodiorite (TTG) granitoids (132 samples), (2) late-tectonic calc-alkaline granitoids (402 samples) and (3) post-tectonic low-Ca and high-Ca granitoids (12 samples). Most of the early-stage syn-tectonic granitoids (∼3450 Ma) have low magnetic susceptibilities, less than 3 × 10−3 SI units, and correspond to ilmenite-series granitoids. The late-stage Kaap Valley tonalite pluton (∼3230 Ma) contains sporadically distributed higher magnetic susceptibility values (greater than 3 × 10−3 SI units), which are less than one-third in magnetic susceptibility of typical magnetite-series TTG of the Japanese Island Arc and thus strictly belong to an intermediate series. The Barberton TTG suite is essentially derived from reduced amphibolitic lower crust that reflects the anoxic nature of the Earth surface during the Archaean Eon. The more oxidized nature of the Kaap Valley tonalite may be generated in an oxidized lower crust by fluids squeezed out of the subducting plate.Late-tectonic granodiorite - adamellite batholithic complexes (∼3105 Ma) belong mostly to the magnetite series, and seem to suggest that relatively oxidized continental crust, reflecting oxic atmosphere and subduction mechanism operating, had evolved it by this time. Post-tectonic granitic plutons formed largely between circa 2900 Ma and 2700 Ma can be subdivided into low-Ca ilmenite series and high-Ca magnetite series.  相似文献   

17.
Four suites of granitoids intruded the supracrustal greenstone sequence in the Murchison Province of the Archaean Yilgarn Craton during a 300 million year period. The earliest granitoid suite intruded the base of the developing greenstone sequence as a series of thin subhorizontal tabular plutons of monzogranite and granodiorite at 2.9Ga. This suite has been deformed and metamorphosed, and is now a pegmatite-banded gneiss. At about 2.7 Ga, thick, subhorizontal, tabular plutons of monzogranite intruded the base of the greenstone sequence. This suite, which now forms much of the regions between greenstone belts, was folded and recrystallized during regional deformation and metamorphism. Two distinct but contemporaneous suites of post-folding granitoids intruded the greenstone belts at 2.6 Ga, largely post-dating regional metamorphism. One suite of post-folding granitoids comprises tonalite, trondhjemite, granodiorite and monzogranite plutons, confined mainly to the north of the Province. The other suite comprises quartz-rich monzogranite and syenogranite plutons, confined mainly to the south of the Province.Pegmatite-banded gneiss, recrystallized monzogranite, and the northern suite of post-folding granitoids were all derived by partial-melting of mafic crustal rocks. Most post-folding granitoids from the southern suite were derived by partial-melting of siliceous crustal material at least as old as basal greenstones. The modes and sites of intrusion of all granitoid plutons were controlled by active tectonic processes or by structural features of the crust. Widespread 2.6 Ga Rb---Sr ages of pegmatite-banded gneiss and recrystallized monzogranite reflect post-metamorphic cooling which was contemporaneous with intrusion of post-folding granitoids.  相似文献   

18.
Abstract: A series of super large‐scale and large‐scale Pb and Zn, and Au deposits are distributed in the Qinling orogenic belt, China. Gold deposits were generally ascribed to Carlin‐type originated from circular meteoric water. Visible and coarse‐grained gold (up to over 3mm in grain size) was recently identified in some gold deposits in the Fengxian‐Lixian area, Qinling. Au‐bearing quartz lodes related to magmatism were discovered in the Xiaogouli gold deposit. Two types of Au‐bearing quartz veins, i.e., NW‐trending quartz veins and NE‐trending quartz veins cutting strata are widely present in the Baguamiao gold deposit. Both are spatially associated with each other. The former is generally snake–like, S‐shape or zigzag, which was resulted from plastic deformation by ductile shearing, being generally cut by the latter. The latter is generally linear with widely developed bleaching alteration zones in its adjacent wall rocks, which symbolizes the superimposition of brittle deformation and filling and metasomatism of magmatic hydrothermal solution in ductile shear zones after uplifting of the shear zones near the surface. The NW‐trending quartz veins contain Au of lower than 3ppm. The NE‐trending quartz veins contain Au of more than 3 ppm, so that NE‐trending quartz veins and the adjoining altered rocks are important ores. The NW‐trending Au–bearing quartz vein was dated as 210.61.26 to 232.581.59 Ma by 40Ar–39Ar method, i.e., late Indosinian epoch (Triassic). The NE‐trending Au–bearing quartz vein was dated as 131.910.89 to 197.451.13 Ma by 40Ar–39Ar method, i.e., Yanshanian epoch (Jurassic). The 40Ar–39Ar age of the NW‐trending Au–bearing quartz veins represents the age of the ductile shear formation. The isotope data of the NE‐trending quartz veins indicate that gold mineralization was closely related to Indosinian and Yanshanian granite intrusives not only in time and space, but also in origin.  相似文献   

