首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saltwater has invaded the coastal aquifer along the southern Adriatic coast of the Po Plain in Italy. The topography, morphology and land use of the region is complex: rivers, canals, wetlands, lagoons, urban, industrial and agricultural areas and tourist establishments all coexist in a small area. Water table and iso-salinity maps show that in four study areas (Ancona-Bellocchio, Marina Romea, San Vitale Forest, Cervia) out of five, the water tables are below sea level and saltwater has replaced freshwater in the aquifer. The fifth area (Classe Forest) has a relatively pristine freshwater aquifer thanks to an average water-table height of 2 m above sea level, a lower hydraulic conductivity (< 7.7 m/day) and a continuous dune system along the coast. Only in this area is the topography high enough to maintain freshwater heads that can counteract saltwater intrusion according to the Ghyben-Herzberg principle. Furthermore, the climate, with an average yearly precipitation of 606 mm and an average temperature of 14.4°C, allows for little recharge of the aquifer. Ongoing subsidence, encroachment of sea water along rivers and canals, as well as drainage from agricultural land also enhance the salinization process.  相似文献   

2.
《Applied Geochemistry》2006,21(7):1169-1183
The Cornia Plain alluvial aquifer, in Tuscany, is exploited intensely to meet the demand for domestic, irrigation and industrial water supplies. The B concentration of groundwater, however, is often above the European limit of 1 mg L−1, with the result that exploitation of these water resources requires careful management. Boron and Sr isotopes have been used as part of a study on the origin and distribution of B dissolved in groundwater, and indirectly as a contribution to the development of appropriate water management strategies.The geochemistry of the Cornia Plain groundwater changes from a HCO3 facies in the inland areas to a Cl facies along the coastal belt, where seawater intrusion takes place. The B concentration of groundwater increases towards the coastal areas, while the 11B/10B ratio decreases. This indicates that there is an increasing interaction between dissolved B and the sediments forming the aquifer matrix, whose B content is in the order of 100 mg kg−1. Adsorption–desorption exchanges take place between water and the sediment fine fraction rich in clay minerals, with a net release of B from the matrix into the groundwater, and a consequent δ11B shift from positive to negative values. The aquifer matrix sediments therefore seem to be the major source of B dissolved in the groundwater.The groundwater–matrix interactions triggered by the ionic strength increase caused by seawater intrusion can also be detected in the Ca–Na ion exchanges. Dissolved Sr follows a trend similar to that of Ca, while the 87Sr/86Sr ratio is equal to that of the exchangeable Sr of the aquifer matrix and therefore does not change significantly.These results have helped to define a new strategy for groundwater exploitation, with the final objective of reducing B concentration in the water extracted from the aquifer.  相似文献   

3.
A pilot area within the Venetian Plain was selected to assess the arsenic (As) contamination of groundwater. The area represents a typical residential, industrial and agricultural organization representative of most western countries, and is also devoid of lithologies with high or anomalous As content. Hydrogeological and chemical data have been collected, the latter spatialized by a geostatistical approach. The unconfined aquifer reservoir varies from a predominantly gravel composition in the north to a sandy and silt–clay composition further south, including peat layers. The hydrochemical features of the waters are rather homogeneous, featuring low mineral content and a Ca-bicarbonate signature. In contrast, the redox state is highly variable; oxidizing conditions are predominant in the northern and coarse parts of the aquifer, whereas reducing potentials prevail in the southern and silt–clay parts. Several well waters contain arsenic in excess of drinkable limits (=10 ppb), and most of these wells are located in the southern area. A large portion of the studied area has a high probability of containing non-potable water (up to 150 ppb As). Remarkably, As “hot spots” (As > 300 ppb, up to 431 ppb) were identified at the transition from gravel to silt–clay sediments. No industrial or agricultural source of As has been found.  相似文献   

4.
A groundwater flow model of the Alpine valley aquifer in the Aosta Plain (NW Italy) showed that well pumping can induce river streamflow depletions as a function of well location. Analysis of the water budget showed that ~80% of the water pumped during 2 years by a selected well in the downstream area comes from the baseflow of the main river discharge. Alluvial aquifers hosted in Alpine valleys fall within a particular hydrogeological context where groundwater/surface-water relationships change from upstream to downstream as well as seasonally. A transient groundwater model using MODFLOW2005 and the Streamflow-Routing (SFR2) Package is here presented, aimed at investigating water exchanges between the main regional river (Dora Baltea River, a left-hand tributary of the Po River), its tributaries and the underlying shallow aquifer, which is affected by seasonal oscillations. The three-dimensional distribution of the hydraulic conductivity of the aquifer was obtained by means of a specific coding system within the database TANGRAM. Both head and flux targets were used to perform the model calibration using PEST. Results showed that the fluctuations of the water table play an important role in groundwater/surface-water interconnections. In upstream areas, groundwater is recharged by water leaking through the riverbed and the well abstraction component of the water budget changes as a function of the hydraulic conditions of the aquifer. In downstream areas, groundwater is drained by the river and most of the water pumped by wells comes from the base flow component of the river discharge.  相似文献   

