首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We report a FTIR (Fourier transform infrared) study of a set of cordierite samples from different occurrence and with different H2O/CO2 content. The specimens were fully characterized by a combination of techniques including optical microscopy, single-crystal X-ray diffraction, EMPA (electron microprobe analysis), SIMS (secondary ion mass spectrometry), and FTIR spectroscopy. All cordierites are orthorhombic Ccmm. According to the EMPA data, the Si/Al ratio is always close to 5:4; X Mg ranges from 76.31 to 96.63, and additional octahedral constituents occur in very small amounts. Extraframework K and Ca are negligible, while Na reaches the values up to 0.84 apfu. SIMS shows H2O up to 1.52 and CO2 up to 1.11 wt%. Optically transparent single crystals were oriented using the spindle stage and examined by FTIR micro-spectroscopy under polarized light. On the basis of the polarizing behaviour, the observed bands were assigned to water molecules in two different orientations and to CO2 molecules in the structural channels. The IR spectra also show the presence of small amounts of CO in the samples. Refined integrated molar absorption coefficients were calibrated for the quantitative microanalysis of both H2O and CO2 in cordierite based on single-crystal polarized-light FTIR spectroscopy. For H2O the integrated molar coefficients for type I and type II water molecules (ν3 modes) were calculated separately and are [I]ε?=?5,200?±?700?l?mol?1?cm?2 and [II]ε?=?13,000?±?3,000?l?mol?1?cm?2, respectively. For CO2 the integrated coefficient is $ \varepsilon_{{{\text{CO}}_{ 2} }} $ ?=?19,000?±?2,000?l?mol?1?cm?2.  相似文献   

2.
The most CO2-rich cordierite thus far encountered in nature with about 2.2 wt.% CO2 and 0.3 wt.% H2O occurs as large poikiloblasts in a strange non-foliated reaction rock that dissects well-foliated granulites being part of the classical Lapland granulite area described by Eskola. The cordierite is optically positive with the highest optic angle 2V x (106°) and birefringence ( = 0.017) ever measured on natural cordierites, but it is also optically very heterogeneous due to secondary loss of CO2 along fractures and zones paralleling the fluid-bearing channels. Based on the optical properties of the degassed Lapland cordierite and on literature data a ternary diagram is given, which shows the variations of this cordierite in 2V x and birefringence as a function of channel-filling with both CO2 and H2O.Following Losert (1971) the cordierite coexists with calcite, a thus far unique mineral assemblage that is probably only stable at very high CO2 pressures. In the present case, the of the cordierite (0.75) indicates, on the basis of literature data, a coexisting fluid with >0.95.The carbon isotope composition 13C of CO2 in cordierite lies near –7, that of the calcite is slightly lighter than about –9. Thus, at least for the CO2 in cordierite, a deep-seated origin may be possible.Based on the geologic occurrence it is speculated that the cordierite-bearing reaction rock could perhaps represent an annealed channel of late degassing in the granulitic lower crust.  相似文献   

3.
The mineral chemistry of cordierites from three different sanidinite facies localities-1) volcanic xenoliths from the Eifel, Germany; 1) buchites of the Blaue Kuppe, Germany; 3) paralavas from the Bokaro coalfield, India-is characterized by unusually high potassium contents up to 1.71 wt%, equivalent to 0.22 K atoms per formula unit (p.f.u.) based on 18 oxygens. Significantly, these cordierites are either hexagonal highcordierites (indialites) with =0 or exhibit intermediate -values 0<<0.20 relative to well Al,Si-ordered orthorhombic low-cordierite. Based on microprobe analyses, the predominant substitutional mechanism for alkali incorporation is Alk[Channel]+Al[4] for +Si[4], thus leading to Al/Si-ratios deviating considerably from the value 4:5 in ideal cordierite M2[Al4Si5O18]. The most highly substituted cordierite from Blaue Kuppe is about (K0.22Na0.07)[Ch](Mg1.33Fe 0.66 2+ )[6][Al4.16Si4.79O18]. Bokaro cordierites are further characterized by obvious (Al+Si)-deficiencies against the ideal value of 9.0 p.f.u., a tendency of which is apparent in most Blaue Kuppe analyses as well. As the tetrahedral deficiencies are often equivalent to excess cations in the octahedra, we assume that ferric iron fills up the remaining tetrahedral sites, again linked with the introduction of potassium according to K+Fe3+ for +Si. In comparison with the available experimental data, these natural potassic cordierites are considered stable high-temperature phases regarding their compositions, but not their structural states. Although the substitution KAl for Si in Mg-cordierite is known to lower the maximum -value to be attained, the hexagonal nature of the cordierites must be due to very rapid crystallization and subsequent quenching. The higher -values of the Blaue Kuppe cordierites might be caused by their topotactic origin from preexisting biotite. The complicated twin and domain patterns of the hexagonal Eifel and Bokaro cordierites as observed in thin section could perhaps be attributed to structural modulations as postulated recently for hexagonal cordierite shortly after its growth.  相似文献   

