首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Miocene Siwalik Group (upsection, the Chinji, Nagri, and Dhok Pathan Formations) in northern Pakistan records fluvial and lacustrine environments within the Himalayan foreland basin. Thick (5 m to tens of metres) sandstones are composed of channel bar and fill deposits of low-sinuousity (1·08–1·19), single-channel meandering and braided rivers which formed large, low-gradient sediment fans (or ‘megafans’). River flow was dominantly toward the south-east and likely perennial. Palaeohydraulic reconstructions indicate that Chinji and Dhok Pathan rivers were small relative to Nagri rivers. Bankfull channel depths of Chinji and Dhok Pathan rivers were generally ≤ 15 m, and up to 33 m for Nagri rivers. Widths of channel segments (including single channels of meandering rivers and individual channels around braid bars) were 320–710 m for Chinji rivers, 320–1050 m for Nagri rivers, and 270–340 m for Dhok Pathan rivers. Mean channel bed slopes were on the order of 0·000056–0·00011. Bankfull discharges of channel segments for Chinji and Dhok Pathan rivers were generally 700–800 m3s?1, with full river discharges possibly up to 2400 m3s?1. Bankfull discharges of channel segments for Nagri rivers were generally 1800–3500 m3s?1, with discharges of some larger channel segments possibly on the order of 9000–32 000 m3s?1. Full river discharges of some of the largest Nagri braided rivers may have been twice these values. Thin (decimetres to a few metres) sandstones represent deposits of levees, crevasse channels and splays, floodplain channels, and large sheet floods. Laminated mudstones represent floodplain and lacustrine deposits. Lakes were both perennial and short-lived, and likely less than 10 m deep with maximum fetches on the order of a few tens of kilometres. Trace fossils and body fossils within all facies indicate the former existence of terrestrial vertebrates, molluscs (bivalves and gastropods), arthropods (including insects), worms, aquatic fauna (e.g. fish, turtles, crocodiles), trees, bushes, grasses, and aquatic flora. Palaeoenvironmental reconstructions are consistent with previous palaeoclimatic interpretations of monsoonal conditions.  相似文献   

2.
The Waziristan Ophiolite is located in the suture zone between the Indian Plate to the east and Afghan Block to the west. It is highly dismembered and divisible into three main sheets or nappes, which from east to west are: the Vezhda Sar Nappe, entirely comprised of pillow basalts; the Boya Nappe, made up of ophiolitic melange with an intact section in its basal part; and the Datta Khel Nappe, consisting mainly of sheeted dykes with smaller proportions of other components. Faunal evidence suggests that the ophiolite is of Tithonian-Valanginian age. It was thrust over the Mesozoic shelf-slope sediments of the Indian Plate to the east during the Paleocene and is unconformably overlain by sedimentary rocks of Early to Middle Eocene age to the west. Beside the sheeted dykes, best exposed in the hanging wall of the Datta Khel Thrust ENE of Datta Khel, the ophiolite also contains isolated dykes. These are doleritic and basaltic in composition. The dykes contain high Na2O contents and high FeOt/MgO and LILE/HFSE ratios, and low TiO2 (<0.1 wt%) and K2O contents. Non-depletion of Nb and high LILE/HFSE ratio negate, respectively, an island-arc or mid-ocean ridge setting for these dykes. Enrichment in the LILE suggests the involvement of a crustal component driven by fluids along the subduction zone. Several geochemical parameters suggest that the dykes of Waziristan Ophiolite have transitional characteristics between mid-ocean ridge basalt and island-arc tholeiite. It is therefore proposed that these dykes may have originated in a back-arc basin tectonic setting.  相似文献   