5.
Groundwater As concentrations >WHO limit (10 μg/L) are frequently found in the Po Plain (N. Italy). Although several hypotheses on As mobilization exist (i.e., reductive dissolution driven by peat degradation), the mechanisms of As release and subsequent attenuation acting in the multilayer aquifer in the Po Plain were poorly understood.The present work aims at implementing a reactive transport modeling of the aquifer system in Cremona, affected by As <183 μg/L, in order to quantify and test the feasibility of As release by the reductive dissolution of Fe-oxides driven by the degradation of peat contained in leaky aquitards and As attenuation downstream by the co-precipitation in iron sulfides.The model, based on a partial equilibrium approach, revealed that the observed As, Fe and Mn chemistry could be mostly explained by the simultaneous equilibrium between Fe-oxide and sulfate reduction and FeS precipitation and by the equilibrium of rhodochrosite precipitation/dissolution. Model results, together with litholog analysis, supported the assumption of peat as the likely source of organic matter driving As release. The model fitted to measured data showed that the peak in the organic carbon degradation rate at 20–40 m below surface (average of 0.67 mM/y), corresponding to the shallow peaty aquitard and the upper portion of the underlying semiconfined aquifer, is associated with the peak of net release of As (average of 0.32 μM/y) that is followed just downstream by a net precipitation in iron sulfides at 40–60 m below surface (average of 0.30 μM/y). These results support the assumptions of peaty aquifers as drivers of As release and iron sulfides as As traps. The model also outlined the following aspects that could have a broad applicability in other alluvial As affected aquifers worldwide: (a) shallow peaty aquitards may have a greater role in driving the As release since they likely have young and more reactive organic matter; (b) the occurrence of Fe-oxide reduction and FeS precipitation, that represent the As source and sink, together with sulfate reduction occurring simultaneously close to equilibrium may restrict the As mobility limiting the extent of contamination just downstream the source of organic matter that drives its release.  相似文献   

6.
Reclaimed neutral saline sulphate soils constitute a large part of the eastern part of Po Plain lowlands, where intensive agricultural activities take place. The knowledge of their geochemical features is essential to develop the best management practices capable to preserve this threatened environment. With this aim, three boreholes were drilled in an agricultural field and a typical reclaimed soil profile has been characterized for major and trace element, pH, electrical conductivity, redox conditions and water-soluble anions and ammonium. Statistical analysis (cluster analysis and principal component analysis) has been used to understand the relationship between elements and grain size. The soil profile is characterized by high salinity and high organic matter contents responsible for high chloride, sulphate, and ammonium concentrations. Heavy metal content is naturally high, since Po Plain sediments are the result of ultramafic rocks erosion; in addition, organic matter tends to concentrate heavy metals by adsorption, mainly in peaty horizons. As a consequence of chemical and zootechnical fertilization, high NO3 ? contents have been found in the top soil, thus enhancing the risk of nitrate discharge in the water system, especially in relation to extreme climatic events.  相似文献   

7.
Interactions between river water and groundwater have been used to help understand the movement of water and to evaluate water quality in the semi-arid area of the North China Plain (NCP). Stable isotopes, chlorofluorocarbons (CFCs) and hydrochemistry were used to study the influence of surface water from the Xiao River on regional groundwater. Using a mass balance approach based on chloride concentrations, hydrogen and oxygen isotope ratios, the average fraction of surface water recharging to groundwater was 50–60 %. CFC results indicated that the groundwater recharge age varied from 22.5 to 39.5 years. The vertical flow velocity of groundwater was estimated at about 1.8–3.5 m year?1. Nitrate concentrations in groundwater varied from 9.42 to 156.62 mg L?1, and exceeded 50 mg L?1 in most aquifers shallower than 80 m bordering the Xiao River. The δ 15N-NO3 data indicate that the major sources of nitrogen in groundwater are human sewage and animal excreta. Because groundwater is the main source of drinking water, there should be concern about public health related to the elevated nitrate concentrations in the NCP.  相似文献   