4.
Li diffusion in zircon   总被引:2,自引:2,他引:0  
Diffusion of Li under anhydrous conditions at 1 atm and under fluid-present elevated pressure (1.0–1.2 GPa) conditions has been measured in natural zircon. The source of diffusant for 1-atm experiments was ground natural spodumene, which was sealed under vacuum in silica glass capsules with polished slabs of zircon. An experiment using a Dy-bearing source was also conducted to evaluate possible rate-limiting effects on Li diffusion of slow-diffusing REE+3 that might provide charge balance. Diffusion experiments performed in the presence of H2O–CO2 fluid were run in a piston–cylinder apparatus, using a source consisting of a powdered mixture of spodumene, quartz and zircon with oxalic acid added to produce H2O–CO2 fluid. Nuclear reaction analysis (NRA) with the resonant nuclear reaction 7Li(p,γ)8Be was used to measure diffusion profiles for the experiments. The following Arrhenius parameters were obtained for Li diffusion normal to the c-axis over the temperature range 703–1.151°C at 1 atm for experiments run with the spodumene source:
D\textLi = 7.17 ×10 - 7 exp( - 275 ±11 \textkJmol - 1 /\textRT)\textm2 \texts - 1. D_{\text{Li}} = 7.17 \times 10^{ - 7} { \exp }( - 275 \pm 11\,{\text{kJmol}}^{ - 1} /{\text{RT}}){\text{m}}^{2} {\text{s}}^{ - 1}.  相似文献   

5.
Cordierite has the ideal formula (Mg,Fe)2Al4Si5O18 .x(H2O,CO2), but it must contain some Fe3+ to account for its blue color and strong pleochroism. The site occupation and concentration of Fe3+ in two Mg-rich natural cordierites have been investigated by EPR and 57Fe Mössbauer spectroscopy. In addition, powder IR spectroscopy, X-ray diffraction, and TEM examination were used to characterize the samples. Single-crystal and powder EPR spectra indicate that Fe3+ is located on T11 in natural cordierites and not in the channels. The amount in Mg-rich cordierites is very small with an upper limit set by Mössbauer spectroscopy giving less than 0.004 cations per formula unit (pfu). Fe3+ in cordierite can, therefore, be considered insignificant for most petrologic calculations. Heat-treating cordierite in air at 1,000?°C for 2?days causes an oxidation and/or loss of Fe2+ on T11, together with an expulsion of Na+ from the channels, whereas heating at the Fe–FeO buffer produces little Fe3+ in cordierite. Heating at 1,000?°C removes all class I H2O, but small amounts of class II H2O remain as shown by the IR measurements. No evidence for channel Fe2+ or Fe3+ in the heat-treated samples was found. The blue color in cordierite arises from a broad absorption band (E//b and weaker with E//a) around 18,000?cm?1 originating from charge-transfer between Fe2+ in the octahedron and Fe3+ in the edge-shared T11 tetrahedron. It therefore appears that all natural cordierites contain some tetrahedral Fe3+. The brown color of samples heated in air may be due to the formation of very small amounts of submicroscopic magnetite and possibly hematite. These inclusions in cordierite can only be identified through TEM study.  相似文献   

