首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper reports data on metapelites (gneisses and crystalline schists) from various Early Precambrian lithostratigraphic units of the Yenisei Range (Kan and Yenisei complexes, Garevka Unit, and Teya Group). A representative selection of 57 samples from the examined vertical section were analyzed for major oxides, LILE, transition elements, HFSE, REE, radioactive elements, and other trace and minor elements. The most important distinctive geochemical feature of metapelites composing most of the vertical section is their elevated concentrations of Al, which are higher than in the Post-Archean Australian Shale (PAAS), K, Rb, Ba, Ga, Sc, Pb, Th, Nb, Y, and REE. These data and the systematics of elements in certain discriminant diagrams testify that the metasedimentary complexes in the sedimentation basin and the rocks associations composing the erosion area (crystalline massifs of the ancient basement of the Siberian craton) were strongly geochemically differentiated and mature. The composition of the eroded crustal material was close to the average composition of the post-Archean continental crust and PAAS. The metapelites of the Kuzeeva Unit in the Kan Complex and Penchenginskaya Formation in the Teya Group were the only ones that could have basic rocks as an additional source of material, as also follows from the elevated Cr concentrations of the rocks and their REE systematics. The three types of REE patterns of the metapelites largely correspond to the composition of the rocks that composed the ancient drainage areas and the degrees of the differentiation and averaging of their terrigenous material. The first predominant type corresponds to PAAS and the averaged composition of the upper continental crust. The second and third types of the REE patterns with high and low LaN/YbN ratios, respectively, and with or without negative Eu anomalies provide evidence of the contribution of tonalite-trondhjemite-granodiorite (TTG) or basite sources typical of granite-greenstone provinces. In certain diagrams, the compositional fields of Early Precambrian metapelites in the Yenisei Range almost exactly coincide with the compositional fields of regional fine-grained Riphean terrigenous rocks. This suggests that the Late Precambrian sedimentary rock sequences inherited their geochemical features from more ancient rocks. The reproduced ancient geodynamic environments in which the Early Precambrian metaterrigenous complexes of the Yenisei Range were accumulated correspond to ensialic continental marginal basins. The rocks of the Kan and Yenisei complexes and the Garevka Unit were formed mostly on active continental margins and, less frequently, on passive margins. The protoliths of metasedimentary rocks of the Teya Group were accumulated in a subplatform environment at a passive margin.  相似文献   

2.
The variable P-T metamorphic conditions studied in the Fe-Al metapelites of the Karpinskii Range Formation are regarded as typical of collision-related metamorphism in the trans-Angara part of the Yenisei Range. Recently obtained geochronologic (SHRIMP-II U-Pb zircon dating) and geochemical data on the distribution of major and trace elements are used to reproduce the composition of the protolith, the facies conditions under which it was formed, the tectonic setting, and the age of the eroded rocks. The metapelites are determined to be redeposited and metamorphosed material of Precambrian kaolinite-type weathering crusts of predominantly kaolinite-illite-montmorillonite-quartz composition. The protolith of the rocks was formed via the erosion of Lower Proterozoic granite-gneiss complexes of the Siberian craton (dated mainly within the range of 1962–2043 Ma) and the subsequent accumulation of this material in a continent-marginal shallow-water basin in a humid climate and tectonically calm environment. These results are consistent with data of lithologic-facies analysis and geodynamic reconstructions of the Precambrian evolution of geological complexes in the Yenisei Range. Mass-transfer analysis with the use of the evaluated rock compositions and calculated chemical reactions indicates that the differences in the REE patterns of metapelites from distinct zones can be explained mostly by the chemical heterogeneity of the protolithic material and, to a lesser extent, by metamorphic reactions at a pressure increase.  相似文献   

