共查询到20条相似文献,搜索用时 15 毫秒
1.
Abdulrasoul M. Al-Omran Mohammed A. Mousa Maged M. AlHarbi Mahmoud E. A. Nadeem 《Arabian Journal of Geosciences》2018,11(4):79
Fifty groundwater samples were collected from Al-Hasa to analyze the pH, electrical conductivity (EC, dS m?1), total dissolved solids (TDS), major anions (HCO3?, CO32?, Cl?, SO42?, and NO3?), major cations (Ca2+, Mg2+, Na+, and K+), and total hardness. The analyzed data plotted in the Piper, Gibbs, and Durov diagrams, and water quality index (WQI) were calculated to evaluate the groundwater geochemistry and its water quality. The results reveal that most of the investigated samples are Ca2+, Mg2+, SO42?, Cl? and Na+, and HCO3? water types using the Piper diagram. Na+?>?Ca2+?>?Mg2+ are the dominant cations, while Cl??>?HCO3??>?SO42??>?CO32? are the dominant anions. Sodium adsorption ratio (SAR) values varied from 0.79 to 10; however, the Kelly ratio (KR) ranged between 0.1 and 2.2. The permeability index (PI) showed that well water is suitable for irrigation purposes with 75% or more of maximum permeability. The US salinity diagram revealed that the water quality classes of studied waters were CIII-SI, CIII-SII, and CIV-SII, representing height hazards of salinity and medium- to low-sodium hazard. The water quality index (WQI) results indicated that total dissolved solids are out of the drinking water standard limits in Saudi Arabia. The WQI revealed that 38% of the studied wells were considered as poor water (class III), 52% are found as very poor water class (IV), and 10% are unsuitable water for drinking class (V). 相似文献
2.
Detailed hydrogeochemical analysis of several samples of groundwater collected from parts of the Niger Delta, Nigeria has been carried out in an effort to assess the quality of groundwater in the area. Results obtained showed the groundwater in the area to be enriched in Na+, Ca++, Mg++, Cl–, HCO
3
-
, and SO
4
--
. The concentration of these ions as well as such parameters as salinity, total hardness, and TDS are below the World Health Organization (WHO) standards for drinking water. The concentration of Ca++ was found to be higher than Mg++ except in some areas very close to the coast suggesting the encroachment of saltwater. This encroachment of saltwater is further indicated by the general increase in Cl– and a decreased in HCO
3
-
content towards the coast and Na/Cl ratios. On the basis of the present hydrogeochemical studies, five groundwater types have been recognized to occur in the area of study. These are (1) Sodium-Calcium-Magnesium-Bicarbonate type (Na-Ca-Mg-5HCO3), (2) Iron-Calcium-Bicarbonate type (Fe-Ca-4HCO3), (3) Sodium-Calcium-Magnesium-Sulfate type (
), (4) Iron-Chloride-Bicarbonate (Fe-Cl-HCO3), and (5) Magnesium-Chloride type (Mg-2Cl). The assemblage of groundwater types in the area shows that both compound and single groundwater types occur. The geochemical characteristics of the groundwaters are thought to be closely related to the peculiar geologic and hydrologic conditions that prevail in the Niger Delta area of Nigeria. 相似文献
3.
《Chemie der Erde / Geochemistry》2014,74(4):671-680
The Janah alluvial aquifer is located in southern Iran with an arid climate. The type of groundwater in this aquifer is dominantly of sodium chloride and total dissolved solid of groundwater samples range from 1.63 to 335 g/L which confirms that groundwater quality has been severely degraded by salinization. Hydrogeochemical and isotopic investigations were conducted to identify the source of salinity. Total dissolved solids and major ion concentrations were measured at 51 selected sampling sites including springs, wells and surface waters. In addition stable isotopic composition (oxygen-18 and deuterium) was measured in 6 sampling points.The study indicates that the sources of salinity of the Janah aquifer include dissolution of salt diapir and evaporite rocks, a geothermal spring and intrusion of the river water which function individually or together in different parts of the aquifer. Based on the hydrogeochemical and geological studies conceptual flow models were prepared for different parts of the aquifer which illustrate how each source of salinity deteriorates the quality of the alluvial aquifer. We proposed few remediation methods including construction of cemented channel and sealed basins to improve groundwater quality. These methods would prevent infiltration of low quality water into the alluvial aquifer. 相似文献
4.
