首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two ancient swamps in the western Loess Plateau, northwest China record the climate history between 8000 and 4000 cal. yr BP. Grain size, CaCO3, organic matter, mollusc fauna and pollen assemblages show that climate was wet between 8300 and 7400 cal. yr BP, distinctly humid and warm between 7400 and 6700 cal. yr BP, semi‐humid from 6700 to 6300 cal. yr BP, and semi‐arid between 6300 and 4000 cal. yr BP. The temporal and spatial distribution of archaeological sites shows that the prosperity of the neolithic cultures in the western part of the Chinese Loess Plateau did not appear until the climate changed to semi‐arid, implying that the semi‐arid climate was more favourable than wet and humid climate to neolithic peoples, whose subsistence was based on cereals adapted to arid environments. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
In the high-permeability, semiarid carbonate aquifer in the Sierra de Gádor Mountains (southeastern Spain), some local springs draining shallow perched aquifers were of assistance in assessing applicability of the atmospheric chloride mass balance (CMB) for quantifying total yearly recharge (R T) by rainfall. Two contrasting hydrological years (October through September) were selected to evaluate the influence of climate on recharge: the average rainfall year 2003–2004, and the unusually dry 2004–2005. Results at small catchment scale were calibrated with estimated daily stand-scale R T obtained by means of a soil water balance (SWB) of rainfall, using the actual evapotranspiration measured by the eddy covariance (EC) technique. R T ranged from 0.35 to 0.40 of rainfall in the year, with less than a 5% difference between the CMB and SWB methods in 2003–2004. R T varied from less than 0.05 of rainfall at mid-elevation to 0.20 at high elevation in 2004–2005, with a similar difference between the methods. Diffuse recharge (R D) by rainfall was quantified from daily soil water content field data to split R T into R D and the expected concentrated recharge (R C) at catchment scale in both hydrological years. R D was 0.16 of rainfall in 2003–2004 and 0.01 in 2004–2005. Under common 1- to 3-day rainfall events, the hydraulic effect of R D is delayed from 1 day to 1 week, while R C is not delayed. This study shows that the CMB method is a suitable tool for yearly values complementing and extending the more widely used SWB in ungauged mountain carbonate aquifers with negligible runoff. The slight difference between R T rates at small catchment and stand scales enables results to be validated and provides new estimates to parameterize R T with rainfall depth after checking the weight of diffuse and concentrated mechanisms on R T during moderate rainfall periods and episodes of marked climatic aridity.  相似文献   

3.
Reconstruction of Vendian climatic conditions on the East European Craton is of principle importance for elucidation of the Ediacarian biota habitat. However, paleogeographic reconstructions for this time are largely based on fragmentary and controversial paleomagnetic data. The degree of rock maturity deduced from lithochemical indicators allowed us to identify two stages of Late Vendian sedimentation on the Belomorian-Kuloi Plateau. The first (Lyamitsa-Verkhov) stage was characterized by the delivery of immature clastic material to the basin from a provenance with arid climate. The second (Erga-Padun) stage was marked by the input of relatively mature aluminosilicate clastics from a provenance with mild humid climate. The sedimentation stages approximately coincide with replacement of the shallow-water marine environment by the fluvioalluvial environment marked by steady and intense perennial river drainage from a highland in the northeast. In the Late Vendian (since 555 Ma ago), the northeastern area of the East European Craton was influenced by humid climate.__________Translated from Litologiya i Poleznye Iskopaemye, No. 3, 2005, pp. 267–280.Original Russian Text Copyright © 2005 by Grazhdankin, Podkovyrov, Maslov.  相似文献   

