首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper presents the results of investigations of the generalized subsidence occurring in and around the city of Murcia, Spain. Based on this research, this is the first integrated investigation of its type performed in Spain. The phenomenon of ground consolidation in the city of Murcia leads to the appearance of severe cracking and settlement in buildings. Subsidence is the result of two factors: on the one hand, the nature of the ground in this area, as it is made of recent deposits of clay and soft limes filled in with clay–lime backfills in the top layers. On the other hand, the increase in groundwater withdrawal during the 1992–95 drought led to a decrease in the water level of a magnitude never before recorded in the city. The risk prevention management suggested convenience of the installation of a measurement network to study and follow the phenomena of the subsidence to quantify it and to calibrate this theoretical model. This network is composed of extensometers and piezometers, the best devices to measure moderate ground movements, which is the case of Murcia. The first phase (Phase I) of this study of ground settlement in the metropolitan area of Murcia involved the installation of a network with 22 extensometers and taking the first measurement series. In a second phase (Phase II), during a period of 4 years, measurements with extensometers were performed to make the analysis and calibration of the theoretical model. Experience and data analysis showed the convenience of installation of new control points with an incremental extensometer and a piezometer in close position with the aim of precisely correlating piezometric levels with the observed subsidence. The third phase (Phase III) started in 2007, a new control technique, based on radar interferometry (InSAR), is being employed to provide information about subsidence in areas not previously monitored.  相似文献   

2.
李成柱  周志芳 《岩土力学》2006,27(Z2):81-85
目前对地面沉降的研究和计算中,由于地质情况复杂、土体的变异性不容易掌握,对于土体参数的选取多数是根据经验值,具有不确定性。特别是在大面积的地面沉降计算中,这种不确定性更为严重。采用数值分析法,以Biot固结理论为基础,应用有限元软件Adina,建立了单井抽水的地面沉降模型,分析各参数在抽水过程中对地面沉降的影响,从而确定敏感参数,以期对地面沉降研究中的参数选取提供有价值的指导。  相似文献   

3.
Salt mining induced ground subsidence is a major hazard in the city of Tuzla (Northeastern sector of Bosnia and Herzegovina) and its surroundings since 1950, when solution mining of salt deposits by boreholes began. An analysis of the large (and never before processed) amount of topographical data collected during two periods: from 1956 to the Balkan War, and from 1992 to 2003 has been made. The analysis reveals a cumulative subsidence as high as 12 m during the whole period, causing damage to buildings and infrastructures within an area that includes a large portion of the historical town. Human-induced subsidence, (with rates up to 40 cm/year in the most developed area), has been investigated to recognize the areas affected by the sinking phenomenon and to produce a subsidence hazard. The time series of topographical observations have been enlarged by conducting new surveys in the urban area by modern space-geodesy methodologies, such as static relative GPS (Global Positioning System) and high resolution satellite imageries. The GPS monitoring started in 2004 and detected a decrease in the subsidence rates to 20 cm/year related to the reduction of salt exploitation. There is close correlation between the average subsidence rate and the annual amount of salt extracted.  相似文献   

4.
The objective of this study was to test the applicability of groundwater sustainability indicators defined by UNESCO, together with the International Academy of Environmental Sciences (IAES), the International Association of Hydrogeology (IAH) Group on Groundwater Indicators and the Geological Survey of Spain (IGME), to the aquifer scale. We selected four main indicators based on their relevance in the field of groundwater sustainability and because they proved to be the most reliable, based on the data collection and methodology utilized. These indicators were applied to a small—26 km2 of permeable outcrops—carbonate aquifer situated in the province of Seville (southern Spain), which has semi-arid climate conditions (500 mm/year). The integral application of all these indicators in this particular groundwater body leads us to conclude that, at present, the aquifer is undergoing intensive use. Therefore, the exploitation of its water resources is surpassing the threshold of sustainability when both the quantity and the quality of the groundwater are taken into consideration. The continued increase in exploitation generates a descending trend in the evolution of the piezometric levels, a consequence of adaptation to the new hydrodynamic situation, and also results in exhaustion of the springs that drain the aquifer in undisturbed conditions. At the same time, there is a trend of increasing salinity in the groundwater and a risk of contamination by nitrate which, according to the EU Water Framework Directive and the Groundwater Daughter Directive (EU Official Journal of the European Communities L327, 2000; EU Official Journal of the European Communities L372/19, 2006), should be controlled and reduced. In the future, application of the methodology described here may prove useful for the evaluation of similar systems, either in southern Spain or in other countries with semi-arid climates.  相似文献   

