首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A small Holocene fan is forming where Queen Inlet, a hanging valley, enters West Arm fjord, Glacier Bay, Alaska. Queen fan formed in the last 80 years following retreat of the Little Ice Age glacier that filled Glacier Bay about 200 yr BP. It was built mainly by a turbidite system originating from Carroll Glacier delta, as the delta formed in the early 1900s at the head of Queen Inlet. The Late Holocene Queen fan is comparable to large Pleistocene fans that formed in the Gulf of Alaska and differs from trough-mouth fans formed by cooler climate glacier systems. Received: 7 January 1999 / Revision received: 3 June 1999  相似文献   

2.
The frequency of turbidity currents in Bute Inlet and Knight Inlet (British Columbia, Canada) was monitored. A prototype instrument (turbidity event detector) was deployed adjacent to prominent incised sea-floor channels. Approximately 25–30 turbidity currents occur annually. They appear closely correlated to periods of higher river discharge into the heads of the fjords. Two peaks in both discharge and turbidity current fequency occur, one in response to snow melt in late June–early July, the other to glacier melt in August. Virtually no turbidity currents were observed in winter. River mouth bars, channel deposits, and other deltaic sediments build up during lower discharge periods and are swept onto the steep delta front and into subaqueous channels, along with bedload, during floods.  相似文献   

3.
Freshwater discharge is one of the most critical parameters driving water properties within fjord estuarine environments. To date, however, little attention has been paid to the issue of freshwater runoff into Glacier Bay, a recently deglaciated fjord in southeastern Alaska. Estimates of discharge into Glacier Bay and the outlying waters of Icy Strait and Cross Sound are therefore presented. Existing regression equations for southcentral and southeastern coastal Alaska are applied to Glacier Bay to arrive at the estimates. A limited set of acoustic Doppler current profiler (ADCP) measurements generally support the predictions of the regression equations. The results suggest that discharge into the bay ranges from a few hundred to a few thousand m3 s−1 during a typical year. Peak discharges can be much higher, approximately 10,000 m3 s−1 for the 10-year flow event. Estimates of the seasonal variation of discharge are also obtained and reveal a broad peak during the summer months.  相似文献   

4.
Estuarine, Coastal and Shelf Science has throughout its history considered a diverse range of habitats including estuaries and fjords, brackish water and lagoons, as well as coastal marine systems. Its articles have reflected recent trends and developments within the estuarine and coastal fields and this includes the changing use of well-accepted terms. The term “transitional waters” first came to prominence in 2000 with the publication of the Water Framework Directive of the European Communities [European Communities, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities 43 (L327), 75 pp.], where “transitional waters” are defined as “bodies of surface water in the vicinity of river mouths which are partially saline in character as a result of their proximity to coastal waters but which are substantially influenced by freshwater flows”. The inclusion of the term transitional waters in our own aims and scope reflects the evolution of language in this subject area, encompassing tidal estuaries and non-tidal brackish water lagoons. This article reflects on some of the difficulties posed by the use of the term and its attempts to be inclusive by incorporating fjords, fjards, river mouths, deltas, rias and lagoons as well as the more classical estuaries. It also discusses the problems of including in the term river mouths discharging either into predominantly brackish areas such as the Baltic Sea, or into freshwater-poor areas bordering the Mediterranean.  相似文献   

5.
Archeological evidence of Pacific salmon in Hokkaido is reviewed and compared with results from western North America. Salmon remains have been found at 24 sites in Hokkaido from the Early Jomon Period to the Ainu Period (6000–100 years ago). Fish remains at three archeological sites in the Kushiro River basin indicated that Pacific salmon (Oncorhynchus spp.) were distributed and utilized from 6000 years ago. The present Kushiro Wetland was formerly covered with seawater and called the Paleo Kushiro Bay 5000–6000 years ago. Based on the molluscan fossil fauna, seawater temperature at Paleo Kushiro Bay was about 5°C warmer than at present. Warmer conditions for salmon in Kushiro 5000–6000 years ago corresponded with the poor conditions for salmon in the Columbia River basin 6000–7000 years ago. If the future global warming is similar to the conditions that prevailed 5000–6000 years ago, the southern limit of salmon distribution will shift northwards and the salmon production will decrease. However, they will not disappear from either Hokkaido or southwestern North America.  相似文献   