G. Tamma Rao V. V. S. Gurunadha Rao V. S. Sarma Ratnakar Dhakate L. Surinaidu J. Mahesh G. Ramesh 《International Journal of Environmental Science and Technology》2012,9(2):297-310
Hydrogeochemical studies were carried out in the Ghataprabha River sub-basin to assess the quality and suitability of groundwater for domestic and irrigation purposes. In the present study, an integrated, geophysical and chemical investigation was carried out in the basaltic terrain. Groundwater samples were collected covering the entire major hydrogeological environment for one hydrological cycle. Comparison of the groundwater quality in relation to drinking water quality standards proves that most of the water samples are not suitable for drinking. Chemical indices such as sodium percentage, sodium adsorption ratio and chloroalkaline indices used for evaluating the water quality for irrigation suggest that the majority of the groundwater samples were good for irrigation. Positive values of 74% of groundwater samples indicated the absence of base exchange reaction (chloroalkaline disequilibrium) and negative ratio of 26% samples indicated a base exchange reaction (chloroalkaline equilibrium). Resistivity tomography studies revealed that the high concentration of total dissolved solids, chloride and sodium were due to the local anthropogenic activities and weathering of basalt rocks. 相似文献
5.
The alluvial aquifer of Upper Cheliff (northern Algeria) is known for its intensive agricultural activities, which is based especially on groundwater exploitation. This aquifer is now facing a dual problem of quantity and quality, with a decrease in the groundwater levels and an increase in mineralization. Twenty monitoring samples were collected and analyzed for major ion during the dry season 2014. In the present study, we try to characterize the hydrogeochemical processes and to assess the impact of natural and anthropogenic conditions on groundwater mineralization. The analytical results of the dry season 2014 show a groundwater quality slightly alkaline (pH > 7) and indicate that the majority of samples have a values exceeding the limits of potability fixed by WHO in 2008, due to the various sources of anthropogenic pollution. The Piper diagram shows the dominance of groundwater types: Ca–Cl, the mixed facies (Cl–SO4–Ca–Mg), and Ca–HCO3: The mineralization process in this aquifer is mainly controlled by the lithology of the aquifer (exchange water–rock and weathering of calcareous crust dissolution in the unsaturated zone), by anthropogenic factors (discharges of untreated urban sewage, intensive use of fertilizers in agriculture and the use of domestic septic tanks by rural inhabitants) and also by geoclimatic conditions (semiarid climate). Suitability of groundwater shows more than 80% of samples have very poor quality for drinking and more than 20% of samples indicate a quality unsuitable for irrigation. 相似文献
6.
Hydrogeochemical investigation and groundwater quality assessment of Pratapgarh district,Uttar Pradesh 总被引:3,自引:0,他引:3
Ashwani Kumar Tiwari Abhay Kumar Singh 《Journal of the Geological Society of India》2014,83(3):329-343
Hydogrochemical investigation of groundwater resources of Paragraph district has been carried out to assess the solute acquisition processes and water quality for domestic and irrigation uses. Fifty-five groundwater samples were collected and analyzed for pH, electrical conductivity, total dissolved solids, hardness, major anions (F?, Cl?, NO3, HCO3 ?, SO4 2?) and cations (Ca2+, Mg2+, Na+, K+). Study results reveal that groundwater of the area is alkaline in nature and HCO3 ?, Cl?, Mg2+, Na+ and Ca2+ are the major contributing ions to the dissolved solids. The hydrogeochemical data suggest that weathering of rock forming minerals along with secondary contributions from agricultural and anthropogenic sources are mainly controlling the groundwater composition of Pratapgarh district. Alkaline earth metals (Ca2++Mg2+) exceed alkalis (Na++K+) and weak acid (HCO3 ?) dominate over strong acids (Cl?+SO4 2?) in majority of the groundwater samples. Ca-Mg-HCO3 and Ca-Mg-Cl-HCO3 are the dominant hydrogeochemical facies in the groundwater of the area. The computed saturation indices demonstrate oversaturated condition with respect to dolomite and calcite and undersaturated with gypsum and fluorite. A comparison of groundwater quality parameters in relation to specified limits for drinking water shows that concentrations of TDS, F?, NO3 ? and total hardness exceed the desirable limits in many water samples. Quality assessment for irrigation uses reveal that the groundwater is good for irrigation. However, values of salinity, sodium adsorption ratio (SAR), residual sodium carbonate (RSC), %Na and Kelley index are exceeding the prescribed limit at some sites, demanding adequate drainage and water management plan for the area. 相似文献
7.