5.
The Madrid Tertiary Detrital Aquifer is one of the largest and most important aquifers of Spain. This paper assesses the most relevant controls on the natural baseline quality and the dominant chemical processes within the aquifer. The hydrochemistry of the groundwater is variable despite the relative uniformity of the detrital sediments. The natural baseline is expressed as a range of values that are controlled by lithological and hydrological factors; spatial variations of groundwater chemistry are related to changes in rock type, water-rock interaction and the residence time of groundwater. The fundamental chemical processes within the Arkosic aquifer are hydrolysis of silicates, dissolution of carbonates, dissolution of evaporites (only in the vicinity of the transitional facies), ion exchange, neoformation of clays, precipitation of silica as cement, and precipitation of carbonates due to increasing temperature along the downward pathways. Some chemical and physico-chemical parameters like pH, dissolved oxygen, and hardness, and several elements like calcium, sodium, magnesium, silica, and arsenic show an evolutionary trend according to groundwater flow path. A gradual increase in arsenic concentration from recharge areas to discharge areas is observed; it is the main natural water constituent that deteriorates the quality of the fresh Madrid groundwater as a drinking water supply. The occasionally elevated arsenic concentrations originate from natural sources. The concentration and mobility of arsenic seems to be controlled by pH-dependent anion exchange processes resulting from the evolution to Na-HCO3 water.  相似文献   

6.
The scarcity of water resources in semiarid regions is usually accompanied by brief periods of quite intense precipitation that can generate potentially catastrophic floods. In such regions, the use of runoff water for aquifer recharge can contribute to both flooding prevention and effective management of water resources. This paper presents the results of a study undertaken in southeastern Spain focusing on the recharge induced by a number of engineering structures (check dams) and gravel pits. The current network of check dams consists of 107 dams, of which 64 are located over permeable substrates and so we can induce recharge of the storm runoff retained therein. The hydrological model was performed using the curve number method (CN) of the Service for the Conservation of Soils, utilizing code HEC-HMS. Results indicate that the proportion of runoff infiltrated through the check dams varies from 3% to more than 50%, according to the effective volume of water dammed and the substrate. In addition, hydrological modelling was carried out in a subbasin taking advantage of the presence of one of a number of gravel pits. The gravel pits are situated in the apical sectors of alluvial fans that overlie hydrogeological units that are widely overexploited, and so they are well positioned for use for artificial recharge. In this case, we conclude that a pit is capable of retaining and infiltrating the combined runoff volumes for various return periods (5, 25, 50, and 100 years). Furthermore, the simulation carried out suggests that the recharge processes in these environments are intimately linked to episodic storm events. The incorporation of hydrogeological criteria in the design and construction of check dams could therefore be very useful for the optimum management of water resources in semiarid zones.  相似文献   

7.
8.
We used two semi‐permanent GPS receivers with differential configuration to measure the hydrological subsidence of an aquifer used for water supply, located on a fractured granitic area. The time series of the vertical deformation measurements of the ground surface show a variation of 2 cm between winter and summer. We investigate the relationship between this vertical deformation and hydraulic head variations. We show that this kind of GPS survey allows characterizing part of the hydrological properties of such a heterogeneous aquifer. This is thus a new approach of time continuous monitoring of the deformation related to hydrogeological processes.  相似文献   

9.
基于部分耦合原理,采用TOUGH2和FLAC3D建立抽水引起的三维地面沉降弹塑性模型,模型中综合考虑土体的弹塑性变形特征、渗流-应力的双向耦合作用以及参数的非线性,探讨了持续抽水和脉冲抽水两种抽水过程中地面沉降发展演化过程。研究结果表明:(1)集中抽水停止后地面沉降会发生回弹,抽水中心沉降量不断减小。由于水平方向存在水力梯度,地下水继续向地下水位漏斗中心渗流从而导致沉降漏斗的范围仍继续扩大;(2)脉冲抽水导致土体的孔隙水压力、渗透系数以及沉降量均呈周期性波动变化,地面沉降会局部回弹,但总体仍随着抽水的持续,沉降量不断增加;(3)在抽水量相同前提下,对比持续抽水与脉冲抽水两种方式引发的塑形沉降量可知,抽水速率小、脉冲式多次开采导致的塑性沉降量较小,持续抽水的抽水速率越小、脉冲抽水间隔越短越有利于控制地面沉降。研究成果为地面沉降数值模拟提供了一种新方法,其中算例研究能为抽水条件下地面沉降的控制提供参考。  相似文献   

