首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tree roots provide surface erosion protection and improve slope stability through highly complex interactions with the soil due to the nature of root systems. Root reinforcement estimation is usually performed by in situ pullout tests, in which roots are pulled out of the soil to reliably estimate the root strength of compact soils. However, this test is not suitable for the scenario where a soil progressively fails in a series of slump blocks – for example, in unsupported soils near streambanks and road cuts where the soil has no compressive resistance at the base of the hillslope. The scenario where a soil is unsupported on its downslope extent and progressively deforms at a slow strain rate has received little attention, and we are unaware of any study on root reinforcement that estimates the additional strength provided by roots in this situation. We therefore designed two complementary laboratory experiments to compare the force required to pull the root out. The results indicate that the force required to pull out roots is reduced by up to 50% when the soil fails as slump blocks compared to pullout tests. We also found that, for slump block failure, roots had a higher tendency to slip than to break, showing the importance of active earth pressure on root reinforcement behaviour, which contributes to reduced friction between soil and roots. These results were then scaled up to a full tree and tree stand using the root bundle and field-measured spatial distributions of root density. Although effects on the force mobilized in small roots can be relevant, small roots have virtually no effect on root reinforcement at the tree or stand scale on hillslopes. When root distribution has a wide range of diameters, the root reinforcement results are controlled by large roots, which hold much more force than small roots. © 2019 John Wiley & Sons, Ltd.  相似文献   

2.
考虑地基土液化影响的桩基高层建筑体系地震反应分析   总被引:5,自引:2,他引:5  
本文建立了土体-结构体系地震反应分析的混合有限元法,并研究了地基土液化对地震反应的影响。本方法把土体-结构体系简化为一个完整的体系,该体系由梁(柱)单元、剪切杆单元、刚体单元、平面四边形等参单元与三角形单元、界面单元的任意组合来模拟。桩与上部结构材料视为线弹性体,土介质视为非线性材料。土的静应力-应变关系之间的非线性用邓肯一张模型来描述;土的动应力-应变关系之间的非线性和振动孔隙水压力对土的软化效  相似文献   

3.
小应变硬化土模型参数的确定与敏感性分析   总被引:2,自引:0,他引:2       下载免费PDF全文
地下工程施工引起的土体扰动区可分为剧烈扰动区、扰动区、微扰动区和未扰动区。为全面反映土体在扰动下的应力路径和力学响应,必须考虑全应变范围的土体特性,尤其是小应变范围内的力学响应,因此对小应变硬化土本构模型关键参数(初始剪切模量和剪应变阀值)的确定方法进行介绍。开展上海典型软土的三轴固结排水剪切试验和固结试验研究,给出确定上海软土小应变硬化土模型(HSSmall)参数的方法,建议采用原位测试的方法确定土体的初始弹性模量。基于土单元数值模拟进行初始弹性模量和剪应变阀值的参数敏感性分析。随着初始弹性模量的增大,初始压缩曲线与卸载-再压缩曲线的斜率均增大。由于对应的回弹模量不变,初始弹性模量与回弹模量的差值增大,应变与偏应力试验曲线的回滞环宽度也随之增大。随着剪应变阀值的增大,初始压缩曲线和再压缩曲线的近似直线段增长,在同样剪应力情况下,土体的应变值减小,土体保持初始弹性模量刚度的区间增大。  相似文献   

4.
连续降雨条件下某震后高边坡稳定性分析   总被引:2,自引:0,他引:2       下载免费PDF全文
基于饱和-非饱和渗流理论,综合考虑降雨入渗引起土体重量增加、渗透力增大以及抗剪强度降低等因素的影响,建立降雨条件下震后高边坡有限元模型,运用自编计算程序USLOPE-FEM进行稳定性分析。研究结果表明:未降雨之前,坡体塑性应变主要集中分布于松散堆积体下部与基岩分界面,边坡已经接近临界平衡状态;降雨量20mm/h时连续入渗使边坡上部土层含水量增加,负压区消失且出现饱和区;随着降雨时间延长,坡体表层暂态饱和区逐渐向内部推移,土体的重量和渗透力显著增大、抗剪强度明显降低,坡体中剪应力整体增大,塑性应变区向坡顶扩展而逐渐贯通;连续降雨6h后,临空面表层出现局部滑塌,连续降雨36h后整个堆积层将沿基岩滑塌逐步堵江。研究成果可为强降雨条件下边坡安全性评价提供参考,也为该边坡的失稳预警与滑坡防治积累资料。  相似文献   

