首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
We describe the coordinate transformations that can be used to convert the velocity components measured by a set of sonic anemometers with time-dependent tilt fluctuations into a single, time-independent coordinate system. By applying the planar fit method (PFM) to each anemometer dataset, it is possible, for planar flows, to locate the flow plane at each measurement point and compare its orientation with the topography. Installation on a ship is also considered. An application of this method to intercomparison data has led to the detection of an instrument error due to a misalignment between the assembly of the sonic transducers and the anemometer pedestal. If this error occurs, pedestal levelling does not guarantee that measurements are unbiased. A correction method is proposed and the results of two experiments are shown. Flow planarity at different levels and flow distortion caused by the mast are highlighted. The influence of the error on the evaluation of the Reynolds stresses using PFM or the double rotation method and the triple rotation method is discussed and the tilt corrected stresses calculated using the three methods compared.  相似文献   

2.
This paper investigates the possible sources of errors associated with tropical cyclone (TC) tracks forecasted using the Global/Regional Assimilation and Prediction System (GRAPES). In Part I, it is shown that the model error of GRAPES may be the main cause of poor forecasts of landfalling TCs. Thus, a further examination of the model error is the focus of Part II. Considering model error as a type of forcing, the model error can be represented by the combination of good forecasts and bad forecasts. Results show that there are systematic model errors. The model error of the geopotential height component has periodic features, with a period of 24 h and a global pattern of wavenumber 2 from west to east located between 60°S and 60°N. This periodic model error presents similar features as the atmospheric semidiurnal tide, which reflect signals from tropical diabatic heating, indicating that the parameter errors related to the tropical diabatic heating may be the source of the periodic model error. The above model errors are subtracted from the forecast equation and a series of new forecasts are made. The average forecasting capability using the rectified model is improved compared to simply improving the initial conditions of the original GRAPES model. This confirms the strong impact of the periodic model error on landfalling TC track forecasts. Besides, if the model error used to rectify the model is obtained from an examination of additional TCs, the forecasting capabilities of the corresponding rectified model will be improved.  相似文献   

3.
A field-based Intercomparison study of a commercial Differential Optical Absorption Spectroscopy (DOAS) instrument (OPSIS AB, Sweden) and different point-sample monitoring techniques (PM, based on an air monitoring station, an air monitoring vehicle, and various chemical methods) was conducted in Beijing from October 1999 to January 2000. The mixing ratios of six trace gases including NO, NO2, SO2, O3, benzene, and toluene were monitored continuously during the four months. A good agreement between the DOAS and PM data was found for NO2 and SO2. However, the concentrations of benzene, toluene, and NO obtained by DOAS were significantly lower than those measured by the point monitors. The ozone levels monitored by the DOAS were generally higher than those measured by point monitors. These results may be attributed to a strong vertical gradient of the NO-O3-NO2 system and of the aromatics at the measurement site. Since the exact data evaluation algorithm is not revealed by the manufacturer of the DOAS sys  相似文献   

4.
An experimental investigation of the simultaneous absorption of NH3 and SO2 from the ambient atmosphere by freely falling water drops has been carried out in the Mainz vertical wind tunnel. The experimental results were found to be in good agreement with the results derived from computations with the Kronig-Brink convective diffusion model and also with a model which assumes a drop to be well mixed at all times. Encouraged by this agreement, these computation schemes for the uptake of gas by single drops where incorporated in a pollution washout model with realistic SO2, NH3 and CO2 gas profiles. This model allows an entire raindrop size distribution to fall through a gas layer. The results of this plume-model show that the SO2 uptake is strongly dependent on the NH3 concentration in the atmosphere and on the rainrate. We also find that the small drops contribute more towards the washout of these gases. In the case of simultaneous presence of NH3 and SO2, desorption of these gases is negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号