首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Installed logjams constructed of wood are commonly used in stream restoration projects to provide habitat for lotic organisms. Macroinvertebrate densities are known to increase on logjam surfaces; however, less is known about the influence logjams have on benthic organisms inhabiting the surrounding streambed. To examine this, we conducted a before-after-control-impact (BACI) study in a stream in northern Minnesota, USA, to determine how an installed logjam affected the richness and abundance of three insect orders commonly used in biotic indices, the Ephemeroptera, Plecoptera, and Trichoptera (i.e., EPT taxa). A spanning logjam composed of three logs bound together was installed perpendicular to stream flow at the impact site. Initial sampling of the impact site and an upstream control found no differences among the ETP taxa. A year after installation, the logjam accumulated woody debris and altered flow so that near-bed current at the impact site was faster and more heterogeneous than at the control site. Although the richness and abundance of the macroinvertebrate community as a whole did not differ between sites after one year, it did for the Ephemeroptera and Plecoptera at the impact site. By contrast, Trichoptera richness and abundance did not change. Our results lend support to the hypothesis that installed logjams may enhance stream habitat not only by providing colonization surfaces for macroinverbrates, but also by altering the benthic environment of the surrounding habitat.  相似文献   

3.
Since climatic condition is the important foundation for human subsistence and development and the key factor in sustainable development of economy and society, climate change has been a global issue attracting great attentions of politicians, scientists, governments, and the public alike throughout the world. Existing climate regionalization in China aims to characterize the regional differences in climate based on years of the mean value of different climate indexes. However, with the accelerating climate change nowadays, existing climate regionalization cannot represent the regional difference of climate change, nor can it reflect the disasters and environmental risks incurred from climate changes. This paper utilizes the tendency value and fluctuation value of temperature and precipitation from 1961 to 2010 to identify the climate change quantitatively, and completes the climate change regionalization in China(1961–2010) with county administrative regionalization as the unit in combination with China's terrain feature. Level-I regionalization divides China's climate change(1961–2010) into five tendency zones based on the tendency of temperature and precipitation, which are respectively Northeast China-North China warm-dry trend zone, East China-Central China wet-warm trend zone, Southwest China-South China dry-warm trend zone, Southeast Tibet-Southwest China wet-warm trend zone, and Northwest China-Qinghai-Tibet Plateau warm-wet trend zone; level-II regionalization refers to fourteen fluctuation regions based on level-I regionalization according to the fluctuation of temperature and precipitation.  相似文献   

4.
Projected scenarios of climate change involve general predictions about the likely changes to the magnitude and frequency of landslides, particularly as a consequence of altered precipitation and temperature regimes. Whether such landslide response to contemporary or past climate change may be captured in differing scaling statistics of landslide size distributions and the erosion rates derived thereof remains debated. We test this notion with simple Monte Carlo and bootstrap simulations of statistical models commonly used to characterize empirical landslide size distributions. Our results show that significant changes to total volumes contained in such inventories may be masked by statistically indistinguishable scaling parameters, critically depending on, among others, the size of the largest of landslides recorded. Conversely, comparable model parameter values may obscure significant, i.e. more than twofold, changes to landslide occurrence, and thus inferred rates of hillslope denudation and sediment delivery to drainage networks. A time series of some of Earth's largest mass movements reveals clustering near and partly before the last glacial‐interglacial transition and a distinct step‐over from white noise to temporal clustering around this period. However, elucidating whether this is a distinct signal of first‐order climate‐change impact on slope stability or simply coincides with a transition from short‐term statistical noise to long‐term steady‐state conditions remains an important research challenge. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Water resources are influenced by various factors such as weather, topography, geology, and environment. Therefore, there are many difficulties in evaluating and analyzing water resources for the future under climate change. In this paper, we consider climate, land cover and water demand as the most critical factors affecting change in future water resources. We subsequently introduce the procedures and methods employed to quantitatively evaluate the influence of each factor on the change in future water resources. In order to consider the change in land cover, we apply the Multi-Regression approach from the cellular automata-Markov Chain technique using two independent variables, temperature and rainfall. In order to estimate the variation of the future runoff due to climate change, the data of the SRES A2 climate change scenario were entered in the SLURP model to simulate a total of 70 years, 2021–2090, of future runoff in the Han River basin in Korea. However, since a significant amount of uncertainties are involved in predicting the future runoff due to climate change, 50 sets of daily precipitation data from the climate change scenario were generated and used for the SLURP model to forecast 50 sets of future daily runoff. This process was used to minimize the uncertainty that may occur when the prediction process is performed. For future water balance analysis, the future water demand was divided into low demand, medium demand and high demand categories. The three water demand scenarios and the 50 daily runoff scenarios were combined to form 150 sets of input data. The monthly water balance within the Han River basin was then calculated using this data and the Korean version of Water Evaluation and Planning System model. As a result, the future volume of water scarcity of the Han River basin was predicted to increase in the long term. It is mostly due to the monthly shift in the runoff characteristic, rather than the change in runoff volume resulting from climate change.  相似文献   