3.
Fine-grained lacustrine, riverine and ash-fall sediments of the Shooting Iron Formation, whose late Pliocene age is established by Blancan gastropods and vertebrates, yield a pollen flora that is essentially similar in composition to the modern pollen rain in the Jackson Hole area. The Pliocene assemblage suggests a climate like that of the Jackson valley and foothills today. These spectra also resemble a Pliocene pollen flora from Yellowstone Park dated at ∼ 2.02 Ma. However, the underlying Miocene Teewinot sediments differ by containing pollen of four exotic deciduous hardwoods (Tertiary relicts) that suggest a summer-moist climate, unlike that of today. The Shooting Iron sediments lie with an angular unconformity on and above the Miocene lake sediments of the Teewinot Formation. Both of these deposits probably preceded the main uplift of the Teton Range based on the absence of Precambrian clasts in the Tertiary valley deposits. Because the Pliocene floras were modern in aspect, a Plio-Pleistocene transition would be floristically imperceptible here. The sequence denotes a protracted period of relative stability of climate during Teewinot time, and a shift in vegetational state (summer-wet trees drop out) sometime between the latest Miocene and latest Pliocene. The Pliocene spectra suggest a dry, cooler climate toward the end of Shooting Iron time.  相似文献   

4.
In Pakistan manganese and ferromanganese ores have been reported from the Hazara area of North West Frontier Province, Waziristan agencies in the Federally Administered Tribal Areas and the Lasbela-Khuzdar regions of Baluchistan. This study is focused on comparison of mineralogy and geochemistry of the continental ferromanganese ores of Hazara and the ophiolitic manganese ores of the Waziristan area of Pakistan. In the Hazara area, ferromanganese ores occur at Kakul, Galdanian and Chura Gali, near Abbottabad, within the Hazira Formation of the Kalachitta-Margala thrust belt of the NW Himalayas of the Indo-Pakistan Plate. The Cambrian Hazira Formation is composed of reddish-brown ferruginous siltstone, with variable amounts of clay, shale, ferromanganese ores, phosphorite and barite. In Waziristan, manganese ores occur at Shuidar, Mohammad Khel and Saidgi, within the Waziristan ophiolite complex, on the western margin of the Indo-Pakistan Plate in NW Pakistan. These banded and massive ores are hosted by metachert and overlie metavolcanics.The ferromanganese ores of the Hazara area contain variable amount of bixbyite, partridgeite, hollandite, pyrolusite and braunite. Bixbyite and partridgeite are the dominant Mn-bearing phases. Hematite dominates in Fe-rich ores. Gangue minerals are iron-rich clay, alumino-phosphate minerals, apatite, barite and glauconite are present in variable amounts, in both Fe-rich and Mn-rich varieties. The texture of the ore phases indicates greenschist facies metamorphism. The Waziristan ores are composed of braunite, with minor pyrolusite and hollandite. Hematite occurs as an additional minor phase in the Fe-rich ores of the Shuidar area. The only silicate phase in these ores is cryptocrystalline quartz.The chemical composition of the ferromanganese ores in Hazara suggests that the Mn–Fe was contributed by both hydrogenous and hydrothermal sources, while the manganese ores of Waziristan originated only from a hydrothermal source. It is suggested that the Fe–Mn ores of the Hazara area originated from a mixed hydrothermal–hydrogenetic source in shallow water in a ontinental shelf environment due to the transgression and regression of the sea, while the Mn ores of Waziristan were formed at sea-floor spreading centers within the Neo-Tethys Ocean, and were later obducted as part of the Waziristan ophiolite complex.  相似文献   

5.
The Upper Carboniferous—Lower Permian(Upper Pennsylvanian-Asselian) Tobra Formation is exposed in the Salt and Trans Indus ranges of Pakistan.The formation exhibits an alluvial plain(alluvial fan-piedmont alluvial plain) facies association in the Salt Range and Khisor Range.In addition,a stream flow facies association is restricted to the eastern Salt Range.The alluvial plain facies association is comprised of clast-supported massive conglomerate(Gmc),diamictite(Dm)facies,and massive sandstone(Sm) Hthofacies whereas the stream flow-dominated alluvial plain facies association includes fine-grained sandstone and siltstone(Fss),fining upwards pebbly sandstone(Sf),and massive mudstone(Fm) Hthofacies.The lack of glacial signatures(particularly glacial grooves and striatums) in the deposits in the Tobra Formation,which are,in contrast,present in their timeequivalent and palaeogeographically nearby strata of the Arabian peninsula,e.g.the AI Khlata Formation of Oman and Unayzah B member of the Saudi Arabia,suggests a pro-to periglacial,i.e.glaciofluvial depositional setting for the Tobra Formation.The sedimentology of the Tobra Formation attests that the Salt Range,Pakistan,occupied a palaeogeographic position just beyond the maximum glacial extent during Upper Pennsylvanian-Asselian time.  相似文献   

