首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fine-resolution regional climate simulations of tropical cyclones (TCs) are performed over the eastern Australian region. The horizontal resolution (30 km) is fine enough that a good climatological simulation of observed tropical cyclone formation is obtained using the observed tropical cyclone lower wind speed threshold (17 m s–1). This simulation is performed without the insertion of artificial vortices (bogussing). The simulated occurrence of cyclones, measured in numbers of days of cyclone activity, is slightly greater than observed. While the model-simulated distribution of central pressures resembles that observed, simulated wind speeds are generally rather lower, due to weaker than observed pressure gradients close to the centres of the simulated storms. Simulations of the effect of climate change are performed. Under enhanced greenhouse conditions, simulated numbers of TCs do not change very much compared with those simulated for the current climate, nor do regions of occurrence. There is a 56% increase in the number of simulated storms with maximum winds greater than 30 m s–1 (alternatively, a 26% increase in the number of storms with central pressures less than 970 hPa). In addition, there is an increase in the number of intense storms simulated south of 30°S. This increase in simulated maximum storm intensity is consistent with previous studies of the impact of climate change on tropical cyclone wind speeds.  相似文献   

2.
3.
The influence on precipitation of regional sea surface temperature (SST) during a drought period of the West African monsoon is determined, using a regional climate model (RCM). The results from three simulations of two realistic dry years are compared. The first two experiments are initialised and nested respectively in 1983 and 1984 reanalysis data sets. The third experiment is a hybrid simulation of 1983 which is the same as the first experiment except that the SST field is the 1984 SST. Precipitation from the RCM is compared with several precipitation data sets and, as in observations, the RCM reasonably simulates the West African monsoon (seasonal cycle and monsoon sub-period) for the two different years. In particular, the model reproduces stage by stage the motion of the monsoon band well: installation phase, high rain period with abrupt northward shift of the rain band, and the retreat southward phase. Interannual variability and wet or dry tendencies are also represented. The most significant effect of SST is shown by the hybrid simulation, when the regional SST appears as a major factor in the seasonal and interannual monsoon precipitation regime over the African continent (up to 12°N) although this influence is modulated both by the surface conditions (soil and vegetation) and by the reanalysis flow introduced at the lateral boundaries. Dynamically, a warmer SST leads to a decrease in the magnitude of the African Easterly Jet and an increase in northward equivalent water content transport (from equator to 12°N).  相似文献   

4.
Coupling of the Community Land Model (CLM3) to the ICTP Regional Climate Model (RegCM3) substantially improves the simulation of mean climate over West Africa relative to an older version of RegCM3 coupled to the Biosphere Atmosphere Transfer Scheme (BATS). Two 10-year simulations (1992–2001) show that the seasonal timing and magnitude of mean monsoon precipitation more closely match observations when the new land surface scheme is implemented. Specifically, RegCM3–CLM3 improves the timing of the monsoon advance and retreat across the Guinean Coast, and reduces a positive precipitation bias in the Sahel and Northern Africa. As a result, simulated temperatures are higher, thereby reducing the negative temperature bias found in the Guinean Coast and Sahel in RegCM3–BATS. In the RegCM3–BATS simulation, warmer temperatures in northern latitudes and wetter soils near the coast create excessively strong temperature and moist static energy gradients, which shifts the African Easterly Jet further north than observed. In the RegCM3–CLM3 simulation, the migration and position of the African Easterly Jet more closely match reanalysis winds. This improvement is triggered by drier soil conditions in the RegCM3–CLM3 simulation and an increase in evapotranspiration per unit precipitation. These results indicate that atmosphere–land surface coupling has the ability to impact regional-scale circulation and precipitation in regions exhibiting strong hydroclimatic gradients.  相似文献   