6.
环境因素对杭州湾中型浮游动物群落结构的控制作用   总被引:1,自引:0,他引:1  
A quarterly study of mesozooplankton community structure and environmental variables in the Hangzhou Bay was conducted to examine the response of mesozooplankton community to the variation of water mass and environmental condition. The southeast coast of China is a typical region under the intensive influence of Asia monsoon and freshwater discharge from rivers. The water mass and environmental condition of the Hangzhou Bay, which were influenced by the interaction of currents, freshwater discharge of the Qiantang River and Changjiang River Plume, showed significant seasonal variation. Our results showed that both biomass and abundance were significantly higher in summer((247.7±148.8) mg/m~3 and(350.9±215.6) ind./m~3, respectively)than those in other seasons. Four eco-geographical regions were divided based on the cluster analysis of zooplankton community of the Hangzhou Bay throughout the year, except for winter. Monsoon and the dissolved inorganic nitrogen(DIN) input from freshwater discharge of the Qiantang River and Changjiang River resulted in temporal and spatial variations of environmental gradient in the Hangzhou Bay, which significantly influenced the structure of mesozooplankton community. Redundancy analysis(RDA) indicated that the mesozooplankton community structure was strictly correlated with the DIN gradient, while salinity gradient showed a weak influence in the Hangzhou Bay.  相似文献   

7.
From 1980 to 1995, in August, the bottom layer of Osaka Bay was occupied by cold, nutrient-rich water compared with that observed during both previous and subsequent decades. To investigate the mechanisms for the intrusion of bottom-layer cold water into Osaka Bay, the intrusion into Osaka Bay via the Kii Channel is simulated using a finite-volume coastal ocean model with unstructured triangular cell grids. The initial conditions, boundary conditions, and surface temperature given to the model are obtained from daily reanalysis data provided by the Japan Coastal Ocean Predictability Experiment. The model shows that cold water uplifted on the eastern side of the Kii Peninsula is propagated westward at 1.0 m/s as a coastal boundary current; it reaches the Kii Channel mouth when the Kuroshio axis is located around 74 km south of Cape Shionomisaki. However, the modeled cold water mass at the Kii Channel mouth does not intrude further to the north of the Kii Channel; therefore, another mechanism is required to explain the cold-water intrusion into the bottom layer of Osaka Bay. A plausible explanation is the estuarine circulation established by the freshwater supply at the bay head. When the river runoff is included in the model without forced vertical mixing, the temperature in Osaka Bay decreases 6.6 days later than the temperature decreases at the Kii Channel mouth. Furthermore, the shoreward current speed in the bottom layer of the modeled estuarine circulation is 15 cm/s, which provides the mechanism required for the cold water mass to pass the Kii Channel.  相似文献   

8.
The circulation, water masses and sea-ice of Baffin Bay   总被引:2,自引:0,他引:2  
The oceanographic, meteorological and sea-ice conditions in Baffin Bay are studied using historical hydrographic, satellite and meteorological data, and a set of current meter data from a mooring program of the Bedford Institute of Oceanography. Baffin Bay is partially covered by sea-ice all year except August and September. The interannual variation of the ice extent is shown to be correlated with winter air temperature. Available hydrographic data were used to study the water masses and the horizontal and vertical distribution of temperature/salinity. Three water masses can be identified – Arctic Water in the upper 100–300 m of all regions except the southeast, West Greenland Intermediate Water at 300–800 m in most of the interior of Baffin Bay, and Deep Baffin Bay Water in all regions below 1200 m. The temperature and salinity in Baffin Bay have limited seasonal variability except in the upper 300 m of eastern Davis Strait, northern Baffin Bay and the mouth of Lancaster Sound. Summer data have a temperature minimum at 100 m, which suggests winter convection does not penetrate deeper than this depth. Current meter data and results of a circulation model indicate that the mean circulation is cyclonic. The seasonal variation of the currents is complex. Overall, summer and fall tend to have stronger currents than winter and spring at all depths. Among the different regions, the largest seasonal variation occurs at the mouth of Lancaster Sound and the Baffin Island slope. Model generated velocity fields show a basic agreement with the observed currents, and indicate strong topographic control in the vicinity of Davis Strait and on the Greenland shelves. The model also produces a southward counter current on the Greenland slope, which may explain the observed high horizontal shears over the Greenland slope. Estimates of the volume and fresh water transports through Lancaster, Jones and Smith Sounds are reviewed. Transports through Davis Strait are computed from the current meter data. The balance of freshwater budget and sensitivity of the thermohaline circulation to freshwater transport are discussed.  相似文献   

9.
The circulation of northwestern Bay of Bengal is modeled using a three-dimensional Princeton Ocean Model (POM). Orthogonal curvilinear grid is used to get a higher resolution along the coastal boundaries. Numerical simulations on climatological scale for premonsoon were compared with those with and without fresh water during monsoon season.