6.
The plant fossil records from the Siwalik Group of Arunachal Pradesh, India are far from satisfactory due to remoteness and dense vegetation of the area. We report seven fossil woods of which three belong to the Middle Siwalik (Subansiri Formation), while the rest are from the Upper Siwalik (Kimin Formation). The modern analogues of the fossils from the Middle Siwalik are Lophopetalum littorale (Celastraceae), Afzelia-Intsia and Sindora siamensis (Fabaceae) and from the Upper Siwalik are Miliusa velutina (Annonaceae), Calophyllum tomentosum and Kayea (Calophyllaceae) and Diospyros melanoxylon (Ebenaceae). The dominance of diffuse porosity in the fossil woods indicates a tropical climate with low seasonality (little variation) in temperature, while a high proportion of large vessels and simple perforation plates in the assemblage infer high precipitation during the deposition of the sediments. The aforesaid inference is in strong agreement with the previous quantitative reconstruction based on fossil leaves. Several modern analogues of the fossil taxa are now growing in low latitudes possibly due to an increase in seasonality (increased variation) in temperature caused by the rising Himalaya.  相似文献   

7.
An increase in salinity and change from oxic to anoxic conditions are observed in the Upper subaquifer of the Judea Group in the Kefar Uriyya pumping field at the western foothills of the Judea Mountains, Israel. Hydrogeological data indicate that the change, which occurs over a distance of only a few kilometers, coincides with a transition from confined to phreatic conditions in the aquifer. The deterioration in the water quality is explained as a result of seepage of more saline, organic-rich water from above, into the phreatic "roofed" part of the aquifer. The latter is derived from the bituminous chalky rocks of the Mount Scopus Group, which confine the aquifer in its southeastern part. In this confined part, water in perched horizons within the Mount Scopus Group cannot leak down and flow westward while leaching organic matter and accumulating salts. However, upon reaching the transition area from confined to phreatic conditions, seepage to the Judea Upper subaquifer is possible, thereby allowing it to be defined as a leaky aquifer. The incoming organic matter consumes the dissolved oxygen and allows bacterial sulfate reduction. The latter accounts for the H2S in the aquifer, as indicated by sulfur isotopic analyses of coexisting sulfate and sulfide. Thus, from an aquifer management point of view, in order to maintain the high quality of the water in the confined southeastern part of the Kefar Uriyya field, care should be taken not to draw the confined-roofed transition area further east by over pumping. Electronic Publication  相似文献   

8.
New U-(Th)/Pb geochronology and geochemical analyses of plutonic bodies in the Hindu Kush range, NW Pakistan, provide insight on the crustal growth and tectonic evolution of the southern Eurasian margin. These new data outline a protracted magmatic history that spans the Cambrian to the Neogene (ca. 538 to 23 Ma) and record a variety of petrogenetic associations variably influenced by within plate, volcanic arc, and collision tectonic environments. The Kafiristan pluton (538 ± 4 to 487 ± 3 Ma) yields geochemical signatures consistent with extensional plutonism and rifting of the Hindu Kush terrane from Gondwana. The Tirich Mir (127 ± 1 to 123 ± 1 Ma) and Buni-Zom (110 ± 1 to 104 ± 1 Ma) plutons have geochemical signatures that can be attributed to a subduction related continental volcanic arc system that developed along the southern margin of Eurasia in the Mesozoic. The Garam Chasma pluton, the youngest body in the study area (27.3 ± 0.5 to 22.8 ± 0.4 Ma), yields a geochemical signature consistent with widespread anatexis during crustal thickening related to the development of the Himalaya. The present geochemical and geochronological analysis from the Hindu Kush have produced important new constraints on the timing of tectonic events and variable tectonic settings along the south Eurasian margin before and after the continued India–Asia collision.  相似文献   