3.
Four Precambrian metamorphic complexes in the vicinity of regional faults in the Transangarian region of the Yenisei Ridge were examined. Based on geothermobarometry and P-T path calculations, our geological and petrological studies showed that the Neoproterozoic medium-pressure metamorphism of the kyanite–sillimanite type overprinted regionally metamorphosed low-pressure andalusite-bearing rocks at about 850 Ma. A positive correlation between rock ages and P-T estimates for the kyanite-sillimanite metamorphism provide evidence of the regional structural and tectonic heterogeneity. The medium-pressure metamorphism was characterized by (1) the development of deformational structures and textures, and kyanite-bearing blastocataclasites (blastomylonites) with sillimanite, garnet, and staurolite after andalusite-bearing regional metamorphic rocks; (2) insignificant apparent thickness of the zone of medium-pressure zonal metamorphism (from 2.5 to 7 km), which was localized in the vicinity of the overthrusts; (3) a low metamorphic field gradient during metamorphism (from 1–7 to 12 °C/km); and (4) a gradual increase in lithostatic pressure towards the thrust faults. These specific features are typical of collisional metamorphism during overthrusting of continental blocks and are evidence for near-isothermal loading. This event was justified within the framework of the crustal tectonic thickening model via rapid overthrusting and subsequent rapid uplifting and erosion. The results obtained allowed us to consider medium-pressure kyanite-bearing metapelites as a product of collision metamorphism, formed either by unidirectional thrusting of rock blocks from Siberian craton onto the Yenisei Ridge in the zones of regional faults (Angara, Mayakon, and Chapa areas) or by opposite movements in the zone of splay faults of higher orders (Garevka area).  相似文献   

4.
The mineralogical, petrological, geochemical and geochronological data were used to evaluate the age and petrogenesis of compositionally contrasting metamorphic rocks at the junction between Meso-Neoproterozoic Transangarian structures and Archean-Paleoproterozoic complexes of the Angara–Kan inlier of the Yenisei Ridge. The studied metabasites and metapelites provide clues for understanding the evolution of the region. The magmatic protoliths of low-Ti metabasites were derived by melting of depleted (N-MORB) upper mantle, and their high-Ti counterparts are interpreted to have originated from an enriched mantle source (E-MORB). The petrogeochemical characteristics of protoliths of the metabasite dikes resemble those of within-plate basalts and ocean island tholeiites. The Fe- and Al-rich metapelites are redeposited and metamorphosed products of Precambrian weathering crusts of kaolinite and montmorillonite-chlorite-hydromica compositions. The Р–Т conditions of metamorphism (4.9–5.5 kbar/570–650°С for metabasites; 4.1–7.1 kbar/500–630°С for metapelites) correspond to epidote–amphibolite to amphibolite facies transition. The evolution of the Angara complex occurred in two stages. The early stage (1.18–0.85 Ga) is associated with Grenville tectonics and the late stage is correlated with accretion/collision episodes of the Valhalla orogeny, with the peaks at 810–790 and 730–720 Ma, and the final stage of the Neoproterozoic evolution of the orogen on the southwestern margin of the Siberian craton. The correlation of regional crustal processes with globalscale geological events in the Precambrian evolution of the Earth supports recent paleomagnetic reconstructions that allow a direct, long-lived (1400–600 Ma) spatial and temporal connection between Siberia, Laurentia, and Baltica, which have been parts of ancient supercontinents.  相似文献   

5.
Major, trace and rare earth element contents of Fe- and Al-rich metapelites from the Korda (Yenisey Ridge) and Amar (Kuznetsk Alatau) formations were determined to examine the nature, origin and evolution of their protoliths. Results indicate that these rocks are the redeposited and metamorphosed products of Precambrian kaolinitic weathering crusts, while the geochemical distinctions between the studied metapelites are determined by different weathering conditions in the source area and tectonic settings. The protolith of the Korda Formation metapelites was produced by erosion products of the post-Archean granitoid rocks, which accumulated under humid climate conditions in shallow-water basins along the continental margin. The geochemical characteristics of the deeper primary deposits of the Amar Formation suggest that volcanogenic material of mafic composition derived from an island-arc environment had a major role in supplying the erosion zone. These results agree with lithofacies data and with the geodynamic reconstruction of the evolution of the Yenisey Ridge and Kuznetsk Alatau during the Mesoproterozoic and Neoproterozoic, respectively. It was shown that REEs had limited mobility during contact metamorphism. The coherent mobility of REEs during collisional metamorphism may be attributed both to mineral reactions responsible for modal changes and to local chemical heterogeneity inherited from the initial protolith.  相似文献   

