共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
F. Farzaneh Kondori K. Badii M. E. Masoumi G. Golkarnarenji 《International Journal of Environmental Science and Technology》2018,15(3):543-550
In the present work, a continuous catalytic wet peroxide oxidation fixed bed reactor was employed to treat a simulated wastewater sample with malachite green dye, as a contaminant. Natural perlite particle-supported nano-Fe3O4 catalyst was used as a fixed bed inside a reactor, and it was immobilized by a persistent magnetic field. The range of (perlite) particle sizes was from 100 to 1000 nm. The effects of various operating parameters, including temperature of the reactor, pH, initial hydrogen peroxide concentration and initial dye concentration, were investigated on the percentage removal of malachite green dye. Load of catalyst of 2 g and volumetric flow rate of 1 L/h were selected for all the tests. Maximum malachite green degradation was 99.5 ± 0.3%. This removal percentage was attained at temperature of 80 °C, pH = 6, initial dye concentration of 6 mg/L and initial hydrogen peroxide concentration of 100 mg/L. The process was isotherm, and the catalyst showed high catalytic activity in the steady-state condition. The loss of catalyst was less than 0.3%. 相似文献
3.
We present results from low-temperature heat capacity measurements of spinels along the solid solution between MgAl2O4 and MgCr2O4. The data also include new low-temperature heat capacity measurements for MgAl2O4 spinel. Heat capacities were measured between 1.5 and 300 K, and thermochemical functions were derived from the results.
No heat capacity anomaly was observed for MgAl2O4 spinel; however, we observe a low-temperature heat capacity anomaly for Cr-bearing spinels at temperatures below 15 K. From
our data we calculate standard entropies (298.15 K) for Mg(Cr,Al)2O4 spinels. We suggest a standard entropy for MgAl2O4 of 80.9 ± 0.6 J mol−1 K−1. For the solid solution between MgAl2O4 and MgCr2O4, we observe a linear increase of the standard entropies from 80.9 J mol−1 K−1 for MgAl2O4 to 118.3 J mol−1 K−1 for MgCr2O4. 相似文献
4.
M. Zhang G. J. Redhammer E. K. H. Salje M. Mookherjee 《Physics and Chemistry of Minerals》2002,29(9):609-616
Synthetic aegirine LiFeSi2O6 and NaFeSi2O6 were characterized using infrared spectroscopy in the frequency range 50–2000 cm−1, and at temperatures between 20 and 300 K. For the C2/c phase of LiFeSi2O6, 25 of the 27 predicted infrared bands and 26 of 30 predicted Raman bands are recorded at room temperature. NaFeSi2O6 (with symmetry C2/c) shows 25 infrared and 26 Raman bands. On cooling, the C2/c–P21/c structural phase transition of LiFeSi2O6 is characterized by the appearance of 13 additional recorded peaks. This observation indicates the enlargement of the unit
cell at the transition point. The appearance of an extra band near 688 cm−1 in the monoclinic P21/c phase, which is due to the Si–O–Si vibration in the Si2O6 chains, indicates that there are two non-equivalent Si sites with different Si–O bond lengths. Most significant spectral
changes appear in the far-infrared region, where Li–O and Fe–O vibrations are mainly located. Infrared bands between 300 and
330 cm−1 show unusually dramatic changes at temperatures far below the transition. Compared with the infrared data of NaFeSi2O6 measured at low temperatures, the change in LiFeSi2O6 is interpreted as the consequence of mode crossing in the frequency region. A generalized Landau theory was used to analyze
the order parameter of the C2/c–P21/c phase transition, and the results suggest that the transition is close to tricritical.
Received: 21 January 2002 / Accepted: 22 July 2002 相似文献
5.