9.
新疆莎车盆地发育大范围的蒸发岩。蒸发岩沉积与海侵-海退密切相关,自晚白垩世—渐新世以来,莎车盆地至少有5次小规模海侵-海退旋回,除阿尔塔什组石膏岩为断续海侵期沉积外,其余基本为海退期沉积。莎车盆地主要的蒸发岩沉积层位为吐依洛克组上段及阿尔塔什组。野外调查显示,吐依洛克组石盐岩露头主要沿西昆仑山前呈长条状分布,基本呈透镜体,阿尔塔什组石膏岩露头则见于盆地大部分地区,包括西昆仑山前、南天山山前及麦盖提斜坡,横向上持续稳定。野外调查及室内分析显示,盐类矿物主要为石盐、石膏、硬石膏,少量杂卤石、钙芒硝及钾石膏。盆地中石盐岩透镜体在横向上的不连续性,可能反应了吐依洛克组沉积晚期西昆仑山前存在多个次级古盐湖凹地,在干旱条件下浓缩成盐,而次级古盐湖在演化过程中大范围巨厚石膏岩的缺失,可能与当时的海退时间极短有关。依据莎车盆地蒸发岩沉积特征、盐类矿物组合、古盐湖演化环境,推测盆地有利的成钾层位为吐依洛克组上段,在乌帕尔一带发现成钾显示,可能为有利的成钾区域;而盆地小范围、厚度不大的石盐沉积及埋藏深度大为不利的找钾因素。  相似文献   

10.
R- andQ-mode factor analysis is applied to 51 groundwater samples collected from wells drilled in the Plio-Pleistocene aquifers of NW Achaia, Greece. The purpose ofR- andQ-mode factor analysis application is to identify (i) the regional groundwater flow pattern, and (ii) the deterioration of groundwater quality. Sixteen hydrogeological parameters are used in order to examine their importance and to provide significant insight into their correlations. In theR-mode factor analysis, a six-factor model is suggested which can explain more than 77.5% of the total variance. The contribution of each factor at every site (factor scores) also is computed. Maps are constructed showing the geographical distribution of the factor scores. From these maps, the high salinity areas are delineated (seawater intrusion, possible appearance of halite layers) and the areas with elevated contribution of karastic-water are defined. Using theQ-mode correspondence analysis the meaning of the electrical conductivity as the most important variable in groundwater quality characterization is demonstrated.  相似文献   

11.

塔里木盆地塔中台地上奥陶统良里塔格组礁滩相中核形石大量发育,本文选取5口钻井取心样品,从核形石形态、粒径大小、纹层磨损度、圆度几个方面进行镜下统计分析。镜下观察核形石有长条状、扁平状、偏心椭圆形、椭圆形、卵圆形、圆形等形状,平均粒径在0.1~2.5 cm之间,核心颗粒以生屑颗粒为主。核形石的纹层磨损度在泥粒岩中为轻度,在颗粒岩中为重度,泥粒—颗粒岩居中。研究认为,促使塔中台地上奥陶统核形石形成的因素包括水动力能量、微生物、碎屑颗粒的累积量等,其中水动力能量占主导地位。能量过低,核形石扁平;能量适合,核形石纹层均匀且厚;能量过强,核形石处于磨蚀状态。水流的强烈冲刷作用会破坏微生物对颗粒的黏附作用,使砂屑生屑核形石滩转变为砂屑生屑滩。

  相似文献   

12.
An40Ar/39Ar age of 85.81 Ma±0.22 my was obtained on sanidine from a volcanic procellanite bed near the top of the 2135+m-thick Upper Cretaceous Frontier Formation in the Lima Peaks area of southwestern Montana. This early Santonian age, combined with previously determined age data including a palynological age of Cenomanian for the lower Frontier at Lima Peaks, and a U-Pb isotopic date of about 95 Ma for the base of the Frontier Formation in the eastern Pioneer Mountains north of the Lima Peaks area, provides an age range for the nonmarine formation. In the Madison Range, farther east in southweastern Montana, this age range corresponds to marine strata of not only the Frontier Formation, but also the overlying Cody Shale and Telegraph Creek Formation, a sequence that totals less than 760 m thick.The Upper Cretaceous marine formations of the madison Range are closely zoned by molluscan faunas that are well constrained with radiometric dates. The40Ar/39Ar age of 85.81 Ma±0.22 my at Lima Peaks is bracketed by radiometric dates for theScaphites depressus—Protexanites bourgeoisianusbiozone and the overlyingClioscaphites saxitonianus—Inoceramus undulatopilcatusbiozone of the Western Interior. Fossils of both of these biozones are present in the Cody Shale and the Telegraph Creek Formation in the Madison Range. The Telegraph Creek contains two units of volcanic ash that are approximate time equivalents of the volcanic procellanite of the Lima Peaks area. Clasts in the conglomerate of the upper part of the Frontier in the Lima Peaks area were shed during the initial stages of uplift of the Blacktail-Snowcrest Highlands which rose to the north. The dated porcellanite lies above the conglomerates and indicates that the uplift was initiated by middle or late Coniacian, 87–88 Ma.  相似文献   