5.
To downscale climate change scenarios, long-term regional climatologies employing global model forcing are needed for West Africa. As a first step, this work examines present-day integrations (1981–2000) with a regional climate model (RCM) over West Africa nested in both reanalysis data and output from a coupled atmospheric–ocean general circulation model (AOGCM). Precipitation and temperature from both simulations are compared to the Climate Research Unit observations. Their spatial distributions are shown to be realistic. Annual cycles are considerably correlated. Simulations are also evaluated with respect to the driving large-scale fields. RCM offers some improvements compared to the AOGCM driving field. Evaluation of seasonal precipitation biases reveals that RCM dry biases are highest on June–August around mountains. They are associated to cold biases in temperature which, in turn, are connected to wet biases in precipitation outside orographic zones. Biases brought through AOGCM forcing are relatively low. Despite these errors, the simulations produce encouraging results and show the ability of the AOGCM to drive the RCM for future projections.  相似文献   

6.
This study investigated the simulations of three months of seasonal tropical cyclone (TC) activity over the western North Pacific using the Advanced Research WRF Model. In the control experiment (CTL), the TC frequency was considerably overestimated. Additionally, the tracks of some TCs tended to have larger radii of curvature and were shifted eastward. The large-scale environments of westerly monsoon flows and subtropical Pacific highs were unreasonably simulated. The overestimated frequency of TC formation was attributed to a strengthened westerly wind field in the southern quadrants of the TC center. In comparison with the experiment with the spectral nudging method, the strengthened wind speed was mainly modulated by large-scale flow that was greater than approximately 1000 km in the model domain. The spurious formation and undesirable tracks of TCs in the CTL were considerably improved by reproducing realistic large-scale atmospheric monsoon circulation with substantial adjustment between large-scale flow in the model domain and large-scale boundary forcing modified by the spectral nudging method. The realistic monsoon circulation took a vital role in simulating realistic TCs. It revealed that, in the downscaling from large-scale fields for regional climate simulations, scale interaction between model-generated regional features and forced large-scale fields should be considered, and spectral nudging is a desirable method in the downscaling method.  相似文献   

7.
8.
嵌套域大小对区域气候模式模拟效果的影响   总被引:3,自引:3,他引:3  
This paper presents a numerical study on the 1998 summer rainfall over the Yangtze River valley in central and eastern China, addressing effect of a nested area size on simulations in terms of the technique of nesting a regional climate model (RCM) upon a general circulation model (GCM). Evidence suggests that the size exerts greater impacts upon regional climate of the country, revealing that a larger nested size is su perior to a small one for simulation in mitigating errors of GCM-provided lateral boundary forcing. Also,simulations show that the RCM should incorporate regions of climate systems of great importance into study and a low-resolution GCM yields more pronounced errors as a rule when used in the research of the Tibetan Plateau, and, in contrast, our PσRCM can do a good job in describing the plateau′s role in a more realistic and accurate way. It is for this reason that the tableland should be included in the nested area when the RCM is employed to investigate the regional climate. Our PσRCM nesting upon a GCM reaches morerealistic results compared to a single GCM used.  相似文献   

9.
This study presents a performance-based comprehensive weighting factor that accounts for the skill of different regional climate models (RCMs), including the effect of the driving lateral boundary condition coming from either atmosphere–ocean global climate models (AOGCMs) or reanalyses. A differential evolution algorithm is employed to identify the optimal relative importance of five performance metrics, and corresponding weighting factors, that include the relative absolute mean error (RAME), annual cycle, spatial pattern, extremes and multi-decadal trend. Based on cumulative density functions built by weighting factors of various RCMs/AOGCMs ensemble simulations, current and future climate projections were then generated to identify the level of uncertainty in the climate scenarios. This study selected the areas of southern Ontario and Québec in Canada as a case study. The main conclusions are as follows: (1) Three performance metrics were found essential, having the greater relative importance: the RAME, annual variability and multi-decadal trend. (2) The choice of driving conditions from the AOGCM had impacts on the comprehensive weighting factor, particularly for the winter season. (3) Combining climate projections based on the weighting factors significantly increased the consistency and reduced the spread among models in the future climate changes. These results imply that the weighting factors play a more important role in reducing the effects of outliers on plausible future climate conditions in regions where there is a higher level of variability in RCM/AOGCM simulations. As a result of weighting, substantial increases in the projected warming were found in the southern part of the study area during summer, and the whole region during winter, compared to the simple equal weighting scheme from RCM runs. This study is an initial step toward developing a likelihood procedure for climate scenarios on a regional scale using equal or different probabilities for all models.  相似文献   