4.
Iceland has been subjected to destructive earthquakes and volcanic eruptions throughout history. Such events are often preceded by changes in earthquake activity over varying timescales. Although most seismicity is confined to micro-earthquakes, large earthquakes have occurred within populated regions. Following the most recent hazardous earthquakes in 2000, the Icelandic Meteorological Office (IMO) developed an early warning and information system (EWIS) Web-site for viewing near-real-time seismicity in Iceland. Here we assess Web-site usage data in relation to earthquake activity, as recorded by the South Iceland Lowland (SIL) seismic network. Between March 2005 and May 2006 the SIL seismic network recorded 12,583 earthquakes. During this period, the EWIS Web-site logged a daily median of 91 visits. The largest onshore event (M L 4.2) struck 20 km from Reykjavík on 06 March 2006 and was followed by an immediate, upsurge in usage resulting in a total of 1,173 unique visits to the Web-site. The greatest cluster of large (≥M L 3) events occurred 300 km offshore from Reykjavík in May 2005. Within this swarm, 9 earthquakes ≥M L 3 were detected on 11 May 2005, resulting in the release of a media bulletin by IMO. During the swarm, and following the media bulletin, the EWIS Web-site logged 1,234 unique visits gradually throughout the day. In summary, the data reveal a spatial and temporal relationship between Web-site usage and earthquake activity. The EWIS Web-site is accessed immediately after the occurrence of a local earthquake, whereas distant, unfelt earthquakes generate gradual interest prompted by media bulletins and, possibly, other contributing factors. We conclude that the Internet is a useful tool for displaying seismic information in near-real-time, which has the capacity to help increase public awareness of natural hazards.  相似文献   

5.
Palaeoenvironmental records from permafrost sequences complemented by infrared stimulated luminescence (IRSL) and [Formula: See Text]Th/U dates from Bol'shoy Lyakhovsky Island (73°20'N, 141°30'E) document the environmental history in the region for at least the past 200 ka. Pollen spectra and insect fauna indicate that relatively wet grass-sedge tundra habitats dominated during an interstadial c. 200-170 ka BP. Summers were rather warm and wet, while stable isotopes reflect severe winter conditions. The pollen spectra reflect sparser grass-sedge vegetation during a Taz (Late Saalian) stage, c. 170-130 ka BP, with environmental conditions much more severe compared with the previous interstadial. Open Poaceae and Artemisia plant associations dominated vegetation at the beginning of the Kazantsevo (Eemian) c. 130 ka BP. Some shrubs (Alnus fruticosa, Salix, Betula nana) grew in more protected and wetter places as well. The climate was relatively warm during this time, resulting in the melting of Saalian ice wedges. Later, during the interglacial optimum, shrub tundra with Alnus fruticosa and Betula nana s.l. dominated vegetation. Climate was relatively wet and warm. Quantitative pollen-based climate reconstruction suggests that mean July temperatures were 4-5°C higher than the present during the optimum of the Eemian, while late Eemian records indicate significant climate deterioration.  相似文献   

6.
A 7.6-m core recovered from Lough Inchiquin, western Ireland provides evidence for rapid and long-term climate change from the Late Glacial period to the Mid-Holocene. We determined percentage of carbonate, total organic matter, mineralogy, and δ18Ocalcite values to provide the first high-resolution record of climate variability for this period in Ireland. Following deglaciation, rapid climate amelioration preceded large increases in GISP2 δ18Oice values by ∼2300 yr. The Oldest Dryas (15,100 to 14,500 cal yr B.P.) Late Glacial event is documented in this record as a decrease in δ18Ocalcite values. Brief warming at ∼12,700 cal yr B.P. was followed by characteristic Younger Dryas cold and dry climate conditions. A rapid increase in δ18Ocalcite values at ∼10,500 cal yr B.P. marked the onset of Boreal warming in western Ireland. The 8200 cal yr B.P. event is represented by a brief cooling in our record. Prior to general warming, a larger and previously undescribed climate anomaly between 7300 and 6700 cal yr B.P. is characterized by low δ18Ocalcite values with high-frequency variability.  相似文献   