13.
Kohistan Sequence has been considered as island arc formed during the subduction of oceanic lithosphere at the leading edge of northward moving Indian continent.. Sedimentary sequences indicate that formation of the intra\|oceanic Kohistan arc began in early Cretaceous time. The isotopic data demonstrate the involvement of enriched, DUPAL type mantle, suggesting that Kohistan arc was formed at or south of the present equator (Khan et al., 1997). The Intra oceanic phase of Kohistan lasted until sometime between 102 and 85 Ma, when Kohistan collided with Asia. From this time until collision with India about 50 Ma ago, Kohistan existed as Andean\|type margin. This paleomagnetic study is from the volcanic and plutonic rocks exposed in Gupis\|Shamran area (west of Gilgit) in northern part of the Kohistan arc. According to geochronological data these rocks were formed 61~55Ma ago (Treloar et al., 1989), when Kohistan was existing as Andean\|type margin. Seven to nine samples were collected from nine sites of Shamran volcanics (58±1)Ma and from five sites of Pingal, Gupis, and Yasin plutons (Ar\|Ar hornblende ages ranges from 61~52Ma). On the basis of one Rb\|Sr age of (59±2)Ma from these plutons, the above\|mentioned Ar/Ar ages may be regarded as reasonable intrusion ages of these plutons (Searle, 1991).  相似文献   

14.
The occurrence of authigenic carbonates formed in three different environmental situations, within the continental Siwalik Group, has been used to compare the lithological and petrographic characters of the contrasted lithofacies. The three lithofacies are: (1) calcrete conglomerate, (2) case-hardened conglomerate, (3) cornstone (pedogenic, nodular calcrete). The calcrete conglomerate facies laterally intertongues with the channel conglomerates. It consists of pisolites which are interpreted to have formed from carbonate-rich spring waters emerging on to the gravelly substrate of dry, abandoned channels. The laminae characteristics of these pisolites are distinctly different from those of marine origin and also from comparable biogenic materials. Case-hardened conglomerate occurs in the youngest part of the Siwalik stratigraphic column, in boulder conglomerates having limestone as the principal clast component. This lithofacies has resulted from cementation of the conglomerate through continued dissolution and re-precipitation of calcite, by meteoric water, downwards from the surface. It displays a coarsely crystalline, sparry calcite cement with no evidence for displacive growth or replacement by calcite. Cornstones (nodular calcrete) occur in several sedimentary cycles of the Middle Siwalik Sub-Group. These are immature and commonly associated with thinly-bedded sandstones (levée) and red shales (overbank). This lithofacies is a result of concentration of carbonate through capillary action associated with pedogenic activity. Ooids developed in cornstone are essentially micritic in nature and usually composed of less than five indistinct laminae.  相似文献   