Y. A. Murkute 《Environmental Earth Sciences》2014,72(10):4059-4073
Quality assessment as well as hydrogeochemical characterization of 45 representative groundwater samples around Umrer coal mine area was undertaken. The pH of the water lies in the normal range i.e. from 7.5 to 8.5, the electrical conductivity varies from 826 to 1,741, the total hardness varies from 289 to 1,302 and the TDS values range from 528.6 to 1,114.2 mg/l which reflects variation in lithology and thus, the distinction in hydrogeological regime. The cation chemistry is dominated by Ca2+ and Mg2+ while anion chemistry is dominated by Cl? and HCO3 ?. Out of total ten hydrochemical facies, the two dominant facies are Mg–Ca–HCO3 (37.7 %) and Ca–Mg–SO4–HCO3 (17.7 %). The groundwater in the study area, in general, is useful for drinking and domestic use; however, it has marginal utility for irrigation purpose. Standard US Salinity Laboratory classification shows that water of the study area belongs to C2–S1 and C3–S1 classes. The concentration of 9 trace elements analysed from 18 samples did not exceed the desirable limit. 相似文献
8.
本文提出了一套基于ArcGIS平台的区域地下水水质评价方法,实现了单因子指标质量评价和多因子综合质量评价。方法不仅能够批量处理地下水水样和地下水质量评价结果的网格化成图,并且保留了以往容易被忽略的水质"极差点"。最后应用该方法对来自于北京市平原区1 035眼水井中的丰、枯水期近3 000余个水质数据进行了评价,结果表明平原区单因子超标的主要有总硬度、溶解性总固体、锰、氨氮、铁、氟、硝酸盐、亚硝酸盐。北京平原区地下水由浅层到中层再到深层,水质越来越好,其超III类水的面积分别为3 649 km2、2 258 km2和737 km2。区域评价结果表明,平原区地下水丰水期的水质普遍略差于其枯水期水质。 相似文献
9.
Water resources are scarce in arid or semiarid areas,which not only limits economic development,but also threatens the survival of mankind.The local communities around the Hangjinqi gasfield depend on groundwater sources for water supply.A clear understanding of the groundwater hydrogeochemical characteristics and the groundwater quality and its seasonal cycle is invaluable and indispensable for groundwater protection and management.In this study,self-organizing maps were used in combination with the quantization and topographic errors and K-means clustering method to investigate groundwater chemistry datasets.The Piper and Gibbs diagrams and saturation index were systematically applied to investigate the hydrogeochemical characteristics of groundwater from both rainy and dry seasons.Further,the entropy-weighted theory was used to characterize groundwater quality and assess its seasonal variability and suitability for drinking purposes.Our hydrochemical groundwater dataset,consisting of 10 parameters measured during both dry and rainy seasons,was classified into 6 clusters,and the Piper diagram revealed three hydrochemical facies:Cl-Na type(clusters 1,2 and 3),mixed type(clusters 4 and 5),and HCO3-Ca type(cluster 6).The Gibbs diagram and saturation index suggested thatweathering of rock-forming mineralswere the primary process controlling groundwater chemical composition and validated the credibility and practicality of the clustering results.Two-thirds of 45 groundwater samples were categorized as excellent-or good-quality and were suitable as drinking water.Cluster changes within the same and different clusters from the dry season to the rainy season were detected in approximately 78%of the collected samples.The main factors affecting the groundwater quality were hydrogeochemical characteristics,and dry season groundwater quality was better than rainy season groundwater quality.Based on this work,such results can be used to investigate the seasonal variation of hydrogeochemical characteristics and assess water quality accurately in the others similar area. 相似文献
10.
Groundwater quality in five catchment areas in Isfahan province of Iran is assessed by measuring physicochemical parameters including major cation and anion compositions, pH, total dissolved solid, electrical conductivity and total hardness. For this purpose, 567 piezometric well samples were collected in October 2007. The abundance of major ions in four of the catchment areas including Gavkhuni, Ardestan, Salt lake and Central Iran desert basins is similar and follows Cl??>?SO4 2??>?Na+?>?HCO3 ??>?Ca2+?>?Mg2+?>?K+?>?CO3 2? trend, while in the fifth basin (Karoon), the trend changes into HCO3 ??>?Ca2+?>?Cl??>?SO4 2??>?Mg2+?>?Na+?>?K+?>CO3 2?. In general, four water facies are determined and it is shown that alkali elements and strong acids are dominating over alkaline earth and weak acids. Statistical analysis including Mann?CWhitney U test indicate that physicochemical parameters in three of the five investigated basins [Gavkhuni, Ardestan and Central Iran desert (CID)] are similar, while Karoon and salt lake basins display different characteristics. The result indicate that groundwater west of the province is suitable for irrigation, while in the central and eastern parts of the province the groundwater loses its quality for this purpose. It is concluded that mineral dissolution and evapotranspiration are the main processes that determine major ion compositions. 相似文献
11.