6.
The high-grade assemblage Cd-Ga-Si-Qz can be thermodynamically modelled from available calorimetric data on the metastable reaction: (I) $$3 MgCd \rightleftarrows 2 Py + 4 Si + 5 Qz$$ naturalK D Fe-Mg between garnet and cordierite and experimental results on cordierite hydration. In the system SiO2-Al2O3-MgO-H2O, reaction (I) becomes (II) $$3 MgCd \cdot nH_2 O \rightleftarrows 2 Py + 4 Si + 5 Qz + 3 nH_2 O$$ . However, hydrous cordierite is neither a hydrate nor a solid solution between water and anhydrous cordierite and when nH2O (number of moles of H2O in Cd) is plotted against \(P_{H_2 O} \) , the resulting isotherms are similar to adsorption isotherms characteristic of zeolitic minerals. Reaction (II) can thus be considered as a combination of reaction (I) with a physical equilibrium of the type nH2O (in Cd)?nH2O (in vapor phase). Starting from a point on equilibrium (I), introduction of H2O into anhydrous Mg-cordierite lowers the chemical potential of MgCd and hence stabilizes this mineral to higher pressure relative to the right-hand assemblage in reaction (I). The pressure increment of stabilization,ΔP, above the pressure limit of anhydrous cordierite stability at constantT, has been calculated using the standard thermodynamics of adsorption isotherms. Cordierite is regarded as a mixture of Mg2Al4Si5O18 and H2O. The activity of H2O in the cordierite is evaluated relative to an hypothetical standard state extrapolated from infinite H2O dilution, by using measured hydration data. The activity of Mg2Al4Si5O18 in the cordierite is then obtained by integration of the Gibbs-Duhem equation, and the pressure stabilization increment,ΔP, computed by means of the relation: $$\Delta V_s \Delta P \cong - RT\ln a_{MgCd}^{MgCd \cdot nH2O} \left( {\Delta V indepentdent of P and T} \right)$$ . Thus, one may contour theP-T plane in isopleths of nH2O=constant within the area of Mg-cordierite stability allowed by the hydration data for \(P_{H_2 O} = P_{total} \) . The present model indicates greater stabilization of cordierite by H2O than the model of Newton and Wood (1979) and the calculated curve for metastable breakdown of hydrous MgCd is consistent with experimental data on cordierite breakdown at \(P_{H_2 O} = P_{total} \) . Mg/(Mg+Fe) isopleths have been derived for cordierites of varying nH2O in the SiO2-Al2O3-MgO-FeO-H2O system using the additional assumptions that (Fe, Mg) cordierite and (Fe, Mg) garnet behave as ideal solutions, and that typical values of the distribution coefficient of Fe and Mg between coexisting garnet and cordierite observed in natural parageneses can be applied to the calculations. The calculated stable breakdown curve of Fe-cordierite under conditions of \(P_{H_2 O} = P_{total} \) to almandine, sillimanite, quartz and vapor has a positive slope (dP/dT) apparently in contrast to the experimental negative slope. This may be explained by hydration kinetics, which could have allowed systematic breakdown of cordierites of metastable hydration states in the experiments. The bivariant Cd-Ga fields calibrated from the present model are, potentially, good petrogenetic indicators, as, given the iron-magnesium ratio of garnet and cordierite and the hydration number of cordierite, the temperature, pressure and water fugacity are uniquely determined. As this geothermobarometer is in part based on the water content of cordierite, it can be used only if there is some assurance that the actual hydration is inherited from high-grade metamorphic conditions. Such conditions could be realised if the slope of unloading-cooling retrograde metamorphism is more or less parallel to a cordierite isohydron.  相似文献   

7.
The non-ideal regular Mg-Fe binary in cordierite has been derived through multivariate linear regression of the expressionRT InKD +(P- 1)ΔVK 1 0 , 298 along with updated subfegular mixing parameter of almandine-pyrope solution (Hackler and Wood 1989; Berman 1990). The data base used for multivariate analyses consists of published experimental data (n = 177) on Mg-Fe partitioning between garnet and cordierite in theP-T range 650–1050°C and 4–12 K bar. The non-ideality can be approximated by temperature-dependent Margules parameters. The retrieved values of ΔH<T> o and ΔH<T> o of exchange reaction between garnet and cordierite and enthalpy and entropy of mixing of Mg-Fe cordierite were combined with recent quaternary (Fe-Mg-Ca-Mn) mixing data in garnet to obtain the geothermometric expressions to determine temperature (T Kelvin): $$\begin{gathered} T(WH) = 6832 + 0.031(P - 1) - \{ 166(X_{Mg}^{Gt} )^2 - 506(X_{Fe}^{Gt} )^2 + 680X_{Fe}^{Gt} X_{Mg}^{Gt} + 336(X_{Ca} + X_{Mn} ) \hfill \\ (X_{Mg} - X_{Fe} )^{Gt} - 3300X_{Ca}^{Gt} - 358X_{Mn}^{Gt} \} + 954(X_{Fe} - X_{Mg} )^{Crd} /1.987\ln K_D + 3.41 + 1.5X_{Ca}^{Gt} \hfill \\ + 1.23(X_{Fe} - X_{Mg} )^{Crd} \hfill \\ \end{gathered} $$ $$\begin{gathered} T(Br) = 6920 + 0.031(p - 1) - \{ 18(X_{Mg}^{Gt} )^2 - 296(X_{Fe}^{Gt} )^2 + 556X_{Fe}^{Gt} X_{Mg}^{Gt} - 6339X_{Ca}^{Gt} X_{Mg}^{Gt} \hfill \\ - 99(X_{Ca}^{Gt} )^2 + 4687X_{Ca}^{Gt} (X_{Mg} - X_{Fe}^{Gt} ) - 4269X_{Ca}^{Gt} X_{Fe}^{Gt} - 358X_{Mn}^{Gt} \} + 640(X_{Fe} - X_{Mg} )^{Crd} \hfill \\ + 1.90X_{Ca}^{Gt} (X_{Mg} - X_{Ca} )^{Gt} . \hfill \\ \end{gathered} $$   相似文献   