6.
Three complexes in the zones of the Ishimbinskii and Tatarka deep faults in the Transangarian part of the Yenisei Range were studied to reproduce their metamorphic evolution and elucidate distinctive features of regional geodynamic processes. The results of our geological and petrological studies with the application of geothermobarometry and P-T metamorphic paths indicate that the Neoproterozoic kyanite-sillimanite intermediate-pressure metamorphism overprinted regionally metamorphosed rocks of low pressure of Middle Riphean age. The kyanite-sillimanite metamorphism was characterized by (1) the development of deformational structures and textures and kyanite-bearing blastomylonites with sillimanite, garnet, and staurolite after andalusite-bearing regional-metamorphic mineral assemblages; (2) insignificant apparent thickness of the zone of intermediate-pressure zonal metamorphism (from 2.5 to 7 km), which was localized near overthrusts; (3) a low geothermal gradient during metamorphism (from 1–7 to 12°C/km); and (4) a gradual increase in the total metamorphic pressure from southwest to northeast with approaching the overthrusts. These features are typical of collisional metamorphism during the thrusting of continental blocks and testify that the rocks subsided nearly isothermally. The process is justified within the scope of a model for the tectonic thickening of the crust via rapid thrusting and subsequent rapid exhumation and erosion. The analysis of our results with regard for the northeastern dips of the thrusts allowed us to consider the intermediate-pressure metapelites as products of collision metamorphism, which were formed in the process of a single thrusting of ancient rock blocks from the Siberian Platform onto the Yenisei Range.  相似文献   

7.
Studies of gneisses from the Yenisei regional shear zone (YRSZ) provide the first evidence for Mesoproterozoic tectonic events in the geologic history of the South Yenisei Ridge and allowed the recognition of several stages of deformation and metamorphism spanning from Late Paleoproterozoic to Vendian. The first stage (~ 1.73 Ga), corresponding to the period of granulite-amphibolite metamorphism at P = 5.9 kbar and T = 635 °C, marks the final amalgamation of the Siberian craton to the Paleo-Mesoproterozoic Nuna supercontinent. During the second stage, corresponding to a hypothesized breakup of Nuna as a result of crustal extension, these rocks underwent Mesoproterozoic dynamic metamorphism (P = 7.4 kbar and T = 660 °C) with three peaks at 1.54, 1.38, and 1.25 Ga and the formation of high-pressure blastomylonite rocks in shear zones. Late-stage deformations during the Mesoproterozoic tectonic activity in the region, related to the Grenville-age collision processes and assembly of Rodinia, took place at 1.17-1.03 Ga. The latest pulse of dynamic metamorphism (615–600 Ma) marks the final stage of the Neoproterozoic evolution of the Yenisei Ridge, which is associated with the accretion of island-arc terranes to the western margin of the Siberian craton. The overall duration of identified tectonothermal processes within the South Yenisei Ridge during the Riphean (~ 650 Ma) is correlated with the duration of geodynamic cycles in the supercontinent evolution. A similar succession and style of tectonothermal events in the history of both the southern and the northern parts of the Yenisei Ridge suggest that they evolved synchronously within a single structure over a prolonged time span (1385–600 Ma). New data on coeavl events identified on the western margin of the Siberian craton contradict the hypothesis of a mantle activity lull (from 1.75 to 0.7 Ga) on the southwestern margins of the Siberian craton during the Precambrian. The synchronous sequence and similar style of tectonic events on the periphery of the large Precambrian Laurentia, Baltica, and Siberia cratons suggest their spatial proximity over a prolonged time span (1550–600 Ma). The above conclusion is consistent with the results of modern paleomagnetic reconstructions suggesting that these cratons represented the cores of Nuna and Rodinia within the above time interval.  相似文献   

8.
Two successive phases of metamorphism can be recognized based on mineralogical and petrological observations coupled with geothermobarometric estimates for chemical zoning in Fe- and Al-rich metapelites from the Teya crystalline rocks of the Transangarian Yenisei Ridge. The first phase is marked by the formation of low-pressure regional metamorphic complexes of the andalusite-sillimanite type (P = 3.9–5.1 kbar; T = 510–640°C), which were most likely related to the Middle Riphean Grenville events. In the second phase, metapelitic rocks underwent Late Riphean medium-pressure collisional metamorphism of the kyanite-sillimanite type (P = 5.7–7.2 kbar, T = 660–700°C), which resulted locally in an increase in pressure in the vicinity of thrusts. These results suggest that medium-pressure kyanite-bearing metapelitic rocks were formed as a result of collision-related metamorphism caused by thrusting of the Siberian cratonal blocks onto the Yenisei Ridge in the vicinity of the Tatarka deep fault.  相似文献   