Abhay Kumar Singh G. C. Mondal T. B. Singh S. Singh B. K. Tewary A. Sinha 《Environmental Earth Sciences》2012,67(8):2175-2191
The hydrogeochemical study of groundwater in Dumka and Jamtara districts has been carried out to assess the major ion chemistry, hydrogeochemical processes and groundwater quality for domestic and irrigation uses. Thirty groundwater samples were collected and analyzed for pH, electrical conductivity, total dissolved solids (TDS), total hardness, anions (F?, Cl?, NO3 ?, HCO3 ?, SO4 2?) and cations (Ca2+, Mg2+, Na+, K+). The analytical results show the faintly alkaline nature of water and dominance of Mg2+ and Ca2+ in cationic and HCO3 ? and Cl? in anionic abundance. The concentrations of alkaline earth metals (Ca2+?+?Mg2+) exceed the alkali metals (Na+?+?K+) and HCO3 ? dominates over SO4 2??+?Cl? concentrations in the majority of the groundwater samples. Ca?CMg?CHCO3 is the dominant hydrogeochemical facies in 60?% of the groundwater samples, while 33?% samples occur as a mixed chemical character of Ca?CMg?CCl hydrogeochemical facies. The water chemistry is largely controlled by rock weathering and ion exchange processes with secondary contribution from anthropogenic sources. The inter-elemental correlations and factor and cluster analysis of hydro-geochemical database suggest combined influence of carbonate and silicate weathering on solute acquisition processes. For quality assessment, analyzed parameter values were compared with Indian and WHO water quality standards. In majority of the samples, the analyzed parameters are well within the desirable limits and water is potable for drinking purposes. Total hardness and concentrations of TDS, Cl?, NO3 ? , Ca2+ and Mg2+ exceed the desirable limits at a few sites, however, except NO3 ? all these values were below the highest permissible limits. The calculated parameters such as sodium adsorption ratio, percent sodium (%Na) and residual sodium carbonate revealed excellent to good quality of groundwater for agricultural purposes, except at few sites where salinity and magnesium hazard (MH) values exceeds the prescribed limits and demands special management. 相似文献
12.
Groundwater samples (n = 163) were collected across Kashmir Valley in 2010 to assess the hydrogeochemistry of the groundwater in shallow and deep aquifers and its suitability for domestic, agriculture, horticulture, and livestock purposes. The groundwater is generally alkaline in nature. The electrical conductivity (EC) which is an index to represent the total concentration of soluble salts in water was used to measure the salinity hazard to crops as it reflects the TDS in groundwater ranging from 97 to 1385 μS/cm, except one well in Sopore. The average concentration of major ions was higher in shallow aquifers than in deeper aquifers. In general, Ca2+ is the dominant cation and HCO \(_{3}^{-}\) the dominant anion. Ca–HCO3, Mg–HCO3, Ca–Mg–HCO3, Na–HCO3 were the dominant hydrogeochemical facies. High concentration of HCO3 and pH less than 8.8 clearly indicated that intense chemical weathering processes have taken place in the study area. The groundwater flow pattern in the area follows the local surface topography which not only modifies the hydrogeochemical facies but also controls their distribution. The groundwater in valley flows into four directions, i.e., SW–NE, NE–W, SE-NW and SE–NE directions. The results suggest that carbonate dissolution is the dominant source of major ions followed by silicate weathering and ion-exchange processes. The concentrations of all the major ions determined in the present study are within the permissible limits of WHO and BIS standards. The results of Total Hardness, SAR, Na%, Kelly Index, USDA classification, Magnesium absorption ratio, residual sodium carbonate, and PI suggested that groundwater is good for drinking, livestock, and irrigation purposes. 相似文献
13.