15.
The Chitral district of northern Pakistan lies in the eastern Hindu Kush Range. The population in this high-relief mountainous terrain is restricted to tributary-junction fans in the Chitral valley. Proximity to steep valley slopes renders these fans prone to hydrogeomorphic hazards, including landslides, floods and debris flows.This paper focuses on debris-flow hazards on tributary-junction fans in Chitral. Using field observations, satellite-image analyses and a preliminary morphometry, the tributary-junction fans in the Chitral valley are classified into (1) discrete and (2) composite. The discrete fans are modern-day active landforms and include debris cones associated with ephemeral gullies, debris fans associated with ephemeral channels and alluvial fans formed by perennial streams. The composite fans are a collage of sediment deposits of widely different ages and formed by diverse alluvial-fan forming processes. These include fans formed predominantly during MIS-2/Holocene interglacial stages superimposed by modern-day alluvial and debris fans. Composite fans are turned into relict fans when entrenched by modern-day perennial streams. These deeply incised channels discharge their sediment load directly into the trunk river without significant spread on fan surface. In comparison, when associated with ephemeral streams, active debris fans develop directly at composite-fan surfaces. Major settlements in Chitral are located on composite fans, as they provide large tracts of leveled land with easy accesses to water from the tributary streams. These fan surfaces are relatively more stable, especially when they are entrenched by perennial streams (e.g., Chitral, Ayun, and Reshun). When associated with ephemeral streams (e.g., Snowghar) or a combination of ephemeral and perennial streams (e.g., Drosh), these fans are subject to frequent debris-flow hazards.Fans associated with ephemeral streams are prone to high-frequency (∼10 years return period) debris-flow hazards. By comparison, fans associated with perennial streams are impacted by debris-flow hazards during exceptionally large events with return periods of ∼30 years. This study has utility for quick debris-flow hazard assessment in high-relief mountainous regions, especially in arid- to semi-arid south-central Asia where hazard zonation maps are generally lacking.  相似文献   

16.
We describe the non-primate mammalian fauna from the late Pliocene to earliest Pleistocene deposits of Mille-Logya in the Lower Awash Valley, Ethiopia, dated to c. 2.9–2.4 Ma, and divided into three successive units: Gafura, Seraitu, and Uraitele. We identify 41 mammalian taxa (including rodents), the most diverse group being the Bovidae, with 17 taxa. While the Gafura assemblage still resembles those from the earlier Hadar Formation, the younger Seraitu assemblage documents a major turnover. While there is little change in the species present across this interval, the relative abundances of various taxa change dramatically, with suids being largely replaced by open-country bovids (Alcelaphini and Antilopini). We interpret this faunal change as reflective of an environmental shift, contemporaneous with the replacement of Australopithecus afarensis by Homo in the area.  相似文献   

17.
The Late Coniacian, shallow-marine Bad Heart Formation of the Western Canada foreland basin is very unusual in that it contains economically significant ooidal ironstone. Deposition of shallow-water and iron-rich facies appears to have been localized over the crest and flanks of a subtle intrabasinal arch, in part interpreted as a forebulge and partly attributed to reactivation of the long-lived Peace River Arch. The formation comprises two upward-shoaling allomembers, typically 5–10 m thick, that are bounded by regionally mappable ravinement surfaces. The lower unit, allomember 1, grades up from laminated mudstone to bioturbated silty sandstone, which is abruptly overlain by bioturbated ooidal silty sandstone grading into an almost clastic-free ooidal ironstone up to 7 m thick. Ooidal ironstone was concentrated into NW- to SE-trending ridges, kilometres wide and tens of kilometres long. Ironstone formation appears to have been promoted by: (a) drowning of the arch, which progressively curtailed sediment supply; and (b) enhanced reworking over the shallowly submerged arch and over a fault-bounded block that underwent episodic vertical movement of 10–20 m during Bad Heart deposition. Allomember 2 also shoals upwards from mudstone to bioturbated and laminated silty sandstone but lacks ooids, apparently reflecting a rejuvenated supply of detrital sediment from the arch. The marine ravinement surface above allomember 2 is a Skolithos firmground, above which is developed a regional blanket of ooidal sediment. In the east, ooids are dispersed in a bioturbated silty sandstone with abundant evidence of repeated reworking and early siderite and phosphate cements. Westwards, this facies grades, over about 40 km, into almost clastic-free ooidal ironstone about 5 m thick; the lateral facies change may reflect progressive clastic starvation distal to a low-relief source area. The two allomembers are interpreted to reflect eustatic oscillations of about 10 m, superimposed on episodic tectonic warping and block-faulting events. The development of ooidal ironstone immediately above initial marine flooding surfaces indicates a close relationship to marine transgression, reflecting sediment-starved conditions. Ironstone does not appear to be related to either sequence boundaries or maximum flooding surfaces. The Bad Heart Formation is blanketed by marine mudstone deposited in response to major flexural subsidence and rejuvenation of clastic sources in the Cordillera to the SW.  相似文献   