9.
The clarkes of concentrations (Kc) of a wide range of trace elements (Li, Be, B, Sc, V, Cr, Co, Ni, Cu, Zn, Ga, Ge, As, Rb, Sr, Y, Zr, Nb, Mo, Ag, Cd, In, Sb, Cs, Ba, REE, Hf, Ta, Hg, Tl, Pb, Bi, Th, and U) were analyzed for fine-gained terrigenous rocks (mudstones, metapelites) from the reference Riphean sections of the Uchur-Maya region and the Yenisei Range. It was established that the shales and mudstones of the Uchur and Aimchan groups in the Riphean hypostratotype section are characterized by moderate (2.5 < Kc < 5) and intense (Kc > 5) geochemical specialization for Li, B, and Zn. At the same time, the similar rocks of the Lakhanda and Ui groups do not exhibit any distinct geochemical specialization, although they are notably enriched in HREE. The metapelites from the basal formations of the Riphean sedimentary successions in the Yenisei Range are distinctly specialized for B and slightly for Li, Rb, Be, Nb, Ta, Th, Ge, and Cd. In addition, moderate specialization for Cu is characteristic of the metapelites from the Korda and Lopatino formations; for Bi, Sb, Hg, and V, for their analogs from the Potoskui Formation; and, for Hg and Cs, for the similar rocks from the Lopatino Formation. The metapelites of the Lower Riphean Korda Formation from the central zone of the Yenisei Range have elevated contents of significantly more elements (Li, Be, Sc, V, Cr, Co, Ni, Zn, As, Rb, Y, Zr, Nb, Sb, Ag, In, Hf, Hg, and others) than their counterparts from its eastern near-platform part. The mudstones of the ore-bearing (Pb, Zn) Gorevo Formation are characterized by elevated concentrations of several ore elements such as Pb, Cd, As, Sb, and Bi. The elevated Kc values of the rare lithophile and of several ore elements in the metapelites of the Yenisei Range are determined by the high geochemical differentiation of the Early Precambrian blocks constituting the western margin of the Siberian Craton, which were eroded in the Riphean, and the syn-sedimentary riftogenic and intraplate magmatism. On the contrary, the fine-grained and terrigenous rocks from the basal part of the Riphean section in the Uchur-Maya region are compositionally closer to the immature Late Archean substrates or their Early Proterozoic analogs.  相似文献   

10.
Doklady Earth Sciences - The Fe- and Al-rich metapelites of the North Yenisei Ridge are redeposited and metamorphosed products of Precambrian kaolinite-type weathering crusts of predominantly...  相似文献   

11.
This study provides the first evidence for the occurrence of ultrahigh-temperature (UHT) granulite-facies metamorphism in the Yenisei Ridge (Angara–Kan block). UHT metamorphism is documented in Fe-Al-rich metapelites on the basis of the garnet–hypersthene–sillimanite–cordierite–plagioclase–biotite–spinel–quartz–K-feldspar assemblage. Microtextural relationships and compositional data for paragneisses of the Kan complex attest to three distinct metamorphic episodes: (M1) pre-peak prograde (820?900°C/5.5–7 kbar), (M2) peak UHT (920–1000°C/7–9 kbar), and (M3) post-peak retrograde (770?900°C/5.5–7.5 kbar). The observed counterclockwise P–T evolution at a high geothermal gradient (dT/dP = 100–200°C/kbar) suggests that UHT metamorphic assemblages were formed in an overall extensional tectonic setting accompanied by underplating of mantle-derived mafic magmas, which may be sourced from ~1750 Ma giant radiating dike swarms linked to the Vilyuy mantle plume as part of the Trans-Siberian LIP. The broad synchroneity of UHT metamorphism (1744 ± 26 Ma; monazite–zircon isochron age) and rift-related endogenic activity in the region can provide an additional line of evidence for the two-stage evolution of granulite-facies metamorphism in the Angara–Kan block. The Aldan–Stanovoy, Anabar, and Baikal basement inliers of high-grade metamorphic rocks within the Siberian craton record two Paleoproterozoic peaks (1.9 and 1.75 Ga) of granulite-facies metamorphism. The synchronous sequence of tectonothermal events at the periphery of the large Precambrian Laurentian, Baltica, and Siberian cratons provide convincing evidence for their spatial proximity over a wide time interval, which is consistent with the most recent paleomagnetic reconstructions of the Proterozoic supercontinent Nuna.  相似文献   