8.
A refined thermodynamic model of H2O and CO2 bearing cordierite based on recent data on volatile incorporation into cordierite (Thompson et al. in Contrib Mineral Petrol 142:107–118, 2001; Harley and Carrington in J Petrol 42:1595–1620, 2001) reflects non-ideality of channel H2O and CO2 mixing. The dependence of cordierite H2O and CO2 contents on P, T and equilibrium fluid composition has been calculated for the range 600–800°C and 200–800 MPa. It has been used for establishing thermodynamic conditions of cordierite formation and the following retrograde PT paths of cordierite rocks from many localities. Estimates of the H2O and CO2 activities have shown that cordierites in granites, pegmatites and high-pressure granulites were formed in fluid-saturated conditions and wide range of H2O/CO2 relations. Very low cordierite H2O contents in many migmatites may be caused not only by fluid-undersaturated conditions at rock formation and H2O leakage on retrograde PT paths but also by the presence of additional volatile components like CH4 and N2. The pressure dependence of cordierite-bearing mineral equilibria on fluid H2O/CO2 relations has been evaluated.  相似文献   

9.
The Gibbs free energy and volume changes attendant upon hydration of cordierites in the system magnesian cordierite-water have been extracted from the published high pressure experimental data at \(P_{{\text{H}}_{\text{2}} {\text{O}}} \) =P total, assuming an ideal one site model for H2O in cordierite. Incorporating the dependence of ΔG and ΔV on temperature, which was found to be linear within the experimental conditions of 500°–1,000°C and 1–10,000 bars, the relation between the water content of cordierite and P, T and \(f_{{\text{H}}_{\text{2}} {\text{O}}} \) has been formulated as $$\begin{gathered} X_{{\text{H}}_{\text{2}} {\text{O}}}^{{\text{crd}}} = \hfill \\ \frac{{f_{{\text{H}}_{\text{2}} {\text{O}}}^{{\text{P, T}}} }}{{\left[ {{\text{exp}}\frac{1}{{RT}}\left\{ {64,775 - 32.26T + G_{{\text{H}}_{\text{2}} {\text{O}}}^{{\text{1, }}T} - P\left( {9 \times 10^{ - 4} T - 0.5142} \right)} \right\}} \right] + f_{{\text{H}}_{\text{2}} {\text{O}}}^{{\text{P, T}}} }} \hfill \\ \end{gathered} $$ The equation can be used to compute H2O in cordierites at \(P_{{\text{H}}_{\text{2}} {\text{O}}} \) <1. Our results at different P, T and partial pressure of water, assuming ideal mixing of H2O and CO2 in the vapour phase, are in very good agreement with the experimental data of Johannes and Schreyer (1977, 1981). Applying the formulation to determine \(X_{{\text{H}}_{\text{2}} {\text{O}}}^{{\text{crd}}} \) in the garnet-cordierite-sillimanite-plagioclase-quartz granulites of Finnish Lapland as a test case, good agreement with the gravimetrically determined water contents of cordierite was obtained. Pressure estimates, from a thermodynamic modelling of the Fe-cordierite — almandine — sillimanite — quartz equilibrium at \(P_{{\text{H}}_{\text{2}} {\text{O}}} = 0\) and \(P_{{\text{H}}_{\text{2}} {\text{O}}} \) =Ptotal, for assemblages from South India, Scottish Caledonides, Daly Bay and Hara Lake areas are compatible with those derived from the garnetplagioclase-sillimanite-quartz geobarometer.  相似文献   