10.
Within the TERENO initiative, four terrestrial observatories, collecting huge amounts of environmental data, are being set up since 2008. To manage, describe, exchange and publish these data, the distributed Spatial Data Infrastructure TEODOOR (http://www.tereno.net) was created. Each institution responsible for an individual observatory sets up its own local data infrastructure, which may communicate with each other to exchange data and metadata internally or to the public by OGC compliant Web services. The TEODOOR data portal serves as a database node to provide scientists and decision makers with reliable and well-accessible data and data products. Various tools like hierarchical search or Web-GIS functions allow a deeper insight into the different observatories, test sites and sensor networks. Sensor data can be queried and selected for measured parameters, stations and/or time periods, and can be visualized and downloaded according to a shared TERENO data policy. Currently, TEODOOR provides free access to data from more than 500 monitoring stations.  相似文献   

11.
 Land subsidence due to groundwater withdrawal combined with a global sea level rise creates a serious environmental problem in the coastal region. Groundwater withdrawal results in fluid pressure change in the layers. The pressure change in the layers induces both elastic and inelastic land compaction. The elastic compaction can be recovered if the water level rises again and inelastic compaction becomes permanent. Groundwater response to barometric pressure change is used to estimate the elastic compaction in this study. The storativity, specific storage and other layer and hydrological information are used to estimate the inelastic compaction of the layers due to fluid withdrawal. The discussed methods are applied to estimate and predict the subsidence potentials resulting from overdrafting of the groundwater in the southern New Jersey. The estimated subsidence is about 2–3 cm near the location of monitoring wells in Atlantic, Camden, Cumberland and Cape May Counties over the past 20 years. If the current trend of water-level drop continues, the average subsidence in southern New Jersey in the vicinity of some monitoring wells will be about 3 cm in the next 20 years. The rise of global sea level is about 2 mm/year on average. Because of the very gentle slope in southern NJ, the combination of subsidence and sea level rise will translate into a potentially substantial amount of land loss in the coastal region in each 20 year period. This combination will also accelerate the coastal flooding frequency and the erosion rate of the New Jersey coastal plain, and pose a serious threat to the coastal economy. Received: 15 December 1997 · Accepted: 30 June 1998  相似文献   

12.
Su-Xi-Chang area is one of the typical regions in China which suffers from severe land subsidence. Various tools of field monitoring were integrated to study the characteristics and mechanisms of land subsidence in this region. The occurrence and the development of the land subsidence in this region are strongly related to the groundwater pumping both in time and space. The main consolidation layers are the soft mud layers; however, the compressibility of the confined sandy layers should not be ignored. The second and third confined aquifers contributed more than 30% of total subsidence. Meanwhile, irrecoverable deformations were also observed in the sandy layers. Different sandy layers deform diversely under different stress conditions. Some have the elastic feature. But the soil strata, including both sandy layers and clayey layers, located in the center of the groundwater level depression cone exhibited obvious viscous mechanical behavior which caused the common lag phenomenon. The sand composition (mingled with small clay particles or interbeds) and sand rheology are the two main reasons for the lag phenomena in sandy layers. A series of laboratory tests for modeling the effective stress changes due to groundwater withdrawals, were conducted to investigate the mechanism of the lag phenomenon. Based on the test results, the relationship of stress–strain–time for saturated sands is obtained; and it could be expressed as power functions. The results also showed that the compression of the sandy layers was time dependent, and its deformation could be remarkable. When establishing land subsidence model, the deformation for the similar soil formation could be elastic, visco-elastic and even visco-elastic–plastic, because of the different groundwater level fluctuation experienced.  相似文献   

13.
A small karst aquifer of great structural complexity has been subjected to significant resource withdrawal over recent decades. This exploitation aroused social conflict due to the effect it has had on emblematic springs. This research has analysed piezometric data collected over the course of 12 years and the spatial hydrochemical data supplied by the main water points associated with it. The spatial and temporal evolution of the main chemical species in the groundwater and the hydrogeochemical processes affecting them have been studied, modelling them with the programme PHREEQC. These data suggest a complicated model of hydrogeological function with sectors storing water at different depths and connected to each other locally as determined by the geological structure.  相似文献   

14.
Saowiang  Krit  Giao  Pham Huy 《Acta Geotechnica》2021,16(4):1265-1279
Acta Geotechnica - Subsurface deformation due to long terms of groundwater drawdown from 1960 to 1997 and groundwater recovery from 1997 to 2016 in the upper part of the Bangkok multi-aquifer...  相似文献   