12.
Analysis of the litho-geochemistry of fine-grained terrigenous rocks (metapelites, shales, and mudstones) of sedimentary megasequences in the Southern Urals, Uchur-Maya area, and the Yenisei Kryazh indicates that Riphean sequences in these regions are dominated by chlorite-hydromica rocks, with montmorillonite and potassic feldspar possibly occurring only in some of the lithostratigraphic units. According to the values of their hydrolysate modulus, most clay rocks from the three Riphean metamorphosed sedimentary sequences are normal or supersialites, with hydrosialites and hydrolysates playing subordinate roles. The most lithochemicaly mature rocks are Riphean clays in the Yenisei Kryazh (Yenisei Range). The median value of their CIA is 72, whereas this index is 70 for fine-grained aluminosilicate rocks from the Uchur-Maya area and 66 for fine-grained terrigenous rocks of the Riphean stratotype. Hence, at ancient water provenance areas from which aluminosilicate clastic material was transported in sedimentation basins in the southwestern (in modern coordinates) periphery of the Siberian Platform, the climate throughout the whole Riphean was predominantly humid. At the same time, the climate at the eastern part of the East European Platform was semiarid-semihumid. The K2O/Al2O3 ratio, which is employed as an indicator of the presence of petro-and lithogenic aluminosilicate clastic component in Riphean sedimentary megasequences, shows various tendencies. According to their Sc, Cr, Ni, Th, and La concentrations and the Th/Sc ratio, the overwhelming majority of Riphean shales and mudstones notably differ from the average Archean mudstone and approach the average values for post-Archean shales. This suggests that mafic Archean rock in the provenance areas did not play any significant role in the origin of Riphean sedimentary megasequences. The Co/Hf and Ce/Cr ratios of the terrigenous rocks of the three Riphean megaseqeunces and their (Gd/Yb) N and Eu/Eu* ratios place these rocks among those containing little (if any) erosion products of primitive Archean rocks. According to various geochemical data, the source of the great majority of fine-grained aluminosilicate clastic rocks in Riphean sediment megasequences in our study areas should have been mature sialic (felsic), with much lower contents of mafic and intermediate rocks as a source of the clastic material. The REE patterns of the Riphean shales and metapelites in the Bashkir Meganticlinorium, Uchur-Maya area, and Yenisei Kryazh show some features that can be regarded as resulting from the presence of mafic material in the ancient provenance areas. This is most clearly seen in the sedimentary sequences of the Uchur-Maya area, where the decrease in the (La/Yb) N ratio up the sequence of the fine-grained terrigenous rocks from 15–16.5 to 5.8–7.1 suggests that mantle mafic volcanics were brought to the upper crust in the earliest Late Riphean in relation to rifting. Analysis of the Sm-Nd systematics of the Riphean fine-grained rocks reveals the predominance of model age values in the range of 2.5–1.7 Ga, which can be interpreted as evidence that the rocks were formed of predominantly Early Proterozoic source material. At the same time, with regard for the significant role of recycling in the genesis of the upper continental crust, it seems to be quite possible that the ancient provenance areas contained Archean complexes strongly recycled in the Early Proterozoic and sediments formed of their material. An additional likely source of material in the Riphean was mafic rocks, whose variable contribution is reflected in a decrease in the model age values. Higher Th and U concentrations in the Riphean rocks of the Yenisei Kryazh compared to those in PAAS indicate that the sources of their material were notably more mature than the sources of fine-grained aluminosilicate clastic material for the sedimentary megaseqeunces in the Southern Urals and Uchur-Maya area.  相似文献   