10.
Experiments were conducted to determine CO2 solubilities in alkali basalts from Vesuvius, Etna and Stromboli volcanoes. The basaltic melts were equilibrated with nearly pure CO2 at 1,200°C under oxidizing conditions and at pressures ranging from 269 to 2,060 bars. CO2 solubility was determined by FTIR measurements. The results show that alkalis have a strong effect on the CO2 solubility and confirm and refine the relationship between the compositional parameter Π devised by Dixon (Am Mineral 82:368–378, 1997) and the CO2 solubility. A general thermodynamic model for CO2 solubility in basaltic melts is defined for pressures up to 2 kbars. Based on the assumption that O2− and CO32− mix ideally, we have:
_boxclose_3^2 - ^m (P,T)X_^2 - ^m f__2 (P,T) K(P,T) = X__3^2 - ^m (P,T) ( X_^2 - ^m f__2 (P,T) ). \begin{gathered} K(P,T) = {\frac{{X_{{{\text{CO}}_{3}^{2 - } }}^{m} (P,T)}}{{X_{{{\text{O}}^{2 - } }}^{m} \times f_{{{\text{CO}}_{2} }} (P,T)}}} \hfill \\ K(P,T) = {{X_{{{\text{CO}}_{3}^{2 - } }}^{m} (P,T)} \mathord{\left/ {\vphantom {{X_{{{\text{CO}}_{3}^{2 - } }}^{m} (P,T)} {\left( {X_{{{\text{O}}^{2 - } }}^{m} \times f_{{{\text{CO}}_{2} }} (P,T)} \right).}}} \right. \kern-\nulldelimiterspace} {\left( {X_{{{\text{O}}^{2 - } }}^{m} \times f_{{{\text{CO}}_{2} }} (P,T)} \right).}} \hfill \\ \end{gathered}  相似文献   

11.
NaBe-cordierites (Fe/(Fe+Mn+Mg)=0.49–0.57) with BeO contents up to 1.16 weight % and additional Li2O contents up to 0.21 wt.% occur in cordierite-apatite-uraninite-muscovite-biotite-chlorite-feldspar-quartz nodules within pegmatites penetrating gneissic roof pendants of a lower Palaeozoic granite batholith. Occasional small crystals of beryl are interpreted to coexist stably with unaltered cordierite. Be and Li are incorporated in cordieriteaccording to the substitutions Na[Channel] + Be[4] Al[4] and Na[Ch]+Li[6]R2+[6], respectively. The coexisting phyllosilicates do apparently not contain appreciable amounts of Li. According to powder IR-data, the analyzed water contents of the cordierites are dominantly of type II, and there is also little CO2. Their distortion indices are rather low (0.121–0.145) and so are their optic angles (2V=50-51°). Considering all eleven NaBeLi-cordierites known thus far there is a strong positive correlation between Na and (Be+Li) with a slope close to 1.0. However, there is virtually no correlation between Be and Li, their incorporation into cordierite depending on the local geochemical environment. A strong negative correlation exists between the distortion indices of the NaBeLi-cordierites and their Be contents. Li has a disturbing influence on this relationship, and the versus Na correlation is also statistically worse than versus Be.Deceased December 20, 1984  相似文献   

12.
Sector trilling of cordierite in hornfels in the inner part of a contact aureole at Daimonji, Japan is a new type which consists not only of six (100) sectors (a-sectors) forming trilling, but also of (001) sectors (c-sectors) and high-index sectors (h-sectors). Complex twins within and among these sectors were studied from a viewpoint of a pseudo twin. The complex texture originated from both growth and transformation processes. The c-sector consists of three groups of domains which are related by a pseudo twin. This intrasector pseudo twin indicates that the initial phase of the c-sector was hexagonal cordierite (indialite) which later transformed to orthorhombic. The a-sector is related to adjacent sectors by a rotation of 120° around the c axis, resulting in an intersector pseudo twin. The a-sector is interpreted to have formed by overgrowth of orthorhombic cordierite on prism faces of indialite. The h-sector with the dendritic texture is also interpreted to have grown as orthorhombic cordierite. In hornfels in the middle part of the aureole, cordierites with sector trilling often coexist with single crystals of cordierite, and the sector trilling has no c- and h-sectors. This trilling type suggests that nucleation of indialite was subsequently followed by growth of orthorhombic cordierite in its stable field.  相似文献   