6.
7.
华北块体的动力边界连续发生2008年汶川8.0和2011年日本宫城近海9.0地震。我们基于全国编目系统提供的华北地区2008—2014年的地震观测报告,读取小震初动符号,利用台站综合机制解,首先讨论了区域构造应力的作用模式,结果显示与区域地质研究结论有较好的一致性;然后基于台站综合解的矛盾比,分析了日本“3•11”地震对华北区域应力场的影响。结果显示,矛盾符号比的区域差异反映了地震活动的某些特征,差异变化则可能与区域应力背景下不同的构造条件有关。日本地震前后3年的结果对比分析发现,华北中东部应力场2011年后更加集中;郯庐断裂带和燕山地震带明显受到日本地震的影响。最后我们发现,不同地区的台站矛盾比的下降转折与周边中强或者显著地震事件有很好的对应,说明类似变化可能反映了区域中强地震活动的孕育过程。  相似文献   

8.
Summary It is shown that paleogeographical data give evidence for the increase of the Earth’s radius. The average annual increase computed is 0.5 mm/year. The formation of the continents and ocean basins may be easily explained on the basis of the Earth’s expansion. The rate of the annual radius increase derived from this explanation is in good agreement with the value determined from paleogeographical data. The theoretically computed duration of a transgression-regression period corresponds also with geological observations. Prof. Dr. L. Egyed, Geophysical Institute, E?tv?s-University,Budapest (Hungary).  相似文献   

9.
The ocean has been shielding the earth from the worst effects of rapid climate change by absorbing excess carbon dioxide from the atmosphere. This absorption of CO2 is driving the ocean along the pH gradient towards more acidic conditions. At the same time ocean warming is having pronounced impacts on the composition, structure and functions of marine ecosystems. Warming, freshening (in some areas) and associated stratification are driving a trend in ocean deoxygenation, which is being enhanced in parts of the coastal zone by upwelling of hypoxic deep water. The combined impact of warming, acidification and deoxygenation are already having a dramatic effect on the flora and fauna of the oceans with significant changes in distribution of populations, and decline of sensitive species. In many cases, the impacts of warming, acidification and deoxygenation are increased by the effects of other human impacts, such as pollution, eutrophication and overfishing.  相似文献   

10.
11.
Seasonal water storage change of the Yangtze River basin detected by GRACE   总被引:13,自引:0,他引:13  
1 Introduction Large-scale mass redistribution, or temporal varia- tion of mass within the Earth system, the driving force of interactions between solid Earth and geophysical fluids envelope (i.e., atmosphere, ocean, and hydro- sphere), is an important geophysical process critical to human life. Most of the interactions between solid Earth and the atmosphere/oceans happen at seasonal and inter-annual time scales. One important contribu- tor of mass redistribution at seasonal and inter-annual …  相似文献   

12.
Climate change, manifested by an increase in mean, minimum, and maximum temperatures and by more intense rainstorms, is becoming more evident in many regions. An important consequence of these changes may be an increase in landslides in high mountains. More research, however, is necessary to detect changes in landslide magnitude and frequency related to contemporary climate, particularly in alpine regions hosting glaciers, permafrost, and snow. These regions not only are sensitive to changes in both temperature and precipitation, but are also areas in which landslides are ubiquitous even under a stable climate. We analyze a series of catastrophic slope failures that occurred in the mountains of Europe, the Americas, and the Caucasus since the end of the 1990s. We distinguish between rock and ice avalanches, debris flows from de‐glaciated areas, and landslides that involve dynamic interactions with glacial and river processes. Analysis of these events indicates several important controls on slope stability in high mountains, including: the non‐linear response of firn and ice to warming; three‐dimensional warming of subsurface bedrock and its relation to site geology; de‐glaciation accompanied by exposure of new sediment; and combined short‐term effects of precipitation and temperature. Based on several case studies, we propose that the following mechanisms can significantly alter landslide magnitude and frequency, and thus hazard, under warming conditions: (1) positive feedbacks acting on mass movement processes that after an initial climatic stimulus may evolve independently of climate change; (2) threshold behavior and tipping points in geomorphic systems; (3) storage of sediment and ice involving important lag‐time effects. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
This Commentary draws together recently published work relating to the relationship between climate change and geomorphology to address the surprising observation that geomorphic work seems to have had little impact upon the work of the Intergovernmental Panel for Climate Change. However, recent papers show that methodological innovation has allowed geomorphological reconstruction over timescales highly relevant to late 20th century and 21st century climate change. In turn, these and other developments are allowing links to be made between climatic variability and geomorphology, to begin to predict ‘geomorphic futures’ and also to appreciate the role that geomorphic processes play in the flux of carbon and the carbon cycle. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Study on spatial pattern of land-use change in China during 1995—2000   总被引:53,自引:6,他引:53  
Land-use/cover change has become an event being of paramount importance to the study of global environmental change[1,2]. Land-cover change is closely related to the terrestrial surface material cycles and life-support processes[3], i.e., the interaction …  相似文献   