7.
Climate change especially moisture condition in the northeastern Qinghai-Tibetan in China are mainly controlled by the strength and variability of Asian winter and summer monsoon. In this paper, we presented the climate record and related winter and summer monsoonal history in Gonghe Basin, northeastern Qinghai-Tibetan Plateau, based on the geochemical indicators (geochemical elements content, i.e., Fe2O3, CaO, Zr and Sr content, and geochemical parameters, i.e., the chemical index of alteration (CIA), Zr/Rb, Rb/Sr, CaO/MgO, SiO2/TiO2 and SiO2/(Al2O3 + Fe2O3) ratio) of the peat deposits and 14C and OSL technologies. The regional temperature and humidity gradually increased in 10.0–8.5 cal ka BP, accompanied by enhanced summer monsoonal strength and decreased winter monsoonal strength. But climate became cold and dry between 8.5 cal ka BP and 7.6 cal ka BP owing to the stronger winter monsoon. During the 7.6–3.8 cal ka BP, stronger summer monsoon and weaker winter monsoon led to an optimal warm and humid condition, although it had several cold phases. From 3.8 cal ka BP to 0.5 cal ka BP, the regional climate tended to be cold and dry, with increasing winter monsoonal strength and decreasing summer monsoonal strength. Thereafter, the relatively warm and humid climate appeared again, due to the stronger summer monsoon. That is to say, the regional climate conditions are mainly related to the winter and summer monsoonal changes. These changes are consistent with palaeoclimatic records (monsoonal model) from the region influenced by the Asian monsoon in eastern China. In addition, nine cold events were recorded: 8.5–7.8 cal ka BP, 6.1–5.6 cal ka BP, 5.2–4.8 cal ka BP, 4.7–4.3 cal ka BP, 4.1–4.0 cal ka BP, 3.8–3.4 cal ka BP, 3.0–2.3 cal ka BP, 1.4–1.3 cal ka BP, and 1.0–0.5 cal ka BP, which are coincident with cold fluctuations in the high and low latitudes of the Northern Hemisphere on a millennial scale, as recorded by lakes, peat sediments, and ice cores in the Qinghai-Tibetan Plateau. In conclusion, Holocene millennial-scale climatic changes in Gonghe Basin were controlled by the dual function of Asian monsoonal changes and global cold fluctuations.  相似文献   

8.
Just like contemporary sediments, peat itself is a good repository of information about climate change, the effects of volcanic activity on climate change have been truly recorded in peat, since it is a major archive of volcanic eruption incidents. A section of sand was identified as tephra from the Jinchuan peat, Jilin Province, China, for the grains look like slag with surface bubbles and pits, characterized by high porosity, and loose structure with irregular edges and corners. According to the peat characteristics of uniform deposition, the tephra was dated at 2002–1976 a B.P. by way of linear interpolation, so the time of volcanic eruption was 15 B.C.–26 A.D. (the calibrated age). While the geochemical characteristics of tephra in this study are quite the same as those of tephra from the Jinlongdingzi volcano at Longgang and from alkaline basaltic magma, with the contents of SiO2<55%, and the similar contents to Al2O3 and Fe, but the contents of Na2O>K2O. We speculated that the tephra in this study came from the Longgang volcano group. Compared with 11 recorded volcanic eruption events as shown on the carbon and oxygen isotope curves of the Jinchuan peat cellulose, it is obviously seen that adjacent or large-scale volcanic eruptions are precisely corresponding to the minimum temperature and humidity. It seems that these volcanic eruptions indeed affected the local climate, leading to the drop of regional temperature and humidity. As a result, there was prevailing a cold and dry climate there, and all these changes can be well recorded in peat. So the comparison of volcanic eruption events with information about climate change developed from peat, can provide strong evidence for the impact of volcanism on climate change.  相似文献   