8.
High arsenic levels in groundwater of the aquifers, belonging to the Pliocene terrestrial layers and Quaternary alluvial sediments, have become a significant problem for the inhabitants living in Sarkisla (Turkey). The main objective of this study was to determine the origin and arsenic contamination mechanisms of the Sarkisla drinking water aquifer systems. The highest arsenic concentrations were found in Pliocene layers and alluvial sediments with concentrations ranging from 2.1 to 155 mg/kg. These rocks are the main aquifers in the study area, and most of the drinking groundwater demand is met by these aquifers. Groundwater from the Pliocene aquifer is mainly Ca-HCO3 and Ca-SO4 water type with high EC values reaching up to 3,270 μS/cm, which is due to the sulfate dissolution in some parts of the alluvial aquifer. Stable isotope values showed that the groundwater was of meteoric origin. Tritium values for the groundwater were between 8.31 and 14.06 TU, representing a fast circulation in the aquifer. Arsenic concentrations in the aquifers were between 0.5 and 345 μg/L. The highest arsenic concentrations detected in the Pliocene aquifer system reached up to 345 μg/L with an average value of 60.38 μg/L. The arsenic concentrations of the wells were high, while the springs had lower arsenic concentrations. These springs are located in the upper parts of the study area where the rocks are less weathered. The hydrogeochemical properties demonstrated that the water–rock interaction processes in sulfide-bearing rocks were responsible for the remarkably high groundwater arsenic contamination in the study area. In the study area, the arsenic levels determined in groundwater exceeded the levels recommended by the WHO. Therefore, it is suggested that this water should not be used for drinking purposes and new water sources should be investigated.  相似文献   

9.
Basin formation dynamics of the Tertiary Piedmont Basin (TPB) are here investigated by means of cross-section numerical modelling. Previous works hypothesised that basin subsidence occurred due first to extension (Oligocene) and then to subsequent loading due to back-thrusting (Miocene). However, structural evidence shows that the TPB was mainly under contraction from Oligocene until post Pliocene time while extension played a minor role. Furthermore, thermal indicators strongly call for a cold (flexure-induced) mechanism but are strictly inconsistent with a hot (thermally induced) mechanism. Our new modelling shows that the TPB stratigraphic features can be reproduced by flexure of a visco-elastic plate loaded by back-thrusts active in the Western Alps in Oligo-Miocene times. Far-field compression contributed to the TPB subsidence and controlled the basin infill geometry by enhancing basin tilting, forebulge uplift and erosion of the southern margin of the basin. These results suggest that the TPB subsidence is the result of a combination of mechanisms including thrust loading and far-field compressional stresses.  相似文献   

10.
Nitrate pollution of groundwater in Toyserkan,western Iran   总被引:3,自引:2,他引:3  
A total of 95 groundwater samples were collected from Toyserkan, western Iran to assess the chemical composition and nitrate (NO3 ) status of groundwater. The most prevalent water type is Ca–HCO3 followed by water types Ca–Mg–HCO3. In comparison with the World Health Organization (WHO) drinking water guideline of 50 mg l−1 for NO3 , a total of nine wells (9.5%) showed higher concentrations. In 36% of samples (34) NO3 concentration was low (<20 mg l−1), and in 53.7% of samples (51), in the range of 20–50 mg l−1. The samples were classified into four groups based on NO3 and chloride (Cl) concentrations. Of the samples, 40% were classified as group 4 and were relatively high in Cl and NO3 (Cl > 47 mg l−1, NO3  > 27 mg l−1). The high correlation between NO3 and Cl (r = 0.86, p < 0.01) is consistent with a manure source, resulting from the practice of adding salt to animal feed. Pollution of groundwaters appeared to be affected by the application of inorganic fertilizer at greater than agronomic rates, Cl-salt inputs, and irrigation practice.  相似文献   

11.
Framed into a robust stratigraphic context, multivariate analyses on the Holocene palaeobiological record (pollen, benthic foraminifers, ostracods) of the Po coastal plain (NE Italy) allowed the investigation of microtidal ecosystems variability and driving parameters along a 35-km-long land–sea transect. Millennial-scale ecosystem shifts are documented by coeval changes in the meiofauna, reflecting variations in organic matter–water depth (shallow-marine environments) and degree of confinement-salinity (back-barrier settings). In-phase shifts of vegetation communities track unsteady water-table levels and river dynamics in freshwater palustrine areas. Five environmental–ecological stages followed one another crossing four tipping points that mark changes in relative sea level (RSL), climate and/or fluvial regime. At the culmination of Mediterranean RSL rise, after the 8200 event, remarkable growth of peatlands took place in the Po estuary, while low accumulation rates typified the shelf. At the transgressive–regressive turnaround (~7000 cal a bp ), the estuary turned into a delta plain with tidally influenced interdistributary embayments. River flow regime oscillations after the Climate Optimum (post-5000 cal a bp ) favoured isolation of the bays and the development of brackish wetlands surrounded by wooded peatlands. The youngest threshold (~800 cal a bp ), which led to the establishment of the modern delta, reflects a major avulsion of the Po River.  相似文献   