The simulations for monsoon season without freshwater discharge at head Bay show intensification of the premonsoon features. The presence of lower SSTs and higher sea surface salinities as compared to premonsoon season along the coast substantiate this observation. The pole-ward moving East Indian Coastal Current (EICC) extends along-shore up to 20.5°N. Simulations with freshwater discharge for Monsoon season indicate that freshwater plume constitutes an equator-ward moving EICC branch opposing the pole-ward moving branch. The freshwater discharge modifies sea surface elevations along the northwestern coastal Bay of Bengal, in turn suppressing the coastal upwelling. Absence of freshwater plume imparts a significant change in the oceanic features in north western parts of Bay of Bengal.  相似文献   

10.
An accurate prediction of ocean tides in southeast Alaska is developed using a regional, barotropic ocean model with a finite difference scheme. The model skill is verified by the observational tidal harmonics in southeast Alaska including Glacier Bay. The result is particularly improved in Glacier Bay compared to the previous model described by Foreman et al. (2000). The model bathymetry dominates the model skill. We re-estimate tidal energy dissipation in the Alaska Panhandle and suggest a value for tidal energy dissipation of 3.4 GW associated with the M2 constituent which is 1.5 times the estimation of Foreman et al. (2000). A large portion of the M2 energy budget entering through Chatham Strait is dissipated in the vicinity of Glacier Bay. Moreover, it is shown that the developed model has the potential to correct the ocean tide loading effect in geodetic data more efficiently than the model of Foreman et al. (2000), especially around Glacier Bay.  相似文献   

11.
The dynamics controlling the response of the Baltic Sea to changed atmospheric and hydrologic forcing are reviewed and demonstrated using simple models. The response time for salt is 30 times longer than for heat in the Baltic Sea. In the course of a year, the Baltic Sea renews most of its heat but only about 3% of its salt. On the seasonal scale, surface temperature and ice-coverage are controlled by the atmospheric conditions over the Baltic Sea as demonstrated by e.g. the strong inter-annual variations in winter temperature and ice-coverage due to variations in dominating wind directions causing alternating mild and cold winters. The response of surface temperature and ice-coverage in the Baltic Sea to modest climate change may therefore be predicted using existing statistics. Due to the long response time in combination with complicated dynamics, the response of the salinity of the Baltic Sea cannot be predicted using existing statistics but has to be computed from mechanistic models. Salinity changes primarily through changes in the two major forcing factors: the supply of freshwater and the low-frequency sea level fluctuations in the Kattegat. The sensitivity of Baltic Sea salinity to changed freshwater supply is investigated using a simple mechanistic steady-state model that includes baroclinic geostrophic outflow from the Kattegat, the major dynamical factor controlling the freshwater content in the Kattegat and thereby the salinity of water flowing into the Baltic Sea. The computed sensitivity of Baltic Sea surface salinity to changes of freshwater supply is similar to earlier published estimates from time-dependent dynamical models with higher resolution. According to the model, the Baltic Sea would become fresh at a mean freshwater supply of about 60 000 m3 s−1, i.e. a 300% increase of the contemporary supply. If the freshwater supply in the different basins increased in proportion to the present-day supply, the Bothnian Bay would become fresh already at a freshwater supply of about 37 000 m3 s−1 and the Bothnian Sea at a supply of about 45 000 m3 s−1. The assumption of baroclinic geostrophic outflow from the Kattegat, crucial for the salinity response of the Baltic Sea to changed freshwater supply, is validated using daily salinity profiles for the period 1931–1977 from lightship Läsö Nord.  相似文献   