13.
Summary Thermochemistry, morphology, optical properties and crystal structure of synthetic bayleyite, Mg2[UO2(CO3)3]·18H2O, monoclinic, have been studied. Incongruent melting at 55°, three steps of dehydration and two steps of decarboxylation have been found by thermochemic investigations. Morphology: Prisms along [001] with {100}, {110}, {210}, {001}, {401}, {021}, {211}, {111} and as the most important forms. Optical data:n =1.453,n =1.498,n =1.499, 2V x =16°,Y=b,X c=11°. Crystal structure: Space groupP21/a,a=26.560(3),b=15.256(2),c=6.505(1) Å, =92.90(1)°,Z=4,R=0.029 for 5126 independent reflections measured with MoK -radiation. The structure is built up from isolated Mg(H2O)6 octahedra, UO2(CO3)3 units and lattice water molecules, all held together by hydrogen bonds only.
Synthetischer Bayleyit, Mg2[UO2(CO3)3]·18H2O: Thermochemie, Kristallographie und Kristallstruktur
Zuseammenfasung Thermochemie, Morphologie, optische Eigenschaften und Kristallstruktur von Bayleyit, Mg2[UO2(CO3)3]·18H2O, monoklin, wurden anhand künstlich hergestellter Kristalle untersucht. Durch thermochemische Untersuchung wurden inkongruentes Schmelzen bei 55°, eine dreistufige Wasserabgabe sowie eine zweistufige CO2-Abgabe festgestellt. Morphologie: parallel zu [001] gestreckte Prismen mit {100}, {110}, {210}, {001}, {401}, {021}, {211}, {111}, und {311} als wichtigste Formen. Optische Daten:n =1.453,n =1.498,n =1.499, 2V x =16°,Y=b,X c=11°. Kristallstruktur: RaumgruppeP21/a,a=26.560(3),b=15.256(2),c=6.505(1) Å, =92.90(1)°,Z=4;R=0.029 für 5126 unabhängige, mit MoK -Strahlung gemessene Reflexe. Die Struktur enthält isolierte Mg(H2O)6-Oktaeder, UO2(CO3)3-Gruppen und freie Wassermoleküle, die ausschließlich durch Wasserstoffbrücken miteinander verknüpft sind.


With 4 Figures  相似文献   

14.
Ultra-soft soil with high moisture content will experience large strain deformation under one-dimensional compression with little or no gain in effective stress. Such deformation behaviour does not comply with Terzaghi’s effective stress gain theory. The e-log sv \sigma_{v}^{\prime } relationship of ultra-soft soil is non-linear with large compression index in the first order of log cycle. This paper proposes three compression indices (Cc1* C_{c1}^{*} , Cc2* C_{c2}^{*} and Cc3* C_{c3}^{*} ) for stresses covering three log cycles. Good prediction of settlement magnitude is possible with these newly proposed compression parameters for ultra-soft soil. In addition, implicit finite difference model applying the large strain theory is also proposed and validated with results from laboratory measurements. The time factor curves for ultra-soft soil with large strain compression are also proposed and validated.  相似文献   