10.
In this study, we use the Met Office Hadley Centre regional climate model HadRM3P to investigate the relative impact of initial soil moisture (SM) and lateral boundary conditions (LBC) on simulations of the West African Monsoon. Soil moisture data that are in balance with our particular model are generated using a 10-year (1997–2007) simulation of HadRM3P nested within the NCEP-R2 reanalyses. Three sets of experiments are then performed for six April–October seasons (2000 and 2003–2007) to assess the sensitivity to different sources of initial SM data and lateral boundary data. The results show that the only impact of the initial SM anomalies on precipitation is to generate small random intraseasonal, interannual and spatial variations. In comparison, the influence of the LBC dominates both in terms of magnitude and spatial coherency. Nevertheless, other sources of initial SM data or other models may respond differently, so it is recommended that the robustness of this conclusion is established using other model configurations.  相似文献   

11.
Modeling the tropical Pacific Ocean using a regional coupled climate model   总被引:3,自引:0,他引:3  
A high-resolution tropical Pacific general circulation model (GCM) coupled to a global atmospheric GCM is described in this paper. The atmosphere component is the 5°×4°global general circulation model of the Institute of Atmospheric Physics (IAP) with 9 levels in the vertical direction. The ocean component with a horizontal resolution of 0.5°, is based on a low-resolution model (2°×1°in longitude-latitude).Simulations of the ocean component are first compared with its previous version. Results show that the enhanced ocean horizontal resolution allows an improved ocean state to be simulated; this involves (1) an apparent decrease in errors in the tropical Pacific cold tongue region, which exists in many ocean models,(2) more realistic large-scale flows, and (3) an improved ability to simulate the interannual variability and a reduced root mean square error (RMSE) in a long time integration. In coupling these component models, a monthly "linear-regression" method is employed to correct the model's exchanged flux between the sea and the atmosphere. A 100-year integration conducted with the coupled GCM (CGCM) shows the effectiveness of such a method in reducing climate drift. Results from years 70 to 100 are described.The model produces a reasonably realistic annual cycle of equatorial SST. The large SSTA is confined to the eastern equatorial Pacific with little propagation. Irregular warm and cold events alternate with a broad spectrum of periods between 24 and 50 months, which is very realistic. But the simulated variability is weaker than the observed and is also asymmetric in the sense of the amplitude of the warm and cold events.  相似文献   

12.
The issue of Regional Climate Model (RCM) domain size is studied here by using a perfect-model approach, also known as the Big-Brother experiment. It is known that the control exerted by the lateral boundary conditions (LBC) on nested simulations increases when reducing the domain size. The large-scale component of the simulation that is forced by the LBC influences the small-scale features that develop along the large-scale flow. Small-scale transient eddies need space and time to develop sufficiently however, and small domains can impede their development. Our tests performed over eastern North America in summer reveal that the small-scale features are systematically underestimated over the entire domain, even for domain as large as 140 by 140 grid points. This result differs from that obtained in winter where the small scales were mainly underestimated on the west (inflow) side of the domain. This difference is due to the circulation regime over Eastern Canada, which is characterized by weak and variable flow in summer, but strong and westerly flow in winter. For both seasons, the small-scale transient-eddy amplitudes are systematically underestimated at higher levels, but this problem is less severe in summer. Overall the model is more skilful in regenerating the small scales in summer than in winter for comparable domain sizes, which can be related to the weaker summer flow and stronger physical processes occurring in this season.  相似文献   

13.
Summary Two cumulus convection and two planetary boundary layer schemes are used to investigate the climate of southern Africa using the MM5 regional climate model. Both a wet (1988/89) and a dry (1991/92) summer (December–February, DJF) rainfall season are simulated and the results compared with three different observational sources: Climate Research Unit seasonal data (precipitation, 2 m surface temperature, number of rain days), satellite-derived diurnal precipitation and the Surface Radiation Budget diurnal short-wave fluxes and optical depth. Using the ETA model boundary layer in MM5 simulates too much incident short-wave radiation at the surface at 12 UTC, whereas the medium range forecast model boundary layer yields a diurnal cycle of short-wave radiation closer to the observed. The Betts-Miller convection scheme in MM5 simulates peak rainfall later in the day and less rain days than observed, whereas when using the Kain-Fritsch convection scheme a peak rainfall earlier in the day and more rain days than observed are simulated. The intensity of the hydrological cycle is therefore dependent on the choice of convection scheme, which in turn is further modified by the boundary layer scheme. Precipitation during the wet 1988/89 season is reasonably captured by most simulations, though using the Betts-Miller scheme more accurately simulates rainfall during the dry 1991/92 season. Mean DJF biases in the surface temperature and diurnal temperature range are consistent with biases in the number of rain days and the diurnal cycles of surface moisture and energy.  相似文献   