9.
In this study, we use a combined biomarker and macrofossil approach to reconstruct the Holocene climate history recorded in Trifna Sø, Skallingen area, eastern North Greenland. Chronological information is derived from comparison of lithological, biogeochemical and macrofossil characteristics with a well‐dated record from nearby Lille Sneha Sø. Following local deglaciation around c. 8 cal. ka BP, the local peak warmth occurred between c. 7.4 and 6.2 cal. ka BP as indicated by maximum macrofossil abundances of warmth‐demanding plants (Salix arctica and Dryas integrifolia) and invertebrates (Daphnia pulex and Chironomidae). Warm conditions were dominated by terrestrial organic matter (OM) sedimentation as implied by the alkane‐based Paq ratio, but increased aquatic productivity is indicated when temperature was highest around 6.5 cal. ka BP. The n‐C29/n‐C31 alkane ratio shows that vegetation in the catchment was dominated by shrubs after deglaciation, but shifted towards relatively more grassy/herbaceous vegetation during peak warmth. After 5.4 cal. ka BP, the disappearance of warmth‐demanding plant and invertebrate macrofossils indicates cooling in the Skallingen area. This cooling was characterized by a significant shift towards dominance of aquatic OM sedimentation in Trifna Sø as implied by high Paq ratios. Cooling was also associated with a shift in vegetation type from dwarf‐shrub heaths towards relatively more herbaceous vegetation in the catchment, stronger erosion and more oligotrophic conditions in the lake. Our data show that mean air temperatures inferred using branched glycerol dialkyl glycerol tetraethers (brGDGTs) do not seem to accurately reflect the local climatic history. Irrespective of calibration, methylation of branched tetraethers (MBT) palaeothermometry cannot be reconciled with the macrofossil evidence and seems to be biased by either changing brGDGT sources (in situ vs. soil‐derived) or changing species assemblages and/or an unknown physiological response to changing environmental conditions at high latitude.  相似文献   

10.
The Diancang Massif is located in a region linking the Tibetan and Yungui Plateaus. Climatically, it is in a transition belt between the south and middle subtropical zones, controlled by Indian monsoon and westerlies. Thus, this study provides more evidences on the evolution of Indian monsoon since the Holocene. We reconstruct the history of climate on the Diancang Massif since 11.5 ka, using integrated correlation of glacial activities, early human settlement sites, and climate proxies abstracted from variations in grain size, magnetic susceptibility, geochemical composition, and pollen in lacustrine sediments. Six climatic stages have been identified. Stage I, from 11.5 ka to 9.0 ka, is a relatively wet period, corresponding to the onset of the Holocene; from 9.5 ka to 6.0 ka, the climate is arid; a cold period follows from 6.0 ka to 5.3 ka, and this is succeeded by a temperate stage from 5.3 ka to 4.0 ka; from 4.0 ka to 0.73 ka the climate is again arid. Compared with other regions dominated by the Indian monsoon, there is a delay in response of the climate on the Diancang Massif to the onset of the Holocene.  相似文献   

11.
A mid-Cretaceous (∼95 Ma) laterite in southwestern Minnesota contains pisolites that consist primarily of gibbsite, quartz, and kaolinite with smaller amounts of goethite (α-FeOOH) and hematite. The presence of minor berthierine (an Fe(II) sheet silicate) suggests that this Cenomanian laterite experienced some degree of low temperature reductive diagenesis during its burial history. The prospects for extracting useful paleoenvironmental information from the pisolitic goethite were explored by studying measured mole fraction (Xm) and δ13Cm values of the Fe(CO3)OH component in solid solution in the goethite using the method of incremental vacuum dehydration-decarbonation.Data arrays that occupy distinctly different domains in plots of δ13Cm vs. 1/Xm suggest the existence of two generations of goethite in the pisolites. The apparently younger generation of goethite (“generation 2”) evolves CO2 at 170 °C, while the older generation (“generation 1”) evolves CO2 at 220 °C. The distribution of the data suggests that generation 2 goethite is a proxy for mixing of CO2 from three distinct CO2 sources in an oxidative environment which post-dated the reductive diagenesis. The small amount of generation 1 goethite seems to have persisted through the reductive diagenesis, and nine of the generation 1 goethite data appear to define a proxy, two-endmember, soil CO2 mixing line. Such two-component mixing is consistent with expectations for a highly evolved, carbonate-free laterite (i.e., the pre-diagenetic Cenomanian weathering system). The δ13Cm values of these nine data points range from −23.1‰ to −13.7‰, whereas Xm values range from 0.0007 to 0.0222. Linear regression of these nine data yields a slope of 0.0064, which corresponds to an ancient tropospheric CO2 concentration of about 1900 ppmV.Isotopic data from pisolitic kaolinite indicate a paleotemperature of about 24 °C at a paleolatitude of ∼40°N. This is substantially warmer than modern continental temperatures at such latitudes and is consistent with published indications of a generally warmer mid-Cretaceous climate. Moreover, the correspondence of a warmer mid-Cretaceous climate with the inferred, relatively high concentration of Cenomanian tropospheric CO2 (∼1900 ppmV) is consistent with the idea that variations of atmospheric CO2 have a relation to climate change. The results of this study emphasize the importance of careful evaluation of incremental dehydration-decarbonation data from natural goethites to assess the possibility that more than one generation of goethite is present in a sample. However, the results also indicate that the carbon isotope information recorded in admixed goethite generations may be sorted out and used in paleoenvironmental interpretations.  相似文献   