15.
The local structural heterogeneity and energetic properties of 22 natural Mg–Fe cordierites, ideal formula (Mg,Fe)2Al4Si5O18·x(H2O,CO2), were investigated at length scales given by powder infrared spectroscopy (IR) and also by published electronic absorption spectra. The studied samples have iron mole fractions from XFe = 0.06 to 0.82 and cover most of the Mg–Fe cordierite binary. Variations in wavenumbers and line widths of the IR bands were determined as a function of composition. Most modes shift linearly to lower wavenumbers with increasing XFe, except those at high wavenumbers located between 900 and 1,200 cm-1. They are vibrations that have a large internal (Si,Al)O4 character and are not greatly affected by Mg–Fe exchange on the octahedral site. The lower wavenumber modes can be best characterized as lattice vibrations having mixed character. The systematics of the wavenumber shifts suggest small continuous variations in the "average" cordierite structure with Mg–Fe exchange and are consistent with an ideal volume of mixing, Vmix= 0, behavior (Boberski and Schreyer 1990). IR line broadening was measured using the autocorrelation function for three wavenumber regions in order to determine the range of structural heterogeneity between roughly 2 and 100 Å (0.2–10.0 nm) in the solid solution. In order to do this, an empirical correction was first made to account for the effect that small amounts of channel Na have on the phonon systematics. The results show that between 1,200 and 540 cm-1 the line widths of the IR bands broaden slightly and linearly with increasing XFe. Between 350 and 125 cm-1 nonlinear behavior was observed and it may be related to dynamic effects. These results suggest minimal excess elastic enthalpies of mixing for Mg–Fe cordierite solid solutions. Channel Na should affect measurably the thermodynamic properties of natural cordierites as evidenced by variations in the IR spectra of Na-containing samples. Occluded H2O (Class I) and CO2 should have little interaction with the framework and can be considered nearly "free" molecules. They should not give rise to measurable structural heterogeneity in the framework. The contribution of the crystal field stabilization energy (CFSE) of octahedral Fe2+ to the energetics of Mg–Fe cordierites was also investigated using published electronic absorption spectra (Khomenko et al. 2001). Two bands are observed between 8,000 and 10,500 cm-1 and they represent electronic dd-excitations of octahedral Fe2+ derived from the 5T2g 5Eg transition. They shift to higher wavenumbers with increasing XMg in cordierite. An analysis gives slightly asymmetric excess -CFSE across the Mg–Fe cordierite join with a maximum of about –550 J/mole towards iron-rich compositions.Editorial responsibility: J. Hoefs  相似文献   

16.
Kanonaite forms rare porphyroblasts up to 12mm long in a gahnite— Mg-chlorite — coronadite — quartz schist occurring near Kanona, Zambia. The composition is (microprobe analysis): SiO2 32.2, Al2O3 33.9, Mn as Mn2O3 32.2, Fe2O3 0.66, ZnO 0.13, MgO 0.04, BaO 0.04, TiO2 0.01, CaO 0.01, PbO 0.01, CuO 0.01, total 99.21, corresponding to $$\left( {{\text{Mn}}_{{\text{0}}{\text{.76}}}^{{\text{3 + }}} {\text{Al}}_{{\text{0}}{\text{.23}}} {\text{Fe}}_{{\text{0}}{\text{.015}}}^{{\text{3 + }}} } \right)_{1.005}^{\left[ 6 \right]} {\text{AL}}_{1.00}^{\left[ 5 \right]} \left[ {{\text{O}}_{{\text{1}}{\text{.00}}} |{\text{Si}}_{{\text{0}}{\text{.99}}} {\text{O}}_{{\text{4}}{\text{.00}}} } \right]$$ The mineral is greenish black, strongly pleochroic with X(∥a) yellow green, Y(∥b) bluish green, Z(∥c) deep golden yellow, biaxial positive, with 2V = 53°(3°), α = 1.702, β = 1.730, γ = 1.823. Vickers microhardness (100 gram load) ranges between 906 and 1017kp/mm2. The structure is orthorhombic, isotypic with andalusite, space group Pnnm, a = 0.7953(2), b = 0.8038(2), c = 0.5619(2) nm, V = 0.3592(1) nm3, a/b = 0.9895(3), c/b = 0.6990(3), S.G.(x) = 3.395 g/cm3, Z = 4. The strongest X-ray powder lines are (d in nm, I, hkl):0.5669, 100, 110; 0.4590, 75, 011 and 101; 0.3577, 90, 120 and 210; 0.2827, 94, 220; 0.2517, 90, 310 and 112; 0.2212, 83, 320, 122 and 212. Comparison of the intensities of 373 observed X-ray reflections with those calculated for several models of Mn3+-distribution indicates octahedral coordination of all or most of the manganese present. Interpretation of magnetic measurements (μeff = 3.15B.M. per Mn atom at 25 ° C) indirectly supports octahedral coordination of Mn3+. The name of the mineral is for Kanona, a town near the type locality. The name is proposed for the end member Mn3+ [6]Al[5][O¦SiO4] and for members of the solid-solution series towards andalusite with octahedral Mn3+>Al. The presently described mineral may be referred to as aluminian kanonaite.  相似文献   