14.
The COSMO-CLM (CCLM) model is applied to perform regional climate simulation over the second phase of CORDEX-East Asia (CORDEX-EA-II) domain in this study. Driven by the ERAInterim reanalysis data, the model was integrated from 1988 to 2010 with a high resolution of 0.22°. The model’s ability to reproduce mean climatology and climatic extremes is evaluated based on various aspects. The CCLM model is capable of capturing the basic features of the East Asia climate, including the seasonal mean patterns, interannual variations, annual cycles and climate extreme indices for both surface air temperature and precipitation. Some biases are evident in certain areas and seasons. Warm and wet biases appear in the arid and semi-arid areas over the northwestern and northern parts of the domain. The simulated climate over the Tibetan Plateau is colder and wetter than the observations, while South China, East China, and India are drier. The model biases may be caused by the simulated anticyclonic and cyclonic biases in low-level circulations, the simulated water vapor content biases, and the inadequate physical parameterizations in the CCLM model. A parallel 0.44° simulation is conducted and the comparison results show some added value introduced by the higher resolution 0.22° simulation. As a result, the CCLM model could be an adequate member for the next stage of the CORDEX-EA project, while further studies should be encouraged.  相似文献   

15.
The statistical analysis of two atmospheric general circulation simulations using the ECHAM3 GCM in permanent January conditions are presented. The two simulations utilize different oceanic surface temperatures in the Atlantic as boundary conditions: the cold simulation has SST representing the anomalous cold conditions during the decade 1904-13 while the warm simulation has SST representative for the decade 1951-60 where anomalous warm conditions have been observed. The analysis concentrates on the simulated differences between both experiments within the tropical belt to test the working hypothesis whether changes in the deep tropical heating initiated by the anomalous SST are responsible for the anomalies in the flow and mass field. We present a method which extracts the significant and dynamically consistent signal of the total difference using a multivariate statistical test based on the amplitudes of an a-priori specified mode expansion. These expansion modes are defined from a variant of the Matsuno-Gill linearized reduced gravity model for the tropical atmosphere. The application of the method shows a clear and well defined tropical signal in the flow and mass field which can be understood as the reponse of the ECHAM3 model to a deep heating anomaly not in the vicinity of the anomalous SST but on the neighboring continents especially South America and with opposite sign in remote areas between Indonesia and the dateline. The signal can be summarized as an enhancement of the GCM's tropical East-West circulation with the ascending branch over South America in the warm simulation compared to the cold run.  相似文献   

16.
17.
A continuous 10-year simulation in Asia for the period of 1 July 1988 to 31 December 1998 was conducted using the Regional Integrated Environmental Model System (RIEMS) with NCEP Reanalysis II data as the driving fields. The model processes include surface physics state package (BATS 1e), a Holtslag explicit planetary boundary layer formulation, a Grell cumulus parameterization, and a modified radiation package (CCM3). Model-produced surface temperature and precipitation are compared with observations from 1001 meteorology stations distributed over Asia and with the 0.5 × 0.5 CRU gridded dataset. The analysis results show that: (1) RIEMS reproduces well the spatial pattern and the seasonal cycle of surface temperature and precipitation; (2) When regionally averaged, the seasonal mean temperature biases are within 1–2C. For precipitation, the model tends to give better simulation in winter than in summer, and seasonal precipitation biases are mostly in the range of ?12%–50%; (3) Spatial correlation coefficients between observed and simulated seasonal precipitation are higher in north of the Yangtze River than in the south and higher in winter than in summer; (4) RIEMS can well reproduce the spatial pattern of seasonal mean sea level pressure. In winter, the model-simulated Siberian high is stronger than the observed. In summer, the simulated subtropical high is shifted northwestwards; (5) The temporal evolution of the East Asia summer monsoon rain belt, with steady phases separated by more rapid transitions, is reproduced.  相似文献   