12.
The content and distribution of nitrate in groundwater and surface water in the Karup Basin area have been investigated and analyzed. In addition to existing analyses, chemical profiles of the groundwater of the upper part of the water table sand aquifer were measured at a number of sites. The profiles indicate, in general, an upper oxidation zone with nitrate and a lower reduction zone free of nitrate. However, below plantation areas, the nitrate content in the oxidation zone is significantly low as well. The eight profiles are graphed separately, and all results are finally plotted on a single map by a graphic method that takes into consideration both the concentration and the level of the sampled water. The great variation in the nitrate content of the water from one water-supply well to another can easily be explained by plotting the values on maps using this graphing procedure, in conjunction with an examination of the nitrate zonation found in the profiles. The influence of agricultural activities is significantly related to the concentration of nitrate in surface water and groundwater under such water table conditions and circumstances as are found in the Karup Basin.  相似文献   

13.
A detailed hydrogeochemical study of groundwater in the Cecina coastal plain (Livorno province, Italy) and its inner sectors was undertaken in 2008, as chemical analyses carried out on groundwater since 2006 have revealed Cr(VI) concentrations of up to 49 μg/L (well above the permissible limit of 5 μg/L). Ophiolite outcrops are present throughout the study area, and their fragments likely represent a significant portion of the existing multilayered aquifer skeleton. Waters delivered by the serpentinite outcrops have a typically Mg–HCO3 composition, whereas those of the coastal plain are prevailingly of the Ca/Mg–HCO3 type with significant Mg contents. Significant NO3 contamination characterises the studied coastal plain, and an interesting negative correlation exists between Cr(VI) and both NO3 and SO4 deriving from the widespread use of (NH4)2SO4 as a farm fertilizer. Chromium speciation calculations carried out using the EQ3NR code reveal that the prevailing Cr(VI) species in solution is CrO4 2?; however, CaCrO4° and MgCrO4° neutral complexes represent significant percentages (up to 42 %). These findings suggest that the mobility and consequently the bioavailability of Cr(VI) can be significantly enhanced by these neutral complexes, which are not considered to be affected by adsorption/desorption processes. The Cr(VI) source, investigated by means of the Mg/SiO2 molar ratio, seems to be represented mainly by Mg-bearing minerals of the chlorite group. Petrographic observations confirm the occurrence of this mineral group. The interaction between rainwater and the local serpentinite rock was simulated at different $P_{{{\text{CO}}_{ 2} }}$ and $P_{{{\text{O}}_{ 2} }}$ conditions by reaction path modelling using the EQ3/6 software package. $P_{{{\text{O}}_{ 2} }}$ was varied in accordance with the assumption that redox conditions are determined in part by NO3. Results are in good agreement with experimental data on spring waters and subordinately with data on some coastal plain groundwater, which plot in a rather wide $P_{{{\text{CO}}_{ 2} }}$ and $P_{{{\text{O}}_{ 2} }}$ field. Although the dissolved Cr content is mostly of natural origin, fertilization may affect its fate.  相似文献   

14.
The central-eastern Po Plain in northern Italy is a rapidly subsiding sedimentary basin that hosts about 30% of the Italian population and 40% of Italy's total productive activities. Subsidence rates range from 0 to −70 mm/year, the maximum occurring in synclinal areas at the Po Delta and near Bologna, the minimum located at the top of buried, probable tectonically active anticlines (Mirandola–Ferrara). We show that modern subsidence is at least an order of magnitude higher than due solely to long-term natural processes. This implies that most subsidence in the Po Plain has been induced by human activities. As previously noted, we suggest that the main factor controlling modern subsidence is water withdrawal, which was particularly intense during the second half of the 20th century, coinciding with accelerating economic growth. We also evaluate the impact of rapid subsidence on floods in low areas by comparing subsidence velocity maps with flood maps. This shows that there is a clear-cut correlation between flood frequency and rapid subsidence. In contrast, few floods occurred in low subsidence areas, which generally correspond with the top of buried anticlines. We finally note that the anthropic-caused increase in subsidence has now greatly increased the potential for additional floodings.  相似文献   