12.
The influence of the Columbia River plume on the distributions of nitrate and iron and their sources to coastal and shelf waters were examined. In contrast to other large estuaries, the Columbia River is a unique study area as it supplies very little nitrate (5 μM) and iron (14–30 nM) at salinities of 1–2 to coastal waters. Elevated nitrate and dissolved iron concentrations (as high as 20 μM and 20 nM) were observed, however, in the near field Columbia River plume at salinities of 20. Surface nitrate concentrations were higher than observed in the Columbia River itself and therefore must be added by entrainment of higher nitrate concentrations from subsurface coastal waters. Tidal flow was identified as an important factor in determining the chemical constituents of the Columbia River plume. During the rising flood tide, nitrate and iron were entrained into the plume waters resulting in concentrations of 15 μM and 6 nM, respectively. Conversely, during the ebb tide the concentrations of nitrate and total dissolved iron were reduced to 0.3–3 μM and 1–2 nM, respectively, with a concomitant increase in chlorophyll a concentrations. As these plume waters moved offshore the plume drifted directly westward, over a nitrate depleted water mass (< 0.2 μM). The plume water was also identified to move southwards and offshore during upwelling conditions and nitrate concentrations in this far field plume were also depleted. Iron concentrations in the near-field Columbia River plume are sufficient to meet the biological demand. However, due to the low nitrate in the Columbia River itself, nitrate in the plume is primarily dependent on mixing with nitrate rich, cold, high salinity subsurface waters. Without such an additional source the plume rapidly becomes nitrate limited.  相似文献   

13.
High-resolution (3.5 kHz and multi-channel) seismic profiles and piston cores were collected from Maxwell Bay and its tributary embayment, Marian Cove, in the South Shetland Islands, Antarctica, during the Korea Antarctic Research Program (1992/93 and 1995/96) to elucidate the glaciomarine sedimentation processes and recent glacial history of the area. Seismic data from Maxwell Bay reveal a rugged bay margin and flattened basin floor covered with well-stratified hemipelagic muds. On the base-of-slope, acoustically transparent debris flows occur, indicating downslope resedimentation of glaciomarine sediments. Despite the subpolar and ice-proximal settings of Marian Cove, the seafloor is highly rugged with a thin sediment drape, suggesting that much of the area has been recently eroded by glaciers. Sediment cores from the cove penetrated three distinct fining-upward lithofacies: (1) basal till in the lower part of the core, accumulated just seaward of the grounding line of the tidewater glacier; (2) interlaminated sand and mud in the middle part, deposited in ice-proximal zone by a combination of episodic subglacial meltwater inflow and iceberg dumping; and (3) pebbly mud in the upper part, deposited in ice-distal zone by both surface meltwater plume and ice-rafting from the glacier front. A reconstruction of the glacial history of these areas since the late glacial maximum shows an ice sheet filling Maxwell Bay in late Wisconsin time and grounding of the tidewater glacier in Marian Cove until about 1300 yr BP.  相似文献   

14.
We use simple quantitative analyses to evaluate controversial water level scenarios for the Mediterranean “Lower Evaporites” of the Messinian salinity crisis. Our results indicate that a shallow-water scenario for the Lower Gypsum units – with Mediterranean water level lower than the sill at Gibraltar – would imply unrealistic salt thicknesses on the order of 3 km. Some outflow to the open ocean must have persisted, implying that the Mediterranean was a deep-water basin during Lower Gypsum formation. Since glacio-eustatic fluctuations do not seem to have had a major influence on Lower Gypsum deposits, Mediterranean water level was even substantially higher than the Gibraltar sill. Our analyses furthermore show that precessional changes in the freshwater budget may explain the observed cyclic lithological changes of gypsum and non-evaporitic sediments. Potential precipitation of gypsum in the deep Mediterranean basins would have critically depended on the availability of oxygen and thus on the stratification of the water column. Finally, our results indicate that the deep Mediterranean halite units could have been deposited under shallow conditions, assuming that they correspond to the ~ 70 kyr time interval between glacials TG12 and TG14, when Mediterranean outflow to the Atlantic was blocked.  相似文献   

15.
Benthic fauna in Tsivolki Bay (Novaya Zemlya Archipelago, Kara Sea) has been studied during the voyage of the R/V Professor Shtokman in 2013 and 2014. A peculiar feature of the bay is the presence of the Serp i Molot glacier in its inner part, which determines the extremely high content of suspended particles in the water column. The bay is divided into three parts: the inner part (close to the glacier), the middle basin, and the outer slope. These parts are separated from each other by several rises. Benthic communities changed gradually from the inner part of the bay towards the outer slope. Three communities were described from the data of nine grab stations (26 samples). The apex of the bay is occupied by the depleted community dominated by the isopod Saduria sabini and the bivalve Yoldiella lenticula, which can successfully survive the increased mineral sedimentation. In the middle basin, it is replaced by the transitional community with Ennucula tenuis and Portlandia arctica being the main dominants. Finally, the outer slope is inhabited by the community typical for the open parts of the Kara Sea. It is dominated by Astarte crenata, Ophiacantha bidentata, and Ophiopleura borealis. The main reason for macrobenthic distribution in the studied region is the content of mineral particles in the water column and bottom layers.  相似文献   