S. M. S. Niknejad H. Savoji M. Pourafshari Chenar M. Soltanieh 《International Journal of Environmental Science and Technology》2017,14(2):375-384
In this work, permeation of mixed gases H2S/CH4 through commercial polyphenylene oxide (PPO) hollow fiber and poly (ester urethane) urea (PEUU) flat membranes was studied at pressures of 345–689 kPa, at ambient temperature and at 313.15 K. Various H2S concentrations of about 100–5000 ppm in CH4 binary synthetic gas mixtures as well as a real natural gas sample obtained from a gas refinery containing 0.3360 mol.% H2S (equivalent to 3360 ppm) were tested. It was observed that the permeance of components was affected by the balance between competitive sorption and plasticization effects. Separation factors of H2S/CH4 were in the range of 1.3–2.9, 1.8–3.1 and 2.2–4.3 at pressures of 345, 517 and 689 kPa, respectively. In the range of 101–5008 ppm of H2S in CH4, the effect of temperature on the separation factor was nearly negligible; however, permeances of both components of the mixtures increased with temperature. Additionally, the results obtained by PEUU membrane indicated that it was a better choice for hydrogen sulfide separation from H2S/CH4 mixtures than PPO. For PPO membrane, removal of hydrogen sulfide from high-concentration (up to 5008 ppm) binary mixtures of H2S/CH4 was compared with that of low concentration (as low as 101 ppm) through PPO. At concentrations of 101–968 ppm, plasticization was dominant compared with the competitive sorption, while for the H2S feed concentrations of 3048 ppm, the competitive sorption effect was dominant. For H2S concentration of 5008 ppm, the balance between these two effects played an important role for explanation of its trend. 相似文献
6.
V. L. Vinograd O. G. Safonov D. J. Wilson L. L. Perchuk L. Bindi J. D. Gale B. Winkler 《Petrology》2010,18(4):447-459
Atomistic model was proposed to describe the thermodynamics of mixing in the diopside-K-jadeite solid solution (CaMgSi2O6-KAlSi2O6). The simulations were based on minimization of the lattice energies of 800 structures within a 2 × 2 × 4 supercell of C2/c diopside with the compositions between CaMgSi2O6 and KAlSi2O6 and with variable degrees of order/disorder in the arrangement of Ca/K cations in M2 site and Mg/Al in Ml site. The energy
minimization was performed with the help of a force-field model. The results of the calculations were used to define a generalized
Ising model, which included 37 pair interaction parameters. Isotherms of the enthalpy of mixing within the range of 273–2023
K were calculated with a Monte Carlo algorithm, while the Gibbs free energies of mixing were obtained by thermodynamic integration
of the enthalpies of mixing. The calculated T-X diagram for the system CaMgSi2O6-KAlSi2O6 at temperatures below 1000 K shows several miscibility gaps, which are separated by intervals of stability of intermediate
ordered compounds. At temperatures above 1000 K a homogeneous solid solution is formed. The standard thermodynamic properties
of K-jadeite (KAlSi2O6) evaluated from quantum mechanical calculations were used to determine location of several mineral reactions with the participation
of the diopside-K-jadeite solid solution. The results of the simulations suggest that the low content of KalSi2O6 in natural clinopyroxenes is not related to crystal chemical factors preventing isomorphism, but is determined by relatively
high standard enthalpy of this end member. 相似文献
7.
V. Nourozi Rad M. Anbia M. Hossaini Sadr 《International Journal of Environmental Science and Technology》2018,15(3):631-636
The Claus process has been used for the conversion of H2S and SO2 to elemental sulfur. These two sulfur compounds need special attention because they are very poisonous with negative impact on both the environment and human health. Here, highly active Fe–Ni/TiO2 catalyst has been prepared and shaped by three different binders (bentonite, polyethylene glycol and carboxymethyl cellulose) into extrudes. Comparing the mechanical strength and surface area of prepared extrudes, the optimal shaped catalyst was selected with 20% of bentonite, 2% of PEG and 2% of CMC. The optimal catalyst was characterized by X-ray powder diffraction, temperature-programmed reduction, Brunauer–Emmett–Teller specific surface area, Barrett–Joyner–Halenda, scanning electron microscopy and energy-dispersive X-ray techniques and used for sulfur recovery process. The performance of this product for sulfur recovery via Claus process was excellent with the conversion of hydrogen sulfide of 76.77% and sulfur dioxide of 97.83%. The catalyst also provides high hydrolysis activity of CS2 (83.06%). Therefore, a highly active TiO2-supported shaped catalyst with 85.62% of conversion efficiency has been prepared successfully to convert the small amounts of H2S, SO2 and CS2 to elemental sulfur. 相似文献
8.