N. Chandrasekar S. Selvakumar Y. Srinivas J. S. John Wilson T. Simon Peter N. S. Magesh 《Environmental Earth Sciences》2014,71(11):4739-4750
Hydrogeochemical investigation of groundwater has been carried out in the coastal aquifers of southern Tamil Nadu, India. Seventy-nine dug well samples were collected and analyzed for various physicochemical parameters. The result of the geochemical analysis indicates the groundwater in the study area is slightly alkaline with moderate saline water. The cation and anion concentrations confirm most of the groundwater samples belong to the order of Na+ > Mg2+ > Ca2+ > K+ and Cl? > SO4 2? > HCO3 ?. Thereby three major hydrochemical facies (Ca–Cl, mixed Ca–Mg–Cl and Na–Cl) were identified. Based on the US Salinity diagram, majority of the samples fall under medium to very high salinity with low to high sodium hazard. The cross plot of Ca2+ + Mg2+ versus chloride shows 61 % of the samples fall under saline water category. Higher EC, TDS and Cl concentrations were observed from Tiruchendur to Koodankulam coastal zone. It indicates that these regions are significantly affected by saltwater contamination due to seawater intrusion, saltpan deposits, and beach placer mining activities. 相似文献
14.
15.
以内蒙古河套平原西北部的高砷地下水分布区为研究区,通过对区内22组地下水和2组地表水中碘含量的测试和分析可知,研究区地下水中碘含量在27.30~1 638.00μg/L,其中,约50%的地下水样品中碘含量超过我国饮用水的标准限定值150μg/L,约84.6%的高碘地下水为高砷地下水。高碘地下水主要分布于研究区北部地下水水流相对滞缓的平原中心地带,以Cl-Na、Cl·HCO3-Na和HCO3·Cl-Na型水为主。研究区地下水中碘的富集有两种机制:浅层地下水的蒸发作用和深部富含有机质的、偏还原的地下水环境中的微生物作用。两种机制相比,后者对地下水中碘的贡献更大些,但前者更普遍些。 相似文献
16.
A water quality investigation was carried out in the Deoria district, Ganga plain, to assess the suitability of surface and
groundwaters for domestic, agricultural, and industrial purposes. As much as 50 representative samples from river and groundwater
were collected from various stations to monitor the water chemistry of various ions, comprising Ca2+, Mg2+, Na+, K+, HCO3
−, SO4
2−, NO3
−, Cl−, F−, and trace metals, such as Fe, Cu, Mn, Zn, Cd, and Pb. The results showed that electrical conductance (EC), total dissolved
solids (TDS), HCO3
−, Mg2+, Na+, and total hardness (TH) are above the maximum desirable limit, and apart from Fe and Mn all other trace metals are within
the maximum permissible limit for drinking water. The calculated values for sodium absorption ratio (SAR), salinity, residual
sodium carbonate (RSC), and permeability index (PI) indicate well to permissible use of water for irrigation. High values
of Na%, RSC, and Mg-hazard (MH) at some stations restrict its use for agricultural purpose. Anthropogenic activities affect
the spatial variation of water quality. Economic and social developments of the study area is closely associated with the
characteristics of the hydrological network. 相似文献
17.
Hydrogeochemical and isotopic evidence of groundwater evolution and recharge in aquifers in Beijing Plain, China 总被引:1,自引:1,他引:1
An investigation was conducted in Beijing to identify the groundwater evolution and recharge in the quaternary aquifers. Water samples were collected from precipitation, rivers, wells, and springs for hydrochemical and isotopic measurements. The recharge and the origin of groundwater and its residence time were further studied. The groundwater in the upper aquifer is characterized by Ca-Mg-HCO3 type in the upstream area and Na-HCO3 type in the downstream area of the groundwater flow field. The groundwater in the lower aquifer is mainly characterized by Ca-Mg-HCO3 type in the upstream area and Ca-Na-Mg-HCO3 and Na-Ca-Mg-HCO3 type in the downstream area. The δD and δ18O in precipitation are linearly correlated, which is similar to WMWL. The δD and δ18O values of river, well and spring water are within the same ranges as those found in the alluvial fan zone, and lay slightly above or below LMWL. The δD and δ18O values have a decreasing trend generally following the precipitation → surface water → shallow groundwater → spring water → deep groundwater direction. There is evidence of enrichment of heavy isotopes in groundwater due to evaporation. Tritium values of unconfined groundwater give evidence for ongoing recharge in modern times with mean residence times <50 a. It shows a clear renewal evolution along the groundwater flow paths and represents modern recharge locally from precipitation and surface water to the shallow aquifers (<150 m). In contrast, according to 14C ages in the confined aquifers and residence time of groundwater flow lines, the deep groundwater is approximately or older than 10 ka, and was recharged during a period when the climate was wetter and colder mainly from the piedmont surrounding the plain. The groundwater exploitation is considered to be “mined unsustainably” because more water is withdrawn than it is replenished. 相似文献
18.