15.
Introduction The medium of the earth is made up of gas, liquid, and solid. The solid is the main material to form the structure of the earth, so it is very significant to study the solid matter of the earth. Rock, as a solid medium of the earth is a common object studied by geophysicists. The measurement of the comprehensive physical properties of rocks (ZHAO, et al, 1996; GUO, et al, 1989) considered that the minimal cell of rock is the atoms of chemical element, and all sorts of the rock …  相似文献   

16.
17.
《水文科学杂志》2013,58(4):690-703
Abstract

One of the key uncertainties surrounding the impacts of climate change in Africa is the effect on the sustainability of rural water supplies. Many of these water supplies abstract from shallow groundwater (<50 m) and are the sole source of safe drinking water for rural populations. Analysis of existing rainfall and recharge studies suggests that climate change is unlikely to lead to widespread catastrophic failure of improved rural groundwater supplies. These require only 10 mm of recharge annually per year to support a hand pump, which should still be achievable for much of the continent, although up to 90 million people may be affected in marginal groundwater recharge areas (200–500 mm annual rainfall). Lessons learnt from groundwater source behaviour during recent droughts, substantiated by groundwater modelling, indicate that increased demand on dispersed water points, as shallow unimproved sources progressively fail, poses a much greater risk of individual source failure than regional resource depletion. Low yielding sources in poor aquifers are most at risk. Predicted increased rainfall intensity may also increase the risk of contamination of very shallow groundwater. Looking to the future, an increase in major groundwater-based irrigation systems, as food prices rise and surface water becomes more unreliable, may threaten long-term sustainability as competition for groundwater increases. To help prepare for increased climate variability, it is essential to understand the balance between water availability, access to water, and use/demand. In practice, this means increasing access to secure domestic water, understanding and mapping renewable and non-renewable groundwater resources, promoting small-scale irrigation and widening the scope of early warning systems and mapping to include access to water.  相似文献   

18.
It is more and more acknowledged that land-use/cover dynamic change has become a key subject urgently to be dealt with in the study of global environmental change. Supported by the Landsat TM digital images, spatial patterns and temporal variation of land-use change during 1995 –2000 are studied in the paper. According to the land-use dynamic degree model, supported by the 1km GRID data of land-use change and the comprehensive characters of physical, economic and social features, a dynamic regionalization of land-use change is designed to disclose the spatial pattern of land-use change processes. Generally speaking, in the traditional agricultural zones, e.g., Huang-Huai-Hai Plains, Yangtze River Delta and Sichuan Basin, the built-up and residential areas occupy a great proportion of arable land, and in the interlock area of farming and pasturing of northern China and the oases agricultural zones, the reclamation of arable land is conspicuously driven by changes of production conditions, economic benefits and climatic conditions. The implementation of “returning arable land into woodland or grassland” policies has won initial success in some areas, but it is too early to say that the trend of deforestation has been effectively reversed across China. In this paper, the division of dynamic regionalization of land-use change is designed, for the sake of revealing the temporal and spatial features of land-use change and laying the foundation for the study of regional scale land-use changes. Moreover, an integrated study, including studies of spatial pattern and temporal process of land-use change, is carried out in this paper, which is an interesting try on the comparative studies of spatial pattern on change process and the change process of spatial pattern of land-use change.  相似文献   

19.
Introduction During and before the construction of the Three Gorges Project, the annual observation was continuously undertaken by the Three Gorges gravity observation network established around the head area of the reservoir (the section between Sandouping and Badong). This network has pro-vided substantial high precise data related to seismic activity. However, the annual gravity survey together monitoring of the existed observation stations can hardly effective monitor some potential sei…  相似文献   

20.
Multi-proxies of lacustrine sediments, such as total carbon (TC), total organic carbon (TOC), total inorganic carbon (TIC), total nitrogen (TN), total sulfur (TS), hydrogen index (HI), oxygen index (OI) and stable carbon isotopic composition of organic matter (δ 13Corg), were analyzed using a 7.3 m core from Zigê Tangco. The source of the organic matter in the sediment was mainly from autochthonous phytoplankton, therefore the significances of proxies can be interpreted as that high TOC, TOC/TS, HI and δ13Corg values, low TC, TIC values corresponded to warm and wet climatic condition, and vice versa. The process of climatic development in the Zigê Tangco region was hence recovered. During the early and Mid-Holocene, the climate was warm and wet and intensive cold events occurred during the periods of 8600 to 8400 cal a BP and 7400 to 7000 cal a BP. In the second half of Holocene, the climate became cold and dry gradually. The palaeoclimatic process during Holocene in Zigê Tangco region matched well with that in Co Ngoin region which is ca 40 km to the south-east. Therefore this palaeoclimatic process represents the Holocene climatic feature in the Central Tibetan Plateau which has the same pattern in the Northern Tibetan Plateau, but the time and duration of some climatic events might be different. We can conclude that in Holocene solar insolation controlled the climatic pattern on the central Tibetan Plateau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号