5.
Novel approaches to the dynamic analysis of the reinforced soil walls have been reported in the literature. Use of marginal soils reduces the cost of geosynthetic reinforced soil walls if proper drainage measures are taken. Therefore the affect of using cohesive marginal soils as backfill in geosynthetic reinforced retaining structures were investigated in this research. The dynamic response of reinforced soil walls was investigated in a similar focus, using finite element analysis. The results obtained from walls with cohesive backfill were compared to the results obtained from walls with granular backfill. The height of the wall was chosen as 6 m in the two-dimensional plane strain finite element model and the base acceleration was chosen to be a harmonic motion. The effects of various parameters like the backfill type, facing type, reinforcement stiffness, and peak ground acceleration on the cyclic response of reinforced soil retaining walls were investigated. After analyzing the wall response for end of construction and dynamic excitation phases, it was determined that the deformations and reinforcement tensile loads increased during the cyclic load application and that the amount of additional deformation that occurred during cyclic load application was strongly related to backfill soil type, facing type, reinforcement type and peak ground acceleration. It was determined that a cohesive backfill and geotextile reinforcement was a good combination to reduce the deformations of geosynthetic reinforced walls during cyclic loading for medium height walls.  相似文献   

6.
The growth and decay of tree roots can stir and transport soil. This is one process that contributes to the mass‐movement of soil on hillslope. To explore the efficiency of this process, we document the mounding of soil beside Ponderosa and Lodgepole pine trees in the forests that dominate the mid‐elevations of Colorado's Boulder Creek watershed. Mounds are best expressed around Ponderosa pines, reaching vertical displacements above the far‐field slopes of order 10–20 cm, fading into the slope by roughly 100 cm distance from the trunks with common diameters of 30 cm. Positive mounding occurs on all sides of trees on slopes, indicating that the mounding is not attributable to deflection of a creeping flow of soil around the tree, but rather to the insertion of root volume on all sides in the subsurface. Mounding is commonly asymmetric even on cross‐slope profiles. Significant variation in the mound sizes results in no clear relationship between tree diameter and root volume displaced. These observations motivated the development of a discrete element model of tree root growth using the LIGGGHTS model, in which grains we specified to be ‘root cells’ were allowed to enlarge within the simulated granular matrix. Mounding could be reproduced, with the majority of the vertical displacement of the surface being attributable to reduction of the bulk density due to dilation of the granular matrix during root enlargement. Finally, we develop a previous analysis of the role of roots in transporting soil during growth and decay cycles. We find that even in shallow soils, the root‐cycle can drive significant soil transport down forested montane slopes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The susceptibility of cut slopes to landsliding can be reduced in certain circumstances by the establishment of a vegetation cover. However, the hydrological implications of allowing a cover to develop may offset the mechanical benefits of soil reinforcement by roots. The balance between hydrological and mechanical effects is critical on slopes which are susceptible to the development of an infiltration-induced transitory perched water table, a common cause of landslides in deep, tropical residual soils. This balance is likely to change both between slopes of different types as well as temporally on any given slope. The net effect of a vegetation cover must be predicted either before natural vegetation covers are allowed to encroach on bare slopes, or if engineers are considering the use of trees as a protective measure. This paper presents a method of calculating the impact of a vegetation cover on slope stability. Simulations carried out on a wide range of slope types suggest that where failure is most likely to be triggered by infiltration rather than ground water rise, large-scale vegetation covers may contribute to instability. Whether vegetation had a positive or negative impact on slope stability was controlled by the permeability of the soil matrix, whilst the magnitude of impact was controlled by the soil strength and the slope height.  相似文献   