Manish Kumar Pankaj Kumar A.L. Ramanathan Prosun Bhattacharya Roger Thunvik Umesh K. Singh M. Tsujimura Ondra Sracek 《Journal of Geochemical Exploration》2010
Groundwater with high geogenic arsenic (As) is extensively present in the Holocene alluvial aquifers of Ghazipur District in the middle Gangetic Plain, India. A shift in the climatic conditions, weathering of carbonate and silicate minerals, surface water interactions, ion exchange, redox processes, and anthropogenic activities are responsible for high concentrations of cations, anions and As in the groundwater. The spatial and temporal variations for As concentrations were greater in the pre-monsoon (6.4–259.5 μg/L) when compared to the post-monsoon period (5.1–205.5 µg/L). The As enrichment was encountered in the sampling sites that were close to the Ganges River (i.e. south and southeast part of Ghazipur district). The depth profile of As revealed that low concentrations of NO3− are associated with high concentration of As and that As depleted with increasing depth. The poor relationship between As and Fe indicates the As release into the groundwater, depends on several processes such as mineral weathering, O2 consumption, and NO3− reduction and is de-coupled from Fe cycling. Correlation matrix and factor analysis were used to identify various factors influencing the gradual As enrichment in the middle Gangetic Plain. Groundwater is generally supersaturated with respect to calcite and dolomite in post-monsoon period, but not in pre-monsoon period. Saturation in both periods is reached for crystalline Fe phases such as goethite, but not with respect to poorly crystalline Fe phases and any As-bearing phase. The results indicate release of arsenic in redox processes in dry period and dilution of arsenic concentration by recharge during monsoon. Increased concentrations of bicarbonate after monsoon are caused by intense flushing of unsaturated zone, where CO2 is formed by decomposition of organic matter and reactions with carbonate minerals in solid phase. The present study is vital considering the fact that groundwater is an exclusive source of drinking water in the region which not only makes situation alarming but also calls for the immediate attention. 相似文献
19.
M. 'N. Tijani 《Environmental Geology》1994,24(3):194-202
Detailed study of chemical analysis results of several groundwater samples (UNICEF-Assisted Water project, Kwara state, Nigeria) were carried out in an attempt to assess the quality and usability of groundwaters in the Moro area. Chemical analysis results indicate higher concentrations of Ca2+, Mg2+, and HCO3
– as compared to Na+, K+, Cl–, and SO4
2–. With exception of few locations where Fe is relatively higher, the concentrations of these ions together with other water quality parameters are all within permissible limits of the domestic and agricultural standards.On the basis of the analytical results, groundwaters in the study area are largely characterized as Ca-(Mg)-HCO3 type reflecting (possibly) young facies with limited migratory history. The occurrence of Ca-(Mg)-Na-HCO3 water type in certain areas is attributed to cation exchange processes. In addition, the observed scattered relationship between the TDS and the thickness of weathered horizons in the boreholes indicates the contribution of precipitation (recharge) to the ionic inputs in the groundwaters in addition to the weathering and dissolution processes. 相似文献
20.
Hydrogeochemical investigations and groundwater provinces of the Friuli Venezia Giulia Plain aquifers,northeastern Italy 总被引:2,自引:0,他引:2
Water resources are a key factor, particularly for the planning of the sustainable regional development of agriculture, as
well as for socio-economic development in general. A hydrochemical investigation was conducted in the Friuli Venezia Giulia
aquifer systems to identify groundwater evolution, recharge and extent of pollution. Temperature, pH, electric conductivity,
total dissolved solids, alkalinity, total hardness, SAR, Ca2+, Na+, K+, Mg2+, Cl−, SO4
2−, NO3
−, HCO3
−
, water quality and type, saturation indexes and the environmental stable isotope δ18O were determined in 149 sampling stations. The pattern of geochemical and oxygen stable isotope variations suggests that
the sub-surface groundwater (from phreatic and shallow confined aquifers) is being recharged by modern precipitations and
local river infiltrations. Four hydrogeological provinces have been recognised and mapped in the Friuli Venezia Giulia Plain
having similar geochemical signatures. These provinces have different degrees of vulnerability to contamination. The deep
confined groundwater samples are significantly less impacted by surface activities; and it appears that these important water
resources have very low recharge rates and would, therefore, be severely impacted by overabstraction. 相似文献