The structure of CaGe2O5 between room temperature and 923 K has been determined by X-ray powder diffraction. A continuous phase transition from triclinic C1¯ to monoclinic C2/c symmetry at Tc=714±3 K is observed. The transition is accompanied by a weak heat capacity anomaly. This anomaly and the strain analysis based on the measured lattice parameters indicate a classical second-order phase transition. The order parameter, as measured by the strain component e23, is associated with the displacement of the Ca cation. Electronic structure optimization by density functional methods is used to verify the centric space group of the low-temperature structure of CaGe2O5. 相似文献
9.
10.
Dmytro M. Trots Alexander Kurnosov Leonid Vasylechko Marek Berkowski Tiziana Boffa Ballaran Daniel J. Frost 《Physics and Chemistry of Minerals》2011,38(7):561-567
A single crystal X-ray diffraction study on lithium tetraborate Li2B4O7 (diomignite, space group I41
cd) has been performed under pressure up to 8.3 GPa. No phase transitions were found in the pressure range investigated, and
hence the pressure evolution of the unit-cell volume of the I41
cd structure has been described using a third-order Birch–Murnaghan equation of state (BM-EoS) with the following parameters:
V
0
= 923.21(6) Å3, K
0
= 45.6(6) GPa, and K′ = 7.3(3). A linearized BM-EoS was fitted to the axial compressibilities resulting in the following parameters a
0
= 9.4747(3) Å, K
0a
= 73.3(9) GPa, K′
a
= 5.1(3) and c
0
= 10.2838(4) Å, K
0c
= 24.6(3) GPa, K′
c
= 7.5(2) for the a and c axes, respectively. The elastic anisotropy of Li2B4O7 is very large with the zero-pressure compressibility ratio β
0c
/β
0a
= 3.0(1). The large elastic anisotropy is consistent with the crystal structure: A three-dimensional arrangement of relatively
rigid tetraborate groups [B4O7]2− forms channels occupied by lithium along the polar c–axis, and hence compression along the c axis requires the shrinkage of the lithium channels, whereas compression in the a direction depends mainly on the contraction of the most rigid [B4O7]2− units. Finally, the isothermal bulk modulus obtained in this work is in general agreement with that derived from ultrasonic
(Adachi et al. in Proceedings-IEEE Ultrasonic Symposium, 228–232, 1985; Shorrocks et al. in Proceedings-IEEE Ultrasonic Symposium, 337–340, 1981) and Brillouin scattering measurements (Takagi et al. in Ferroelectrics, 137:337–342, 1992). 相似文献
11.
S. V. Krivovichev 《Geology of Ore Deposits》2007,49(7):537-541
The crystal structure of a new compound [Mg(H2O)4(SeO4)]2(H2O) (monoclinic, P2 1/a, a = 7.2549(12), b = 20.059(5), c = 10.3934(17) Å, β = 101.989(13), V = 1479.5(5) Å3) has been solved by direct methods and refined to R 1 = 0.059 for 2577 observed reflections with |F hkl | ≥ 4σ|F hkl |. The structure consists of [Mg(H2O)4(SeO4)]0 chains formed by alternating corner-sharing Mg octahedrons and (SeO4)2? tetrahedrons. O atoms of Mg octahedrons that are shared with selenate tetrahedrons are in a trans orientation. The heteropoly-hedral octahedral-tetrahedral chains are parallel to the c axis and undulate within the (010) plane. The adjacent chains are linked by hydrogen bonds involving H2O molecules not bound with M2+ cations. 相似文献
12.