16.
北极王湾2010年夏季水体营养盐分布及影响因素   总被引:2,自引:1,他引:1  
王湾海域位于北极斯瓦尔巴群岛西北侧,其水体特征主要受到北极冰川与大西洋的共同影响。为了研究冰川融水与大西洋水对王湾营养盐分布以及生态系统的影响,在2010年夏季黄河站考察期间,对王湾海水与地表径流进行采样分析,并测定了营养盐和叶绿素a。结果表明:2010年夏季王湾是大西洋水影响较弱的年份,以低温低盐高营养盐的本地变异水为主导。2010年7月王湾水体可以划分为4个水团,表层水(SW)、中层变异水(TIW)、本地变异水(TLW)和大西洋变异水(TAW),其中,表层水与中层变异水营养盐浓度较低,随着深度增加,本地变异水与大西洋变异水营养盐浓度都较高。大西洋变异水主要影响200m以深水柱,其营养盐浓度低于本地变异水影响的底部值,本地变异水中营养盐浓度的增加主要来自于颗粒物中营养盐的再生。表层水主要来源于地表径流与冰川融水,这些淡水输入与浮游植物的初级生产作用共同决定了表层水的营养盐浓度水平及结构。本地变异水中在水深100m上下出现的铵盐高值可能与浮游动物和/或微生物的代谢过程有关。  相似文献   

17.
Taylor Slough is one of the natural freshwater contributors to Florida Bay through a network of microtidal creeks crossing the Everglades Mangrove Ecotone Region (EMER). The EMER ecological function is critical since it mediates freshwater and nutrient inputs and controls the water quality in Eastern Florida Bay. Furthermore, this region is vulnerable to changing hydrodynamics and nutrient loadings as a result of upstream freshwater management practices proposed by the Comprehensive Everglades Restoration Program (CERP), currently the largest wetland restoration project in the USA. Despite the hydrological importance of Taylor Slough in the water budget of Florida Bay, there are no fine scale (∼1 km2) hydrodynamic models of this system that can be utilized as a tool to evaluate potential changes in water flow, salinity, and water quality. Taylor River is one of the major creeks draining Taylor Slough freshwater into Florida Bay. We performed a water budget analysis for the Taylor River area, based on long-term hydrologic data (1999–2007) and supplemented by hydrodynamic modeling using a MIKE FLOOD (DHI, http://dhigroup.com/) model to evaluate groundwater and overland water discharges. The seasonal hydrologic characteristics are very distinctive (average Taylor River wet vs. dry season outflow was 6 to 1 during 1999–2006) with a pronounced interannual variability of flow. The water budget shows a net dominance of through flow in the tidal mixing zone, while local precipitation and evapotranspiration play only a secondary role, at least in the wet season. During the dry season, the tidal flood reaches the upstream boundary of the study area during approximately 80 days per year on average. The groundwater field measurements indicate a mostly upwards-oriented leakage, which possibly equals the evapotranspiration term. The model results suggest a high importance of groundwater contribution to the water salinity in the EMER. The model performance is satisfactory during the dry season where surface flow in the area is confined to the Taylor River channel. The model also provided guidance on the importance of capturing the overland flow component, which enters the area as sheet flow during the rainy season. Overall, the modeling approach is suitable to reach better understanding of the water budget in the mangrove region. However, more detailed field data is needed to ascertain model predictions by further calibrating overland flow parameters.  相似文献   