13.
The Vaikrita Group made up of coarse mica-garnet-kyanite and sillimanite-bearing psammitic metamorphics constituting the bulk of the Great Himalaya in Kumaun is divisible into four formations, namely theJoshimath comprising streaky, banded psammitic gneisses and schists, the Pandukeshwar consisting predominantly of quartzite with intercalations of schists, thePindari made up of gneisses and schists with lenses of calc-silicate rocks and overwhelmingly injected by Tertiary pegmatites and granites (Badrinath Granite) leading to development of migmatites, and theBudhi Schist comprising biotite-rich calc-schists. The Vaikrita has been thrust along the Main Central Thrust over the Lesser Himalayan Munsiari Formation made up of highly mylonitized low-to meso-grade metamorphics, augen gneisses and phyllonites. Petrological studies demonstrate contrasting nature of metamorphism experienced by the Vaikrita and the Munsiari rocks. Sillimanite-kyanite-garnet-biotite-muscovite (±K-feldspar and ± plagioclase).—quartz metapelites and interbanded calc-schists and calc-gneisses with mineral assemblages of calcite-hornblende-grossular garnet, labradorite (An50?An65), (± K-feldspar)-quartz (± biotite), and hornblende-diopside ± labradorite ± quartz, suggest medium to high grade of metamorphism or indicate upper amphibolite facies experienced by the rocks of the Vaikrita Group. The associated migmatites, granite-gneisses and granites of the Pindari Formation were formed largely as a result of anatexis of metapelites and metapsammites. While, the sericite-chlorite-quartz and muscovite-chlorite-chloritoid-garnet-quartz, assemblages in metapelites and epidote-actinolite-oligoclase (An20)-quartz and epidote-hornblende-andesine (An29) ± quartz in the metabasites suggest a low-grade metamorphism (greenschist facies) for the Munsiari Formation, locally attaining the lower limit of medium-grade (epidote-amphibolite) facies. The inferred P-T conditions obtained from textural relations of various mineral phases and the stability relationship of different coexisting phases in equilibrium, suggest that the temperature ranged between 600° and 650° C and pressure was over 5 kb for the Vaikrita rocks. The mineral assemblages of the Munsiari Formation indicate comparatively lower P-T conditions, where the temperature reached approximately 450° C and pressure was near 4 kb. The rocks of the two groups were later subjected to intense shearing, cataclasis and attendant retrograde metamorphism within the zone of the Main Central (=Vaikrita) Thrust.  相似文献   

14.
Impact melt lithologies of the 77 m.y. old Finnish meteorite crater Lappajärvi as well as the Precambrian target rocks have been studied in detail, to identify and characterize different impact melt types (clast-poor, clast-rich, suevitic melt) and to study their chemical (major and trace elements) and isotopic (Rb-Sr) compositions in comparison to the composition of the target rocks.The Rb-Sr system of the whole melt body—including the suevitic melt—is shown to have been reequilibrated by the impact by extensive turbulent mixing of the various melted or vaporized target rocks. Chemical interactions (exchange of alkali elements, 87Sr-redistribution) between feldspar clasts and impact melt surrounding them are the result of thermal metamorphism following the incorporation of target rock fragments of various degrees of shock metamorphism into the superheated melt. Exchange reactions between clasts and melt are determined by thermal activation, but the degree of shock metamorphism in the clasts plays an important role, too.Major and trace element distributions in impact melt and basement rocks indicate that the Lappajärvi melt body chemically is extremely homogeneous. Even volatile elements (such as Zn and Cu) were not strongly fractionated. Comparison of the abundances of siderophile elements in the impact melt (e.g., 118–177 ppm Cr, 195–340 ppm Ni, 6–12 ppb Ir) and calculated target rock mixture (79% mica schist, 11% granite-pegmatite, 10% amphibolite) (e.g., 85.6 ppm Cr, 54.8 ppm Ni, 0.5 ppb Ir) revealed the chondritic nature (C or H chondritic) of the meteoritic projectile. Less than 2% of the meteorite can be detected in the coherent melt, whereas the suevitic melt is uncontaminated by the projectile.  相似文献   