19.
The youngest intrusive phases of the rapakivi granites are known as Sn granites. The endocontact and exocontact zones of the Viipuri rapakivi massif and its satellites have been considered on theoretical grounds as critical areas for Sn deposits. The area between the Viipuri rapakivi massif and its satellite, the Ahvenisto massif, was selected for prospecting as one Sn critical area.Heavy-mineral geochemistry was used in the reconnaissance phase. Samples (10 1) from the surficial part of the till deposits were taken from a sparse sampling grid. Heavy minerals of the samples were concentrated by washing on a riffle box and by subsequent heavy-liquid separation. The non-magnetic heavy fraction was analyzed by XRF. Quite a large and coherent glaciogenic Sn anomaly was found, the head of which terminated in the southern part of the Ahvenisto rapakivi massif.The source of the anomaly was sought by taking basal till and bedrock samples with a tractor-mounted percussion drill. The fine fraction of till was analyzed by AAS and the bedrock samples by XRF and AAS. Mainly on the basis of Sn and Cu anomalies in basal till and bedrock 10 holes were diamond drilled into bedrock. Several topaz-bearing greisen bodies with uneconomic Sn content were penetrated. The results demonstrate the soundness of the theory and the methods used.  相似文献   

20.
In 1982 and 1983 a surficial geology and overburden geochemistry survey was carried out on the Sisson Brook Mining Licence in York County, about 55 km northwest of Fredericton, New Brunswick, Canada.On the Sisson Brook Mining Licence three zones of W-Mo-Cu mineralization have been outlined; Zones I and II contain mainly wolframite with chalcopyrite and pyrrhotite, whereas Zone III has mainly scheelite and molybdenite.The glacial history of the area was studied during 1982 and 1983 to provide a framework for interpreting the geochemical results. Ice movement varied from 160° ± 10° towards the south during the Main Bantalor phase (maximum ≈ 13,500 y.B.P.) to 130° ± 10° toward the southeast during the Late Bantalor phase. Rapid changes in dominant pebble lithologies occur immediately upon crossing bedrock contacts. This suggests a very short distance of transport on the property. The glacier, butted against the Nashwaak Ridge, quickly sheared bedrock debris up into the body of the ice by compressive flow. Upon melting, some of this debris was deposited a short distance from source. Some debris appears to have been sheared up higher into the ice sheet, transported over the Nashwaak Ridge, and deposited approximately 8 km down-ice with no interconnecting dispersal train.In 1982, a geochemical orientation survey was carried out to determine which element(s) and sample medium could best and most economically be used in the search for W-Mo-Cu mineralization. Within the property area, both whole till <2000 μm (−10 mesh) samples and heavy mineral concentrates clearly defined the zones of mineralization (W, Mo, Cu) and associated geochemical dispersal trains (W, Mo, Cu, As, F). In later work, samples were not analyzed for As and F because this provided no additional information. The geochemical contrast between values in whole till samples derived from subcropping mineralization and those derived from barren bedrock is adequate to outline mineralization. Geochemical analysis of the whole till was used in later work because the sample preparation costs are considerably lower than those for heavy-mineral concentrates. Soils were not used because trace element patterns were diffuse, with the highest values occurring at variable distances down-ice from mineralization.In 1983, the objective was to better define glacial dispersal from the known mineralization and to explore for additional mineralization. Data from this program indicates a W dispersal train in whole till samples 300–400 m long. Tungsten values up to 1400 ppm and Mo values up to 260 ppm in whole till occur immediately down-ice from the main subcropping W-Mo mineralization. The element associations (i.e. W-Mo-Cu and W-Mo) in the till reflect the elemental composition of the source mineralization (i.e. Zones I and II and Zone III).Backhoe trenching is a useful and cost-effective technique to expose Quaternary sediments. Examination of the overburden sections provides an understanding of the glacial history which aids in tracing geochemical dispersal trains up-ice to bedrock source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号