15.
Su-Xi-Chang area is one of the typical regions in China which suffers from severe land subsidence. Various field monitoring records were integrated to study the characteristics and mechanisms of land subsidence in this region. The development of the land subsidence in this region shows a tight spatial and temporal correlation with the groundwater pumping. Based on the analysis of the field data, it is found that the deformation patterns of the hydrogeologic units are greatly related to the hydrogeologic properties and groundwater level variations. Some have an elastic behavior, others may have an elastic–plastic rheology. Hence, a 3D finite element numerical model considering the rheological properties of the soil was developed to simulate the groundwater level and land subsidence. Both hydraulic conductivity and specific storage were expected to vary with the porosity during the process of consolidation. Multiscale finite element method (MsFEM) was applied to solve the model during the period from 1996 to 2004. After calibrating the model with the observed groundwater level and subsidence data, the parameters of the multi-layers system were estimated. The calibrated model outputs fit reasonably well with the observed data. Consequently the model can be applied to predict groundwater level and land subsidence in future pumping scenarios. The model predictive results show that land subsidence rate can be controlled and even rebound may occur after the implementation of the groundwater exploitation prohibition. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
The plain of Beijing city in China suffers severe land subsidence owing to groundwater overdraft. The maximum subsidence rate could reach 6 cm/year through the 2000s. An integrated subsidence-monitoring program was designed, including levelling survey, borehole extensometers and multilayer monitoring of groundwater level, with the aim to understand both hydrological and mechanical processes and to characterize the land subsidence. From multilayer compaction monitoring, the major compression layers were identified. The major strata contributing to compression deformation are the second (64.5–82.3 m) and third (102–117 m) aquitards, which contributed around 39 % of the total subsidence. Meanwhile, irrecoverable deformations were also observed in the second (82.3–102 m) and third (117–148 m) confined aquifers; they exhibit elasto-plastic mechanical behavior, which is attributed to the thin beds of silt or silty clay. Stress–strain analysis and oedometer tests were conducted to study the aquifer-system response to pumping and to estimate the specific storage of the major hydrogeologic units. The results reveal the creep behavior and elasto-plastic, visco-elasto-plastic mechanical behavior of the aquitards at different depths. The compressibility of the aquitards in the inelastic range is about one order of magnitude larger than for the elastic range.  相似文献   

17.
In active landslides, the prediction of acceleration of movement is a crucial issue for the design and performance of warning systems. The landslide of Vallcebre in the Eastern Pyreenes, Spain, has been monitored since 1996 and data on rainfall, groundwater levels and ground displacements are measured on a regular basis. Displacements observed in borehole wire extensometers have shown an immediate response of the landslide to rainfall episodes. This rapid response is likely due to the presence of preferential drainage ways. The occurrence of nearly constant rates of displacement in coincidence with steady groundwater levels suggests the presence of viscous forces developed during the movement. An attempt to predict both landslide displacements and velocities was performed at Vallcebre by solving the momentum equation in which a viscous term (Bingham and power law) was added. Results show that, using similar rheological parameters for the entire landslide, computed displacements reproduce quite accurately the displacements observed at three selected wire extensometers. These results indicate that prediction of displacements from groundwater level changes is feasible.  相似文献   

18.
陈瑞阁  周训  赵敬波  宋超 《地质通报》2013,32(7):1099-1104
海潮波动可以引起海岸带地下水位发生波动。建立了基于有限差分法的滨海地区一维承压含水层地下水运动数值模型。将潮汐波动概化为正弦波,模拟了滨海地区地下水位随潮汐波动的变化。通过与初始水位水平的承压含水层水位变化的比较表明,受海潮影响的滨海承压含水层地下水位与海潮有相似的波动特征,但变幅减小,受海潮的影响程度与离海岸的距离有关,随着离海岸距离的增加,地下水位的变幅及潮汐效率呈负指数函数衰减,但比前者变化程度稍缓,地下水位对海潮的滞后时间随距离呈线性增加。  相似文献   

19.
Land subsidence is presented in many factors in different areas with urbanization. Internal soil erosion, owing to pumping confined groundwater during the deep foundation pit construction, has contributed to land subsidence. Four governing equations are presented to describe the process of internal soil erosion based on the mathematical–physical model. The finite element computation results, based on practical deep foundation pit engineering consisted of 8 layers of soil of Shanghai area, demonstrate that internal soil erosion will cause the increment of land subsidence and deformation and is related to the hydraulic gradient and the characters of the soils.  相似文献   

20.
武汉一级阶地地层具有典型的二元结构特征,从浅层至深层土体渗透性逐渐增加,在基坑工程开挖降水过程中,随着疏干含水层水位的下降,各层土体水位变化特点各不相同,水位的变化影响着土体固结的压缩变形。采用现场群井抽水试验的方法,通过在抽水试验期间对不同深度含水层水位的观测及不同深度土体沉降的监测,结合各层土体性质及相关理论对武汉一级阶地基坑降水引起的土层水位变化及压缩变形规律进行研究。结果表明,武汉一级阶地基坑降水水位变化存在着明显的时空效应,沉降与水位变化密切相关,且沉降过程中土层中出现架空效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号