12.
Here, we review an ensemble of observations that point towards a global increase of erosion rates in regions of elevated mountain belts, or otherwise high relief, since the onset of Northern Hemisphere Glaciation about 2–3 Ma. During that period of Earth's history, atmospheric CO2 concentrations may have dropped, and global climate cooled and evolved towards high‐amplitude oscillating conditions that are associated with the waxing and waning of continental ice sheets in the Northern Hemisphere. We argue for a correlation between climate change and increased erosion rates and relief production, which we attribute to some combination of the observed cooling, onset of glaciation, and climatic oscillation at orbital timescales. In our view, glacial erosion played a major role and is driven by the global cooling. Furthermore, analyses of the sedimentary fluxes of many mountain belts show peaks of erosion during the transitions between glacial and inter‐glacial periods, suggesting that the variable climatic conditions have also played a role.  相似文献   

13.
The loess–paleosol deposit in Central Asia is a sensitive indicator of the evolution of the quaternary paleoclimate in the Westerlies, providing insight into the quaternary climate history and its relationship with global climatic changes. Based on the geochemical analysis of elemental composition of densely sampled strata from Talede loess–paleosol sequence in the Ili Basin, the results showed that SiO2 had the highest major elements content, followed by Al2O3. The order of compositional abundance of major elements was generally as follows: SiO2 > Al2O3 > CaO > Fe2O3 > MgO > Na2O > K2O. Trace elements (i.e. Rb, Sr, Sc, Ni, Cu, Ga, Mo, Y, Pb, Th) in the paleosol layers (i.e. S 0, S m, S 1) and the loess layer of L 1 were enriched relative to underlain loess (L 2) horizons, except for the contents of Zr, Cs, Nd, and La in paleosol layers. All of geochemical proxies, such as enrichment factor, Rb/Sr ratio, eluvial coefficient (K i ) and chemical weathering index, display no obvious differentiation in the Talede loess–paleosol deposit. The results indicate that the weak chemical weathering, greater evaporation and low effective moisture in Ili Basin, are to a degree weaker than those in the China Loess Plateau and the climate was warm–dry during the interglacial period. In addition, the loess of Ili area is rich in schistose minerals and implies that the loess may come from the deserts of Central Asia and it may be closely related to the widespread aridification of Central Asia.  相似文献   

14.
We performed a high-resolution study of chironomid assemblages in a sediment core retrieved from Lake Igaliku in southern Greenland. The well-dated core is located within the former Norse Eastern Settlement and covered the last 1500 yr. The comparison of chironomid stratigraphy (PCA axis scores) with instrumental temperature data, land use history and organic matter in the sediment over the last 140 yr suggested that the primary changes in chironomid fauna in 1988 ± 2 yr were driven by the shift to modern agriculture in the catchment. This unprecedented change in chironomid fauna was most likely triggered by a shift in in-lake processes. Within the instrumental period, subtle variations in the chironomid assemblages that occurred before 1988 ± 2 yr were significantly correlated with summer temperatures even in times of traditional extensive sheep farming in the catchment. The relevance of the chironomid-derived climate signal over the last 1500 yr was supported by its good concordance with previous studies in west Greenland and in the Arctic. The chironomid assemblage therefore appeared to be a valuable proxy for climate changes within the Norse colony area. Synchronous changes in Norse diet and chironomid-reconstructed climate give new insights into the interplay of Norse society with climate.  相似文献   