18.
Hydrographic changes in the Labrador Sea, 1960–2005   总被引:1,自引:0,他引:1  
The Labrador Sea has exhibited significant temperature and salinity variations over the past five decades. The whole basin was extremely warm and salty between the mid-1960s and early 1970s, and fresh and cold between the late 1980s and mid-1990s. The full column salinity change observed between these periods is equivalent to mixing a 6 m thick freshwater layer into the water column of the early 1970s. The freshening and cooling trends reversed in 1994 starting a new phase of heat and salt accumulation in the Labrador Sea sustained throughout the subsequent years. It took only a decade for the whole water column to lose most of its excessive freshwater, reinstate stratification and accumulate enough salt and heat to approach its record high salt and heat contents observed between the late 1960s and the early 1970s. If the recent tendencies persist, the basin’s storages of salt and heat will fairly soon, likely by 2008, exceed their historic highs.The main process responsible for the net cooling and freshening of the Labrador Sea between 1987 and 1994 was deep winter convection, which during this period progressively developed to its record depths. It was caused by the recurrence of severe winters during these years and in its turn produced the deepest, densest and most voluminous Labrador Sea Water (LSW1987–1994) ever observed. The estimated annual production of this water during the period of 1987–1994 is equivalent to the average volume flux of about 4.5 Sv with some individual annual rates exceeding 7.0 Sv. Once winter convection had lost its strength in the winter of 1994–1995, the deep LSW1987–1994 layer lost “communication” with the mixed layer above, consequently losing its volume, while gaining heat and salt from the intermediate waters outside the Labrador Sea.While the 1000–2000 m layer was steadily becoming warmer and saltier between 1994 and 2005, the upper 1000 m layer experienced another episode of cooling caused by an abrupt increase in the air-sea heat fluxes in the winter of 1999–2000. This change in the atmospheric forcing resulted in fairly intense convective mixing sufficient to produce a new prominent LSW class (LSW2000) penetrating deeper than 1300 m. This layer was steadily sinking or deepening over the years following its production and is presently overlain by even warmer and apparently less dense water mass, implying that LSW2000 is likely to follow the fate of its deeper precursor, LSW1987–1994. The increasing stratification of the intermediate layer implies intensification in the baroclinic component of the boundary currents around the mid-depth perimeter of the Labrador Sea.The near-bottom waters, originating from the Denmark Strait overflow, exhibit strong interannual variability featuring distinct short-term basin-scale events or pulses of anomalously cold and fresh water, separated by warm and salty overflow modifications. Regardless of their sign these anomalies pass through the abyss of the Labrador Sea, first appearing at the Greenland side and then, about a year later, at the Labrador side and in the central Labrador Basin.The Northeast Atlantic Deep Water (2500–3200 m), originating from the Iceland–Scotland Overflow Water, reached its historically freshest state in the 2000–2001 period and has been steadily becoming saltier since then. It is argued that LSW1987–1994 significantly contributed to the freshening, density decrease and volume loss experienced by this water mass between the late 1960s and the mid 1990s via the increased entrainment of freshening LSW, the hydrostatic adjustment to expanding LSW, or both.  相似文献   

19.
乐清湾港池开挖后骤淤可能性分析   总被引:4,自引:0,他引:4  
叶建国  庄晓荣 《海洋工程》2007,25(1):114-119
乐清湾避风条件好,潮流动力强,含沙量小,具有较好的建港条件。通过对骤淤机理的分析和试挖槽在台风期间的监测以及大风浪下的悬沙淤积的估算等多种研究后,认为乐清湾港池开挖后不会发生骤淤,实行浅水深用的开发方案是可行的。  相似文献   

20.
Water transport at subtidal frequencies in the Marsdiep inlet   总被引:1,自引:0,他引:1  
Long-term time series of subtidal water transport in the 4-km wide Marsdiep tidal inlet in the western Dutch Wadden Sea have been analysed. Velocity data were obtained between 1998 and the end of 2002 with an acoustic Doppler current profiler that was mounted under the hull of the ferry ‘Schulpengat’. Velocities were integrated over the cross-section and low-pass filtered to yield subtidal water transport. A simple analytical model of the connected Marsdiep and Vlie tidal basins was extended to include wind stress and water-level and density gradients and applied to the time series of subtidal water transport. In accordance with the observations, the model calculates a mean throughflow from the Vlie to the Marsdiep basin. The mean water transport through the Marsdiep inlet consists of an export due to tidal stresses and freshwater discharge and an import due to southwesterly winds. In contrast, the variability in the subtidal water transport is mainly governed by wind stress. In particular, southwesterly winds that blow along the main axis of the Marsdiep basin force a throughflow from the Marsdiep to the Vlie basin, whereas northwesterly winds that blow along the main axis of the Vlie basin force a smaller mean water transport in the opposite direction. The contribution of remote sea-level change to the water transport, or coastal sea-level pumping, has been found to be much smaller than the contribution of local wind stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号