18.
We analyze a set of nine regional climate model simulations for the period 1961–2000 performed at 25 and 50 km horizontal grid spacing over a European domain in order to determine the effects of horizontal resolution on the simulation of precipitation. All of the models represent the seasonal mean spatial patterns and amount of precipitation fairly well. Most models exhibit a tendency to over-predict precipitation, resulting in a domain-average total bias for the ensemble mean of about 20% in winter (DJF) and less than 10% in summer (JJA) at both resolutions, although this bias could be artificially enhanced by the lack of a gauge correction in the observations. A majority of the models show increased precipitation at 25 km relative to 50 km over the oceans and inland seas in DJF, JJA, and ANN (annual average), although the response is strongest during JJA. The ratio of convective precipitation to total precipitation decreases over land for most models at 25 km. In addition, there is an increase in interannual variability in many of the models at 25 km grid spacing. Comparison with gridded observations indicates that a majority of models show improved skill in simulating both the spatial pattern and temporal evolution of precipitation at 25 km compared to 50 km during the summer months, but not in winter or on an annual mean basis. Model skill at higher resolution in simulating the spatial and temporal character of seasonal precipitation is found especially for Great Britain. This geographic dependence of the increased skill suggests that observed data of sufficient density are necessary to capture fine-scale climate signals. As climate models increase their horizontal resolution, it is thus a key priority to produce high quality fine scale observations for model evaluation.  相似文献   

19.
An ensemble of regional climate model simulations from the European framework project ENSEMBLES is compared with observations of low precipitation events across a number of European regions. We characterize precipitation deficits in terms of two drought indices, the Standardized Precipitation Index and the self-calibrated Palmer Drought Severity Index. Models that robustly describe the observations for the period 1961–2000 in given regions are identified and an assessment of the overall performance of the ensemble is provided. The results show that in general, models capture the most severe drought events and that the ensemble mean model also performs well. Some regions that appear to be more problematic to simulate well are also identified. These are relatively small regions and have rather complex topographical features. The analysis suggests that assessment of future drought occurrence based on climate change experiments in general would appear to be robust. But due to the heterogeneous and often fine-scaled structure of drought occurrence, quantitative results should be used with great care, particularly in regions with complex terrain and limited information about past drought occurrence.  相似文献   

20.
Large ensembles of coupled atmosphere–ocean general circulation model (AOGCM) simulations are required to explore modelling uncertainty and make probabilistic predictions of future transient climate change at regional scales. These are not yet computationally feasible so we have developed a technique to emulate the response of such an ensemble by scaling equilibrium patterns of climate change derived from much cheaper “slab” model ensembles in which the atmospheric component of an AOGCM is coupled to a mixed-layer ocean. Climate feedback parameters are diagnosed for each member of a slab model ensemble and used to drive an energy balance model (EBM) to predict the time-dependent response of global surface temperature expected for different combinations of uncertain AOGCM parameters affecting atmospheric, land and sea-ice processes. The EBM projections are then used to scale normalised patterns of change derived for each slab member, and hence emulate the response of the relevant atmospheric model version when coupled to a dynamic ocean, in response to a 1% per annum increase in CO2. The emulated responses are validated by comparison with predictions from a 17 member ensemble of AOGCM simulations, constructed from variants of HadCM3 using the same parameter combinations as 17 members of the slab model ensemble. Cross-validation permits estimation of the spatial and temporal dependence of emulation error, and also allows estimation of a correction field to correct discrepancies between the scaled equilibrium patterns and the transient response, reducing the emulation error. Emulated transient responses and their associated errors are obtained from the slab ensemble for 129 pseudo-HadCM3 versions containing multiple atmospheric parameter perturbations. These are combined to produce regional frequency distributions for the transient response of annual surface temperature change and boreal winter precipitation change. The technique can be extended to any surface climate variable demonstrating a scaleable, approximately linear response to forcing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号