15.
The chemical compositions of and the contents of CaCO3, free Fe2O3 and REE in the sediments of the Salawusu section have been analyzed to investigate the geochemical features of different sedimentary facies and explore their sedimentary enironmetnts during the Late Pleistocene.The con-tents of CaCO3, free Fe2O3 and ∑REE in lacustrine deposits of the middle part of the section are higher than those in the other parts ,except SiO2 which shows an opposite trend.According to the distribution characteristics of the components mentioned above, the section may be divided into four parts which are equivalent to those divided in terms of lithologic characters and sedimentary facies.More remarkable characteristics were observed with respect to the distribution of CaCO3, free Fe2O3,∑REE and SiO2/Al2O3 and FeO/Fe2O3 ratios, which can be adopted as the geochemical indices for paleoclimate division.From the above, four paleoclimate stages have been distinguished for the deposition process.The first stage ,dated at 0.20-0.15Ma, is characterized by a dry and cold climate,the second stage, ranging from 0.15 to 0.07 Ma ,by a warm and slightly dry climate,the third stage ,about 0.07-0.01Ma ,by a cold and humid climate;and prevailing in the last ten thorsand years is the fourth stage,with the climate changing graduall from warm-humid to warm-dry.  相似文献   

16.
Heikkilä, M. & Seppä, H. 2010: Holocene climate dynamics in Latvia, eastern Baltic region: a pollen‐based summer temperature reconstruction and regional comparison. Boreas, Vol. 39, pp. 705–719. 10.1111/j.1502‐3885.2010.00164.x. ISSN 0300‐9483. A pollen‐based summer temperature (Tsummer) reconstruction reveals the Holocene climate history in southeastern Latvia and contributes to the limited understanding of past climate behaviour in the eastern sector of northern Europe. Notably, steady climate warming of the early Holocene was interrupted c. 8350–8150 cal. yr BP by the well‐known 8.2 ka cold event, recorded as a decrease of 0.9 to 1.8 °C in Tsummer. During the Holocene Thermal Maximum, c. 8000–4000 cal. yr BP, the reconstructed summer temperature was ~2.5–3.5 °C higher than the modern reconstructed value, and subsequently declined towards present‐day values. Comparison of the current reconstruction with other pollen‐based reconstructions in northern Europe shows that the 8.2 ka event is particularly clearly reflected in the Baltic region, possibly as a result of distinct climatic and ecological gradients and the sensitivity of the vegetation growth pattern to seasonal temperature change. The new reconstruction also reveals that the Holocene Thermal Maximum was warmer in Latvia than in central Europe and Fennoscandia. In fact, a gradient of increasing positive temperature anomalies is detected from northernmost Fennoscandia towards the south and from the Atlantic coast in Norway towards the continental East European Plain. The dynamics of the temperate broadleaved tree species Tilia and Quercus in Latvia and adjacent northern Europe during the mid‐Holocene give complementary information on the multifaceted climatic and environmental changes in the region.  相似文献   