Victor L. Vinograd Julian D. Gale Björn Winkler 《Physics and Chemistry of Minerals》2007,34(10):713-725
Static lattice energy calculations (SLEC), based on empirical interatomic potentials, have been performed for a set of 800
different structures in a 2 × 2 × 4 supercell of C2/c diopside with compositions between diopside and jadeite, and with different states of order of the exchangeable Na/Ca and
Mg/Al cations. Excess static energies of these structures have been cluster expanded in a basis set of 37 pair-interaction
parameters. These parameters have been used to constrain Monte Carlo simulations of temperature-dependent properties in the
range of 273–2,023 K and to calculate a temperature–composition phase diagram. The simulations predict the order–disorder
transition in omphacite at 1,150 ± 20°C in good agreement with the experimental data of Carpenter (Mineral Petrol 78:433–440,
1981). The stronger ordering of Mg/Al within the M1 site than of Ca/Na in the M2 site is attributed to the shorter M1–M1 nearest-neighbor
distance, and, consequently, the stronger ordering force. The comparison of the simulated relationship between the order parameters
corresponding to M1 and M2 sites with the X-ray refinement data on natural omphacites (Boffa Ballaran et al. in Am Mineral
83:419–433, 1998) suggests that the cation ordering becomes kinetically ineffective at about 600°C. 相似文献
13.
We have used density functional theory to investigate the stability of MgAl2O4 polymorphs under pressure. Our results can reasonably explain the transition sequence of MgAl2O4 polymorphs observed in previous experiments. The spinel phase (stable at ambient conditions) dissociates into periclase and
corundum at 14 GPa. With increasing pressure, a phase change from the two oxides to a calcium-ferrite phase occurs, and finally
transforms to a calcium-titanate phase at 68 GPa. The calcium-titanate phase is stable up to at least 150 GPa, and we did
not observe a stability field for a hexagonal phase or periclase + Rh2O3(II)-type Al2O3. The bulk moduli of the phases calculated in this study are in good agreement with those measured in high-pressure experiments.
Our results differ from those of a previous study using similar methods. We attribute this inconsistency to an incomplete
optimization of a cell shape and ionic positions at high pressures in the previous calculations. 相似文献
14.
Donald H. Lindsley Paula M. Davidson T. J. B. Holland A. Navrotsky R. C. Newton 《Contributions to Mineralogy and Petrology》1980,71(3):301-312
Phase equilibria in the join CaMgSi2O6-CaFeAlSiO6-CaTiAl2O6 have been determined in air at 1 atm by the ordinary quenching method. Clinopyroxeness, forsterite, perovskite, magnetitess, spinelss, hibonite and an unknown phase X are present at liquidus temperatures (ss: solid solution). At subsolidus temperatures the
following phase assemblages were encountered; clinopyroxeness+perovskite, clinopyroxeness +perovskite+spinelss, clinopyroxeness +perovskite+melilite (+anorthite), clinopyroxeness +perovskite+melilite+spinelss+anorthite, clinopyroxeness +perovskite+anorthite+spinelss, and clinopyroxeness +perovskite+anorthite+hibonite. At subsolidus temperatures the single phase field of clinopyroxeness extends up to 19 wt.% CaTiAl2O6. Even in the field of clinopyroxeness+perovskite, the TiO2 content in clinopyroxeness continues to increase and attains 9.2 wt.% TiO2 with 24.8 wt.% Al2O3. An interesting fact is that unusual clinopyroxenes which contain more AlIV than SiIV are present in the CaFe-AlSiO6-rich region. The liquid coexisting with pyroxene is richer in Ti, Al, and Fe3+ than the coexisting pyroxene. The clinopyroxenesss coexisting with liquid contain less TiO2, Al2O3 and Fe2O3 than those crystallized at subsolidus temperatures. The petrological significance of the join and the crystallization of
Ti- and Al-rich clinopyroxenes are discussed on the basis of the experimental results of the join. 相似文献
15.
16.
17.