15.
16.
This study investigated the thermal regime of shallow groundwater in the Turin area (NW Italy), where the large energy demand has motivated a new interest for renewable sources, such as the use of ground-source heat pumps for domestic heating and cooling. The vertical variability of the groundwater temperature between the ground surface and 10–20 m was detected: deeper temperatures were higher than shallow temperatures in spring, while a decrease with depth occurred in autumn. These variations are connected with the heating and cooling cycles of the ground surface due to the seasonal temperature oscillation. Variations below the seasonal oscillation are likely to be connected with the presence of advective heat transport due to the groundwater flow, according to the hydraulic features of a shallow aquifer. Temperature values mostly ranged between 12 and 14 °C in rural areas, while the values were between 14 and 16 °C below the Turin city. This groundwater warming is attributed to a widespread urban heat island phenomenon linked to warmer land surface temperatures in Turin city. Sparse warm outliers are connected with point heat sources and site-specific conditions of land and subsurface use, which may cause the aquifer temperature to rise. A relatively stable temperature below the seasonal fluctuation zone combined with high productivity and legislated limits for deeper groundwater use represent favourable conditions for a large-scale diffusion of groundwater heat pumps within the shallow aquifer. Moreover, this heat surplus should be regarded as a resource for future geothermal installations.  相似文献   

17.
This paper analyses flow and transport of pesticides from the unsaturated zone to groundwater so as to predict concentration of those contaminants in the Fucino Plain’s groundwater, by site investigations and numerical simulations. Pesticides were detected in surface water (peaks of 13 μg L−1) and groundwater (peaks of 0.37 μg L−1). Modelling tools made it possible to identify that pattern of precipitation, organic matter content, and root thickness are the key factors involved in vertical seepage of pesticides. Numerical simulations indicated that a significant fraction of contaminants is leached from the most surficial soil layers through runoff, while only a secondary fraction is mobilised towards groundwater. Likelihood of contaminating deep groundwater is fairly low, whereas surface waters show higher susceptibility. Results of the proposed conceptual hydrogeological model show that pesticides are more likely to be entrained by mixing of stream water with shallow groundwater in periods of high water exploitation from shallow wells.  相似文献   

18.
The present study indicates that the factors controlling the hydraulic relation between surface water and groundwater at the western lake shoreline change from one locality to another. This depends upon the lithological characteristics and the major structures. In the southern sectors, sedimentation at the bottom and sides of the lake prevents the water movement to the Nubian sandstone aquifer. The potentiometric map reveals that the water level altitudes range between 170 m in the vicinity of the lakeshore line and 110 m west of the lake. The groundwater flow lines show that the main recharge to the aquifer comes from the southwest direction, as well as from the lake inland to variable distances (about 30 Km). During the present study, Darcy’s law was applied to calculate the recharge from the western shoreline of Lake Nasser to the adjacent Nubian aquifer. The maximum value of seepage was at Garf Hussein (27.71?×?106 m³/year), which may be related to high permeability and hydraulic gradient. Also, it may be related to the N–S strike faults that cut the area on both sides of the Lake, and the groundwater is expected to have free circulation through the faults of this trend. The minimum value was recorded in Adindan section (0.61?×?106 m³/year). This may be related to the limited recharge from the lake to the aquifer, due to the sedimentation that dislocates this recharge.  相似文献   

19.
The impact of a railway tunnel on groundwater and surface waters in the Northern Apennines (Italy) was demonstrated and characterised by multi-tracer tests and hydrological observations. The 15-km-long Firenzuola tunnel crosses turbidite marls and sandstones previously not considered as aquifers. During the drilling, water inrushes occurred at fracture zones, and the tunnel still continues to drain the aquifer. The water table dropped below the level of the valleys, and gaining streams transformed into losing streams or ran completely dry, as did many springs, causing severe damage to the aquatic fauna and other elements of the ecosystem. Two multi-tracer tests, each using uranine and sulforhodamine G, were carried out in two impacted catchments in order to confirm and quantify the stream–aquifer–tunnel interrelations. The results proved connection between losing streams and numerous water inlets in the tunnel, with maximum linear distances of 1.4 km and velocities up to 135 m/d. Several of the demonstrated flowpaths pass under previous groundwater divides (mountain ridges), proving that the tunnel has completely modified the regional flow system. Water balance estimations demonstrate that the observed water losses cannot be explained by climate change but can largely be attributed to the tunnel drainage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号