17.
The chronology and glass composition of 43 andesitic tephra layers in palaeolake sediments in northern New Zealand provide the basis for a fine‐resolution tephrostratigraphy of the interval 10–70 cal. ka. Their ages are constrained by 14 interbedded, (mostly) well‐dated rhyolitic tephra layers. The andesitic tephra have the potential to subdivide time intervals (1–5 kyr) bracketed by well known rhyolitic layers, including periods of rapid climate change such as the last glacial–interglacial transition and the Younger Dryas. The source of the distal andesitic tephra is identified as Egmont volcano (some 270 km S‐SW) on the basis of glass shard composition. The tephra contain high‐K2O (3–6 wt%) andesitic‐dacitic (SiO2 = 60–73 wt%) glass, with commonly heterogeneous shard populations (2–10 wt% SiO2). Within stratigraphic intervals of < 10 kyr, individual tephra layers can be distinguished on the basis of their SiO2 and K2O contents, and variability in these contents can also be a distinguishing characteristic. The tephra record greatly extends the dated pyroclastic and geochemical record of Egmont volcano, and demonstrates that the volcano has frequently produced widely dispersed tephra over the last 70 kyr at a generally constant rate. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
以福建晋江科任剖面老红砂为研究对象,对剖面主元素地球化学特征及其指示的古环境意义进行初步研究。结果表明:(1)科任剖面以湿润型元素SiO2、Al2O3、Fe2O3为主,含量范围依次为68.88%~93.77%、9.03%~19.1%和2.14%~5.32%;干旱型元素CaO、Na2O、MgO和K2O的含量均小于0.5%,K2O的含量略高于2%,表现为较强烈淋溶;主元素分布特征、风化特征值、CIA值等均表明,科任剖面老红砂总体上属于轻度富铝化。(2)对特征元素组合、元素比值和磁化率等古气候古环境代用指标进行分析,认为晚更新世中期以来,科任剖面记录了较干冷—暖湿—干冷—暖湿4个阶段的气候变化:55.9~43.9 ka BP和27.0~10.8 ka BP两个时期,气候干冷,冬季风强烈,为风沙堆积的两个主要阶段;43.9~27.0 ka和10.8 ka以来,气候温暖湿润,为风沙经历强烈风化和红化作用阶段。  相似文献   

19.
A number of studies have revealed that the climate in the eastern margin of the Tibetan Plateau and Northeast China is sensitive to postglacial changes. Unfortunately, the link of the past climate evolution between the two regions is not well understood. In this study, two cores are analyzed to determine this link directly. The high-resolution n-alkanol distribution patterns from two typical peat sequences covering the past 16,000 cal years in the northeastern margin of the Tibetan Plateau and Northeast China, respectively, are closely examined by gas chromatograph–mass spectrometry analysis. In combination with other palaeoclimatic proxies, it is proposed that the n-alkanol average chain length and (C22 + C24)/(C26 + C28) ratio could reflect past climate changes in the two peat sequences. The n-alkanol proxies reveal several climatic intervals in the period from the last deglaciation through the Holocene. A comparison of n-alkanol records between the northeastern margin of the Tibetan Plateau and Northeast China indicates that the start and end of the warm Holocene Optimum differed at the two locations. The spatially asynchronous pattern of climatic change is possibly a result of different responses to change in solar radiation. The evolution of the Holocene paleoclimate is more consistent with changes in Northern Hemisphere solar radiation in Northeast China than on the Tibetan Plateau. The Holocene Optimum began and terminated earlier in Northeast China than in the northeastern margin of the Tibetan Plateau. Thus, the two n-alkanol proxies provide valuable insights into the regional Holocene climate and local environmental conditions.  相似文献   

20.
Quantitative information on vegetation and climate history from the late glacial-Holocene on the Tibetan Plateau is extremely rare. Here, we present palynological results of a 4.30-m-long sediment record collected from Koucha Lake in the Bayan Har Mountains, northeastern Tibetan Plateau. Vegetation change has been traced by biomisation, ordination of pollen data, and calculation of pollen ratios. The application of a pollen-climate calibration set from the eastern Tibetan Plateau to Koucha Lake pollen spectra yielded quantitative climate information. The area was covered by alpine desert/steppe, characteristic of a cold and dry climate (with 50% less precipitation than today) between 16,700 and 14,600 cal yr BP. Steppe vegetation, warm (∼ 1°C higher than today) and wet conditions prevailed between 14,600 and 6600 cal yr BP. These findings contradict evidence from other monsoon-influenced areas of Asia, where the early Holocene is thought to have been moist. Low effective moisture on the northeastern Tibetan Plateau was likely due to high temperature and evaporation, even though precipitation levels may have been similar to present-day values. The vegetation changed to tundra around 6600 cal yr BP, indicating that wet and cool climate conditions occurred on the northeastern Tibetan Plateau during the second half of the Holocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号