8.
In steep soil‐mantled landscapes, the initiation of shallow landslides is strongly controlled by the distribution of vegetation, whose roots reinforce the soil. The magnitude of root reinforcement depends on the number, diameter distribution, orientation and the mechanical properties of roots that cross potential failure planes. Understanding how these properties vary in space and time in forests remains a significant challenge. Here we test the hypothesis that spatio‐temporal variations in root reinforcement along a hillslope occur as a function of topographic soil moisture gradients. To test this hypothesis we compared root reinforcement measurements from relatively dry, divergent noses to relatively wet, convergent hollows in the southern Appalachian Mountains, North Carolina, USA. Our initial results showed that root reinforcement decreased in areas of higher soil moisture because the tensile strength of roots decreased. A post hoc laboratory experiment further demonstrated that root tensile strength decreased as root moisture content increased. This effect is consistent with other experiments on stem woods showing that increased water content in the cell wall decreases tensile strength. Our experimental data demonstrated that roots can adjust to changes in the external root moisture conditions within hours, suggesting that root moisture content will change over the timescale of large storm events (hours–days). We assessed the effects of the dynamic changes in root tensile strength to the magnitude of apparent cohesion within the infinite slope stability model. Slopes can be considerably less stable when precipitation‐driven increases in saturated soil depth both increase pore pressures and decrease root reinforcement. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
土石坝的拟静力计算与温控参数折减有限元法相结合,对土石坝边坡稳定性进行有限元计算与分析。按《水工建筑物抗震设计规范》(SL203-97)的规定,依据坝高动态分布系数施加水平等效地震惯性力,然后用温控参数折减有限元法确定土石坝边坡的临界失稳状态及其所对应的安全系数。结果表明:采用此法进行拟静力土石坝边坡稳定分析与传统的Bishop法相比,计算结果相一致,且可以反映土石坝的应力、应变和整个边坡破坏发展过程。  相似文献   

10.
A review of present modelling approaches for root reinforcement in vegetated steep hillslopes reveals critical gaps in consideration of plant–soil interactions at various scales of interest for shallow landslide prediction. A new framework is proposed for systematic quantification of root reinforcement at scales ranging from single root to tree root system, to a stand of trees. In addition to standard basal reinforcement considered in most approaches, the critical role of roots in stabilizing slopes through lateral reinforcement is highlighted. Primary geometrical and mechanical properties of root systems and their function in stabilizing the soil mass are reviewed. Stress–strain relationships are considered for a bundle of roots using the formalism of the fiber bundle model (FBM) that offers a natural means for upscaling mechanical behavior of root systems. An extension of the FBM is proposed, considering key root and soil parameters such as root diameter distribution, tortuosity, soil type, soil moisture and friction between soil and root surface. The spatial distribution of root mechanical reinforcement around a single tree is computed from root diameter and density distributions based on easy to measure properties. The distribution of root reinforcement for a stand of trees was obtained from spatial and mechanical superposition of individual tree values with regard to their positions on a hillslope. Potential applications of the proposed approach are illustrated in a numerical experiment of spatial strength distribution in a hypothetical slope with 1000 trees randomly distributed. The analyses result in spatial distribution of weak and strong zones within the soil where landslide triggering is expected in large and continuous zones with low reinforcement values. Mapping such zones would enhance the quality of landslide susceptibility maps and optimization of silvicultural measures in protection forests. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
土单元永久应变势的预测模型是土动力学的重要研究内容之一。现有的土单元永久应变势模型没有反映振动孔压增长的影响,难以合理解释地震动作用引起的饱和砂土地基永久变形一般是由土层软化或再固结变形所致的机理。基于饱和南京细砂永久变形动三轴试验结果的有效应力状态分析,研究了试样的永久变形与振动孔压增长的关系,建立了一个能反映振动孔压增长影响的土单元永久应变势模型,给出了土单元永久应变势的数学表达式,分析了土单元永久应变势模型参数的影响因素。初步的验证性试验表明:模型预测与试验测得的试样永久应变势与振动孔压增长曲线比较接近,说明该模型具有一定的合理性。  相似文献   