18.
The Warchha Sandstone of the Salt Range of Pakistan is a continental succession that accumulated as part of a meandering, fluvial system during Early Permian times. Several fining-upward depositional cycles are developed, each of which is composed of conglomerate, cross-bedded sandstone and, in their upper parts, bioturbated siltstone and claystone units with distinctive desiccation cracks and carbonate concretions. Clast lithologies are mainly of plutonic and low-grade metamorphic origin, with an additional minor sedimentary component. Textural properties of the sandstone are fine- to coarse-grained, poorly to moderately sorted, sub-angular to sub-rounded, and with generally loose packing. Based on modal analyses, the sandstone is dominantly a feldspathoquartzose (arkose to sub-arkose). Detrital constituents are mainly composed of monocrystalline quartz, feldspars (more K-feldspar than plagioclase) and various types of lithic clasts. XRD and SEM studies indicate that kaolinite is the dominant clay mineral and that it occurs as both allogenic and authigenic forms. However, illite, illite-smectite mixed layer, smectite and chlorite are also recognised in both pores and fractures. Much of the kaolinite was likely derived by the severe chemical weathering of previously deposited basement rocks under the influence of a hot and humid climate. Transported residual clays deposited as part of the matrix of the Warchha Sandstone show coherent links with the sandstone petrofacies, thereby indicating the same likely origin. Illite, smectite and chlorite mainly occur as detrital minerals and as alteration products of weathered acidic igneous and metamorphic rocks. Based primarily on fabric relationship, the sequence of cement formation in the Warchha Sandstone is clay (generally kaolinite), iron oxide, calcareous and siliceous material, before iron-rich illite and occasional mixed layer smectite–illite and rare chlorite. Both petrographic analysis and field characteristics of the sandstone indicate that the source areas were characterised by uplift of a moderate to high relief continental block that was weathered under the influence of hot and humid climatic conditions. The rocks weathered from the source areas included primary granites and gneisses, together with metamorphic basement rocks and minor amounts of sedimentary rocks. Regional palaeogeographic reconstructions indicate that much of the Warchha Sandstone detritus was derived from the Aravalli and Malani ranges and surrounding areas of the Indian Craton to the south and southeast, before being transported to and deposited within the Salt Range region under the influence of a semi-arid to arid climatic regime.  相似文献   

19.
20.
Major and trace element, Sr–Nd–Pb isotope and mineral chemical data are presented for post-collisional late Cenozoic shoshonitic volcanic rocks from the western Kunlun Mountains, NW China. They are distributed in two approximately E–W striking sub-belts, with the lavas in the southern sub-belt having been generated earlier than those in the northern sub-belt. The mineralogy of the rocks reflects crystallization from moderate temperature magmas (700–1000 °C) with high oxygen and water fugacities. They are geochemically characterized by relatively low TiO2, Al2O3 and FeO and high alkalies coupled with very high contents of incompatible element concentrations. Remarkably negative Nb, Ta and Ti anomalies are displayed on primitive mantle-normalized incompatible element patterns. In addition, they show a relatively broad range of low εNd (−1.8 to −8.7) at more restricted 87Sr/86Sr ratios (0.7081–0.7090). Pb isotopes are characterized by a range of 207Pb/204Pb (15.48–15.74) and 208Pb/204Pb (38.30–39.12) ratios at relatively invariant 206Pb/204Pb (18.60–18.83) values, except one sample with a ratio of 18.262, leading to near-vertical arrays. The lavas from the northern sub-belt have relatively high 87Sr/86Sr ratios. All lavas have extremely high La/Yb ratios, probably reflecting that the magmas were derived from a metasomatized lithospheric mantle source containing phlogopite–hornblende garnet peridotite affected by subducted sediments and hydrous fluids, rather than from a depleted asthenopheric mantle source or mantle plume source. However, the lavas from the southern sub-belt were derived from a lower degree of melting of more highly metasomatized sub-lithospheric mantle in comparison with those from the northern sub-belt. Processes responsible for partial melting of metasomatized lithospheric mantle and post-collision magmatism in the western Kunlun could be a consequence of continuously conductive heating of upwelling, hot asthenospheric mantle following the delamination subsequent to thickening, which is consistent with the spatial and temporal geochemical variations in shoshonitic rocks in Tibet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号