15.
The information on the composition, structure, P-T conditions of metamorphic facies, evolution, and time of the metamorphic events in the largest Precambrian tectonic provinces of the Antarctic Crystalline Shield gained over more than a half-century is summarized in this paper. The joining up of the ortho- and paracrystalline rocks into complexes and groups according to their geographic position, composition, age, and the character of their metamorphism allowed us to consider the main features of the structure and evolution of the provinces including (1) the near-latitudinal polycyclic Late Precambrian-Early Paleozoic Wegener-Mawson Mobile Belt, extended for more than 4000 km, which started to evolve in the Mesoproterozoic and stabilized only at the end of Cambrian; (2) the Early Precambrian relict crystalline protocratonic blocks adjoining this mobile belt; their history is traced from the Eoarchean; and (3) the near-latitudinal Late Precambrian-Early Paleozoic aulacogen in the southern protocratonic block. The P-T conditions of the metamorphism from the pyroxene-granulite subfacies in the protocratonic blocks to the greenschist facies in aulacogen, as well as the age of the magmatic and metamorphic events in all the tectonic provinces of the shield, are characterized. This made it possible to consider the metamorphic history and conditions of the continental crust’s formation in Antarctica, where the oldest crystalline rocks are dated to the Eoarchean (4060–3850 Ma) and the youngest rocks are ~500 Ma old.  相似文献   

16.
Mn silicate-carbonate rocks at Parseoni occur as conformable lenses within metapelites and calc-silicate rocks of the Precambrian Sausar Group, India. The host rocks are estimated to have been metamorphosed at uppermost P-T conditions of 500–550°C and 3–4 kbar. The Mn-rich rocks contain appreciable Fe, reflected in the occurrence of magnetite(1) (MnO 1%), magnetite(2) (MnO 15%) and magnetite(3) (MnO 10%). Two contrasting associations of pyroxmangite, with and without tephroite, developed in the Mn silicate-carbonate rocks under isothermal-isobaric conditions. The former assemblage formed in relatively Fe-rich bulk compositions and equilibrated with a metamorphic fluid having a low X CO 2 (<0.2), and the latter equilibrated with a CO2-rich fluid. Rhodochrosite+magnetite(1)+quartz protoliths produced the observed mineral assemblages on metamorphism. Partitioning of major elements between coexisting phases is somewhat variable. Fe shows preference for tephroite over pyroxmangite at the ambient physical conditions of metamorphism. Oxygen fugacity during metamorphism was monitored at or near the QFM buffer in tephroite bearing domains, and the fluid composition was buffered by mineral reactions in respective domains. As compared to other metamorphosed Mn deposits of the Sausar Group, the Mn silicate-carbonate rocks at Parseoni were, therefore, metamorphosed at much lower f O 2 through complex mineral-fluid interactions.  相似文献   