17.
Lead bromapatite [Pb10(PO4)6Br2] has been synthesized via solid-state reaction at pressures up to 1.0 GPa, and its structure determined by single-crystal X-ray diffraction at ambient temperature and pressure. The large bromide anion is accommodated in the c-axis channel by lateral displacements of structural elements, particularly of Pb2 cations and PO4 tetrahedra. The compressibility of bromapatite was also investigated up to about 20.7 GPa at ambient temperature, using a diamond-anvil cell and synchrotron X-ray radiation. The compressibility of lead bromapatite is significantly different from that of lead fluorapatite. The pressure–volume data of lead bromapatite (P < 10 GPa) fitted to the third-order Birch-Murnaghan equation yield an isothermal bulk modulus (K T ) of 49.8(16) GPa and first pressure derivative (KT K_{T}^{\prime } ) of 10.1(10). If KT K_{T}^{\prime } is fixed at 4, the derived K T is 60.8(11) GPa. The relative difference of the bulk moduli of these two lead apatites is thus about 12%, which is about two times the relative difference of the bulk moduli (~5%) of the calcium apatites fluorapatite [Ca10(PO4)6F2], chlorapatite [Ca10(PO4)6Cl2] and hydroxylapatite [Ca10(PO4)6(OH)2]. Another interesting feature apparently related to the replacement of F by Br in lead apatite is the switch in the principle axes of the strain ellipsoid: the c-axis is less compressible than the a-axis in lead bromapatite but more compressible in lead fluorapatite.  相似文献   

18.
The Fe3+/Fetot of all Fe-bearing minerals has been analysed by Mössbauer spectroscopy in a suite of biotite-rich to biotite-free graphitic metapelite xenoliths, proxies of an amphibolite-granulite transition through progressive biotite melting. Biotite contains 9 to 16% Fe3+/Fetot, whereas garnet, cordierite and ilmenite are virtually Fe3+ -free (0–1% Fe3+/Fetot) in all samples, regardless of biotite presence. Under relatively reducing conditions (graphite-bearing assemblages), biotite is the only carrier of Fe3+ during high-temperature metamorphism; therefore, its disappearance by melting represents an important event of iron reduction during granulite formation, because haplogranitic melts usually incorporate small amounts of ferric iron. Iron reduction is accompanied by the oxidation of carbon and the production of CO2, according to the redox reaction:
Depending on the nature of the peritectic Fe-Mg mineral produced (garnet, cordierite, orthopyroxene), the CO2 can either be present as a free fluid component, or be completely stored within melt and cordierite. The oxidation of graphite by iron reduction can account for the in situ generation of CO2, implying a consequential rather than causal role of CO2 in some granulites and migmatites. This genetic model is relevant to graphitic rocks more generally and may explain why CO2 is present in some granulites although it is not required for their formation.  相似文献   

19.
Zusammenfassung Die Phase Cu2FeSnSe3,8 ist tetragonal, Raumgruppe mit 0=5.69 undc 0=11,26 Å.Z=2,D x=5,441. Synthesetemperatur: 410°C.
The compound Cu2FeSnSe3,8 in comparison to stannite
Summary The phase Cu2FeSnSe3,8 is tetragonal, space-group with 0=5.69 andc 0=11.26 Å.Z=2,D x=5.441. Temperature of synthesis: 410°C.
  相似文献   

20.
Measurements of the heats of solution (ΔHsoln) in molten Pb2B2O5 at 708°C of anhydrous magnesian cordierites, prepared with a range of structural states, show that the enthalpy effect associated with Al/Si ordering is substantial (? 9.76 ± 1.56 kcal mole?1). Differences in the state of order between synthetic cordierites used in phase equilibrium studies and cordierites in the natural environment could lead to significant errors in the estimation of palaeo-pressures and temperatures. A continuous change of ΔHsoln with annealing time supports the suggestion of putnis (1980) that the hexagonal → orthorhombic transformation in cordierite, which can occur via a modulated structure, is truly continuous under metastable conditions. In addition, a linear relation between ΔHsoln and the logarithm of annealing time has been found, which provides some insight into the nature of the ordering mechanisms at an atomic level. Al and Si exchanges occur continuously between neighbouring tetrahedral sites with a net drift towards increasing order. No kinetic or thermochemical distinction can be made between the development of long range and short range order.The enthalpy of vitrification (~ 12 kcal mole?1) for a metastable stuffed β-quartz polymorph of cordierite composition is similar to that for pure quartz (on a per two oxygen basis), while the heat of vitrification for even the most disordered cordierite seen in this study is more than a factor of three greater (~40 kcal mole?1). This is consistent with the view that cordierite glass resembles the quartz structure more closely than the crystalline cordierite structure, and that crystallisation of the glass below ~900°C is controlled by a tetrahedral framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号