12.
为研究冲击荷载或地震作用下产生的,以Rayleigh波为主的面波对浅层地表土体动力响应特征以及数值模拟中土层阻尼的设置方法,以厦门地区浅层的素填土及粉质黏土为研究对象,采用有限元动力分析,土体本构采用小应变硬化模型(HSS),利用模型本身的滞回环特性,输入变化的小应变参数,考察HSS模型的小应变参数对场地动力响应的影响,并与土体采用摩尔-库伦模型结合Rayleigh阻尼("MC+Rayleigh阻尼")的计算结果进行对比。研究表明:当采用带有滞回环的HSS模型时,波速随初始剪切模量Gref0的增大而增大,但振幅减小,残余变形量也有所减小;小应变参数γ0.7对波的影响较小;HSS模型能够给出残余变形量,而"MC+Rayleigh阻尼"由于本构模型为理想弹塑性模型,在卸载重加载条件下表现为纯弹性行为,无法反映出卸载重加载过程中塑性应变的积累及其累积阻尼效应;但HSS模型还不能够全面反映循环加载作用下塑性体积应变的累积,因此在考虑滞回阻尼的基础上,仍然建议借助Rayleigh阻尼来更加全面地模拟土体的实际阻尼特性。  相似文献   

13.
李强  朱大勇 《地震学刊》2010,(4):431-434
在分析加筋土边坡稳定性时,将加筋材料的作用视为施加于滑面上的等效力,建立了满足力平衡的加筋土边坡安全系数的计算格式;将边坡临界滑动场数值模拟方法进行推广,提出了基于力平衡的加筋土边坡临界滑动场计算方法,可以得到形状任意的临界滑动面及边坡最小安全系数。通过算例,比较加筋前后临界滑动面和安全系数的变化,并探讨了加筋水平间距、强度、长度对加筋土边坡稳定性的影响。  相似文献   

14.
地震环境下钢筋混凝土箱梁复合受力特性分析   总被引:1,自引:1,他引:0       下载免费PDF全文
刘觅  高亮 《地震工程学报》2018,40(4):665-670
利用传统有限元分析法对地震环境下钢筋混凝土箱梁复合受力特性分析时,采用专家经验进行配筋,存在较强的主观意识,导致获取的复合受力特性分析结果存在偏差。根据以往的实验研究参数结合国家对混凝土桥梁参数的限制条件,构建地震环境下钢筋混凝土箱梁复合受力实验模型。设定实验模型尺寸,根据模型尺寸选择模型材料,采用圆钢与角钢搭建跨梁连续支座,融合反力架与千斤顶设计实验加载方案;根据方案中得出的配筋计算结果,获取地震环境下钢筋连续箱梁复合受力实验模型的科学配筋方案。实验结果表明,该实验模型可对地震环境下钢筋混凝土箱梁复合受力特性进行全面、准确分析。  相似文献   

15.
Accurate prediction of the liquefaction of saturated soils is based on strong coupling between the pore fluid phase and soil skeleton. A practical numerical method for large strain dynamic analysis of saturated soils is presented. The up formulation is used for the governing equations that describe the coupled problem in terms of soil skeleton displacement and excess pore pressure. A mixed finite element and finite difference scheme related to large strain analysis of saturated soils based on the updated Lagrangian method is given. The equilibrium equation of fluid-saturated soils is spatially discretized by the finite element method, whereas terms associated with excess pore pressure in the continuity equation are spatially discretized by the finite difference method. An effective cyclic elasto-plastic constitutive model is adopted to simulate the non-linear behavior of saturated soils under dynamic loading. Several numerical examples that include a saturated soil column and caisson-type quay wall are presented to verify the accuracy of the method and its usefulness and applicability to solutions of large strain liquefaction analysis of saturated soils in practical problems.  相似文献   

16.
土体地震反应分析的简化有效应力法   总被引:6,自引:1,他引:6  
本文提出了一个计算二维土体地震反应的简化有效应力法。该方法将整个地震特时分成若干时段,对每个时段用等效线性迭代进行次线性分析,等效剪应变幅值取该时剪应变均方根值的√2倍。  相似文献   