17.
The Mahneshan Metamorphic Complex (MMC) is one of the Precambrian terrains exposed in the northwest of Iran. The MMC underwent two main phases of deformation (D1 and D2) and at least two metamorphic events (M1 and M2). Critical metamorphic mineral assemblages in the metapelitic rocks testify to regional metamorphism under amphibolite‐facies conditions. The dominant metamorphic mineral assemblage in metapelitic rocks (M1) is muscovite, biotite I, Garnet I, staurolite, Andalusite I and sillimanite. Peak metamorphism took place at 600–620°C and ∼7 kbar, corresponding to a depth of ca. 24 km. This was followed by decompression during exhumation of the crustal rocks up to the surface. The decrease of temperature and pressure during exhumation produced retrograde metamorphic assemblages (M2). Secondary phases such as garnet II biotite II, Andalusite II constrain the temperature and pressure of M2 retrograde metamorphism to 520–560°C and 2.5–3.5 kbar, respectively. The geothermal gradient obtained for the peak of metamorphism is 33°C km−1, which indicates that peak metamorphism was of Barrovian type and occurred under medium‐pressure conditions. The MMC followed a ‘clockwise’ P–T path during metamorphism, consistent with thermal relaxation following tectonic thickening. The bulk chemistry of the MMC metapelites shows that their protoliths were deposited at an active continental margin. Together with the presence of palaeo‐suture zones and ophiolitic rocks around the high‐grade metamorphic rocks of the MMC, these features suggest that the Iranian Precambrian basement formed by an island‐arc type cratonization. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The study provides geological, structural, mineralogical, petrological, and geochronological evidence for polymetamorphic evolution of gneisses from the Garevka complex of the Yenisei Ridge. The results of the study provide significant insight into the geochemical behavior of major and trace elements in zoned garnet crystals and mineral inclusions formed during prograde and retrograde metamorphism of pelitic rocks. It was shown that the concentrations of Y and HREE in garnet decrease with increasing P and T and increase with decreasing pressure and temperature. The combined study of multicomponent chemical zoning patterns of coexisting minerals and metamorphic mineral reactions in metapelites was conducted. The results show that the main reason for a drastic increase in CaO content in garnets during collisional metamorphism is a mass exchange between garnet and plagioclase. The deviation from this trend, as indicated by the concurrent increase inthe grossular content of garnet and anorthite content of plagioclase, arises from the breakdown of epidote. The calculated metamorphic reactions, mass balance analysis, and changes in mineral chemistry during metamorphism reinforce the evidence for the isochemical character of processes with respect to most components of the system. The minimum volume of the system in which chemical exchange between reacting phases is balanced for all major and trace elements did not exceed ~ 1 mm3. The total HREE balance requires a greater reaction volume (up to ~ 8 mm ) involved in the redistribution of these elements, which provide evidence for their relatively higher mobility during metamorphism relative to other rare earth elements. The specific distribution and quite substantial mass transport of HREE are controlled by heterovalent isomorphic substitution between these elements and CaO in garnet.  相似文献   

19.
We consider the general and specific features of the evolution of the composition of fine-grained terrigenous rocks in the Riphean sedimentary megasequences of the Southern Urals, Uchur-Maya region, and Yenisei Ridge. It has been established that the crust on the southwestern (in the modern frame of references) periphery of the Siberian craton was geochemically the most mature segment of the Riphean continental crust. For example, the fine-grained clastic rocks and metapelites of all Riphean lithostratigraphic units of the Yenisei Ridge have higher median contents of Th than the most mature Paleoproterozoic crust, and in median contents of Y and Cr/Th values they are the most similar to it. In the Southern Urals and Uchur-Maya region, some units of the Riphean sedimentary sequences show median contents of Y and Th and Cr/Th values close to those of primitive Archean crust. Analysis of Cr/Th variations in the fine-grained terrigenous rocks of all three megasequences shows that the minimum Cr/Th values, evidencing a predominance or the abundance of felsic rocks in provenances, are typical of the Riphean argillaceous shales and metapelites of the Yenisei Ridge. The distinct Cr/Th and Cr/Sc increase in the fine-grained clastic rocks of the Chingasan Group of the ridge reflects the large-scale destruction of continental crust during the formation of rift troughs as a result of the Rodinia breakup in the second half of the Late Riphean. The Cr/Th variations in the Lower and Middle Riphean argillaceous shales and mudstones of the Bashkirian mega-anticlinorium and Uchur-Maya region are in agreement, which evidences the subglobal occurrence of rifting in the early Middle Riphean (so-called “Mashak rifting”).  相似文献   

20.
O.P. Goel  M.W. Chaudhari 《Lithos》1979,12(2):153-158
The rocks exposed in the area around Kuanthal represent one of the oldest Precambrian formations of India and constitute the Banded Gneissic Complex (B.G.C.) of Heron (1953). The main rock types are staurolite-sillimanite schists/gneisses, sillimanite gneisses with or without K-feldspar, migmatites and amphibolites, often intimately and inextricably mixed up with one another. The petrochemical studies of the metapelitic rocks show that the formation of sillimanite is controlled by parent rock chemistry. The critical controlling parameters area: alumina, alkalies (Na2O + K2O) and oxidation ratio of rocks. These criteria are equally valid for other well-known areas of high-grade metamorphism. The validity of this proposition has been tested by statistical methods such as multivariate analysis and Mahalonbis's generalized distance D2. The linear discriminant function controlling sillimanite paragenesis in metapelites has been worked out and an equation has been evolved to delineate the ‘SB’ (sillimanite-bearing) and ‘SF’ (sillimanite-free) rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号