Mario Tribaudino Geoffrey Bromiley Haruo Ohashi Fabrizio Nestola 《Physics and Chemistry of Minerals》2009,36(9):527-536
A pyroxene with composition LiNiSi2O6 was synthesized at T = 1,473 K and P = 2.0 GPa; the cell parameters at T = 298 K are a = 9.4169(6) Å, b = 8.4465(7) Å, c = 5.2464(3) Å, β = 110.534(6)°, V = 390.78(3) Å3. TEM examination of the LiNiSi2O6 pyroxene showed the presence of h + k odd reflections indicative of a primitive lattice, and of antiphase domains obtained by dark field imaging of the h + k odd reflections. A HT in situ investigation was performed by examining TEM selected area diffraction patterns collected at high temperature and synchrotron radiation powder diffraction. In HTTEM the LiNiSi2O6 was examined together with LiCrSi2O6 pyroxene. In LiCrSi2O6 the h + k odd critical reflections disappear at about 340 K; they are sharp up to the transition temperature and do not change their shape until they disappear. In LiNiSi2O6 the h + k odd reflections are present up to sample deterioration at 650 K. A high temperature synchrotron radiation powder diffraction investigation was performed on LiNiSi2O6 between 298 and 773 K. The analysis of critical reflections and of changes in cell parameters shows that the space group is P-centred up to the highest temperature. The comparative analysis of the thermal and spontaneous strain contributions in P21/c and C2/c pyroxenes indicates that the high temperature strain in P-LiNiSi2O6 is very similar to that due to thermal strain only in C2/c spodumene and that a spontaneous strain contribution related to pre-transition features is not apparent in LiNiSi2O6. A different high-temperature behaviour in LiNiSi2O6 with respect to other pyroxenes is suggested, possibly in relation with the presence of Jahn–Teller distortion of the M1 polyhedron centred by low-spin Ni3+. 相似文献
18.
Ayako Shinozaki Hiroyuki Kagi Hisako Hirai Hiroaki Ohfuji Taku Okada Satoshi Nakano Takehiko Yagi 《Physics and Chemistry of Minerals》2016,43(4):277-285
Stability and phase relations of coexisting enstatite and H2 fluid were investigated in the pressure and temperature regions of 3.1–13.9 GPa and 1500–2000 K using laser-heated diamond-anvil cells. XRD measurements showed decomposition of enstatite upon heating to form forsterite, periclase, and coesite/stishovite. In the recovered samples, SiO2 grains were found at the margin of the heating hot spot, suggesting that the SiO2 component dissolved in the H2 fluid during heating, then precipitated when its solubility decreased with decreasing temperature. Raman and infrared spectra of the coexisting fluid phase revealed that SiH4 and H2O molecules formed through the reaction between dissolved SiO2 and H2. In contrast, forsterite and periclase crystals were found within the hot spot, which were assumed to have replaced the initial orthoenstatite crystals without dissolution. Preferential dissolution of SiO2 components of enstatite in H2 fluid, as well as that observed in the forsterite H2 system and the quartz H2 system, implies that H2-rich fluid enhances Mg/Si fractionation between the fluid and solid phases of mantle minerals. 相似文献
19.
20.
Adsorption behaviors of Cd^2+ on Fe2O3/MnO2 and the effects of coexisting ions under alkaline conditions 总被引:2,自引:0,他引:2
This study describes the adsorption features of cadmium on Fe2O3 and MnO2 in alkaline saline conditions. The adsorption reached equilibrium in 6 hours under alkaline conditions. The absorption of cadmium on Fe2O3 and MnO2 was consistent with Freundlich absorption isotherms, and the corresponding adsorption capacities were 16.3 and 16.7 mg·g-1, respectively. Moreover, the adsorption quantity of cadmium on Fe2O3 and MnO2 rose with increasing pH from acidic to neutral, and reached the maximum at pH= 9. The coexisting chlorides reduced the adsorption capacity of Fe2O3 and MnO2. The influence intensities of different cations follow the order of CaCl2>>KCl>NaCl. However, the influence of sodium salts on the capacities of Fe2O3 and MnO2 to adsorb cadmium appeared more complicated: the relatively low concentrations of sodium salts could reduce the adsorption capacity; with increasing concentrations of sodium salts, e.g. NaCl and NaNO3. The adsorption capacity decreased continually. Moreover, due to the competition adsorption and precipitation effects, the adsorption capabilities of Na2CO3, NaH2PO4 and Na2HSO4 could also be reduced and cadmium concentrations in the solution were reduced as well. 相似文献