17.
在密砂、坚硬黏土及原状土的强度试验中,土试样常表现为应变软化,随着应变的增加其抗剪强度降低,并且发生渐进破坏。应用传统的极限平衡法,采用峰值强度作为计算参数进行稳定分析验算时,通常忽略土材料的渐进破坏过程,这可能会对边坡稳定评价带来不利影响。基于有限元极限平衡法,提出考虑应变软化的边坡稳定分析方法,并通过算例分析证明该方法的合理性。  相似文献   

18.
传统基于瑞典法的边坡加固抗震性能参数分析,通过建立强度参数与临界滑动面对应关系完成推导,由于因荷载过大,边坡建筑物抗震性能降低,准确率不高等问题,提出新的边坡加固抗震性能参数分析方法,对边坡加固的抗震性能参数进行分析,更好地通过加固提高其抗震性能。运用新型边坡加固抗震性能参数分析方法,采用基于极向条分的极限分析上限法和非线性Mohr-Coulomb破坏准则,分析边坡加固措施对边坡抗震性能的影响,通过对比有、无加固措施状态下不同能量功率的运算确定边坡抗震性能,利用MATLAB软件获取边坡加固抗震性能参数的最优解。经实验证明,边坡潜在破坏范围受边坡坡顶受荷和边坡加固情况的作用较大,地震荷载系数及非线性系数越大,土体强度非线性越小,边坡抗震性能受地震荷载的作用也越大。边坡抗滑桩最优抗震支护方位位于X_F/L_x=0.7处,在地震荷载从0上升至0.2的情况下,非线性系数为1.2、1.4、1.6以及2.0时的边坡抗震性能分别下降了40.1%、46.8%、57.5%以及61.5%。新型的抗震性能参数分析方法有效地提高了结果准确率,对边坡加固的抗震性能能达到准确分析。  相似文献   

19.
Vegetated, shallow groundwater environments typically have high environmental and economic value. A sound understanding of the complex interactions and feedbacks between surface vegetation and groundwater resources is crucial to managing and maintaining healthy ecosystems while responding to human needs. A vegetated shallow groundwater environment was modelled using the software HYDRUS 2D to investigate the effects of several combinations of soil type and root distributions on shallow groundwater resources. Three rainfall regimes coupled to both natural and anthropogenically affected groundwater conditions were used to investigate the effect that combinations of four soil types and five root distributions can have on (a) groundwater level drops, (b) groundwater depletion, (c) groundwater recharge and (d) water stress conditions. Vegetation with roots distributed across the whole unsaturated zone and vegetation with dimorphic root systems (i.e. roots having larger concentrations both near the surface and the capillary fringe) behaved differently from vegetation growing roots mainly near the saturated zone. Specifically, vegetation with roots in the unsaturated zone caused water‐table drops and groundwater depletions that were half the amount due to deep‐rooted vegetation. Vegetation with a large portion of roots near the soil surface benefited from rainfall and was less vulnerable to water‐table lowering; as such, the fraction of the total area of roots affected by water stress conditions could be 40% smaller than in the case with deep‐rooted vegetation. However, roots uniformly distributed in the unsaturated zone could halve groundwater recharge rates observed in bare soils. Our analysis provided insights that can enable the formulation of site‐ and purpose‐specific management plans to respond to both human and ecosystem water requirements. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
边坡变形的分布式光纤监测试验研究及实践   总被引:1,自引:0,他引:1  
布里渊光时域反射计(BOTDR)是一项新型光电传感仪器,可对沿光纤的轴向应变进行分布式监测。该技术采用光纤作为传感和传输介质,具有良好的抗干扰、长距离、可植入性和分布式监测等特点。本文总结了近几年来分布式光纤在边坡工程中监测的工程实践和试验研究结果。实践表明,将光纤传感器铺设在加固边坡的锚杆和框架梁中,在加固边坡的同时进行安全监测,可以取得良好的效果;而将光纤直接铺设在边坡浅层土体中进行监测,可以及时对边坡安全提供预警,但往往不利于长期监测。本文还介绍了将光纤传感器布设在用于加固边坡的土工织物中进行安全监测的室内试验研究。实验证明,不同的光纤类型、布设方法、土工织物性能等都会对监测结果产生影响。最后分析了分布式光纤监测在岩土工程监测中的应用前景,以及今后研究的关键技术问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号