共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Do accretion discs regulate the rotation of young stars? 总被引:1,自引:0,他引:1
S. P. Littlefair Tim Naylor Ben Burningham R. D. Jeffries 《Monthly notices of the Royal Astronomical Society》2005,358(2):341-352
We present a photometric study of I -band variability in the young cluster IC 348. The main purpose of the study was to identify periodic stars. In all, we find 50 periodic stars, of which 32 were previously unknown. For the first time in IC 348, we discover periods in significant numbers of lower-mass stars ( M < 0.25 M⊙ ) and classical T Tauri stars. This increased sensitivity to periodicities is a result of the enhanced depth and temporal density of our observations, compared with previous studies. The period distribution is at first glance similar to that seen in the Orion nebula cluster (ONC), with the higher-mass stars ( M > 0.25 M⊙ ) showing a bi-modal period distribution concentrated around periods of 2 and 8 d, and the lower-mass stars showing a uni-modal distribution, heavily biased towards fast rotators. Closer inspection of the period distribution shows that the higher-mass stars show a significant dearth of fast rotators, compared to the ONC, whilst the low-mass stars are rotating significantly faster than those in Orion. We find no correlation between rotation period and K – L colour or Hα equivalent width.
We also present a discussion of our own IC 348 data in the context of previously published period distributions for the ONC, the Orion flanking fields and NGC 2264. We find that the previously claimed correlation between infrared excess and rotation period in the ONC might, in fact, result from a correlation between infrared excess and mass. We also find a marked difference in period distributions between NGC 2264 and IC 348, which presents a serious challenge to the disc-locking paradigm, given the similarity in ages and disc fractions between the two clusters. 相似文献
We also present a discussion of our own IC 348 data in the context of previously published period distributions for the ONC, the Orion flanking fields and NGC 2264. We find that the previously claimed correlation between infrared excess and rotation period in the ONC might, in fact, result from a correlation between infrared excess and mass. We also find a marked difference in period distributions between NGC 2264 and IC 348, which presents a serious challenge to the disc-locking paradigm, given the similarity in ages and disc fractions between the two clusters. 相似文献
4.
5.
6.
7.
8.
9.
A high-velocity ionized outflow and XUV photosphere in the narrow emission line quasar PG1211+143 总被引:1,自引:0,他引:1
K. A. Pounds J. N. Reeves A. R. King K. L. Page P. T. O'Brien M. J. L. Turner 《Monthly notices of the Royal Astronomical Society》2003,345(3):705-713
We report on the analysis of a ∼60-ks XMM–Newton observation of the bright, narrow emission line quasar PG1211+143. Absorption lines are seen in both European Photon Imaging Camera and Reflection Grating Spectrometer spectra corresponding to H- and He-like ions of Fe, S, Mg, Ne, O, N and C. The observed line energies indicate an ionized outflow velocity of ∼24 000 km s−1 . The highest energy lines require a column density of N H ∼ 5 × 1023 cm−2 , at an ionization parameter of log ξ∼ 3.4 . If the origin of this high-velocity outflow lies in matter being driven from the inner disc, then the flow is likely to be optically thick within a radius of ∼130 Schwarzschild radii, providing a natural explanation for the big blue bump (and strong soft X-ray) emission in PG1211+143. 相似文献
10.
11.
R. D. Alexander C. J. Clarke J. E. Pringle 《Monthly notices of the Royal Astronomical Society》2005,358(1):283-290
We present the results of an analysis of ultraviolet observations of T Tauri stars (TTs). By analysing emission measures taken from the literature, we derive rates of ionizing photons from the chromospheres of five classical TTs in the range ∼1041 –1044 photon s−1 , although these values are subject to large uncertainties. We propose that the He ii /C iv line ratio can be used as a reddening-independent indicator of the hardness of the ultraviolet spectrum emitted by TTs. By studying this line ratio in a much larger sample of objects, we find evidence for an ionizing flux which does not decrease, and may even increase, as TTs evolve. This implies that a significant fraction of the ionizing flux from TTs is not powered by the accretion of disc material on to the central object, and we discuss the significance of this result and its implications for models of disc evolution. The presence of a significant ionizing flux in the later stages of circumstellar disc evolution provides an important new constraint on disc photoevaporation models. 相似文献
12.
13.
14.
15.
16.
M. Britsch C. J. Clarke † G. Lodato 《Monthly notices of the Royal Astronomical Society》2008,385(2):1067-1075
We investigate the orbital evolution of planetesimals in a self-gravitating circumstellar disc in the size regime (∼1–5000 km) where the planetesimals behave approximately as test particles in the disc's non-axisymmetric potential. We find that the particles respond to the stochastic, regenerative spiral features in the disc by executing large random excursions (up to a factor of 2 in radius in ∼1000 yr), although typical random orbital velocities are of the order of one tenth of the Keplerian speed. The limited time frame and small number of planetesimals modelled do not permit us to discern any net direction of planetesimal migration. Our main conclusion is that the high eccentricities (∼0.1) induced by interaction with spiral features in the disc is likely to be highly unfavourable to the collisional growth of planetesimals in this size range while the disc is in the self-gravitating regime. Thus if , as recently argued by Rice et al., the production of planetesimals gets under way when the disc is in the self-gravitating regime (either at smaller planetesimal size scales, where gas drag is important, or via gravitational fragmentation of the solid component), the planetesimals thus produced would not be able to grow collisionally until the disc ceases to be self-gravitating. It is unclear, however, given the large amplitude excursions undergone by planetesimals in the self-gravitating disc, whether they would be retained in the disc throughout this period, or whether they would instead be lost to the central star. 相似文献
17.
18.
19.