首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Positive shifts in global seawater δ13CDIC are related to changes in the ratio of organic relative to inorganic carbon burial in oceanic basins, whereas factors such as climatic cooling and the accumulation of polar ice are known to cause positive shifts in δ18O. Here, an alternative model is proposed for the formation of local positive isotope shifts in shallow-marine settings. The model involves geochemically altered platform-top water masses and the effects of early meteoric diagenesis on carbonate isotopic composition. Both mechanisms are active on modern (sub)tropical carbonate platforms and result in low carbonate δ13C and δ18O relative to typical oceanic values. During high-amplitude transgressive events, the impact of isotopically light meteoric fluids on the carbonate geochemistry is much reduced, and 13C-depleted platform-top water mixes with open oceanic water masses having higher isotope values. Both factors are recorded as a transient increase in carbonate 13C and 18O relative to low background values. These processes must be taken into consideration when interpreting the geochemical record of ancient epeiric seas.  相似文献   

2.
Twenty-three magnesite samples from vein deposits, found in ultramafic rocks related to ophiolites in the north-east Bohemian Massif, have been examined for carbon and oxygen isotope ratios. In these rocks two stages of antigorite serpentinization took place prior to magnesite precipitation. δ18OSMOW in magnesites ranges from 24.5 to 27.9%o (corrected for acid fractionation factor) which leads us to conclude a meteoric origin of the ore-forming solution. This inference is further supported by δ13C values (?18.7 to ?4.4%o) which point to a biogenic origin of carbon in the magnesites.  相似文献   

3.
Stable oxygen and carbon isotope ratios (δ18O and δ13C, respectively) of a planktonic foraminiferal species (Globigerinoides sacculifer) and marble carbonate were measured with and without a variety of pretreatments like ultrasonication, soaking in H2O2, methanol and roasting under vacuum. Additionally, organic matter - carbonate mixtures were also analysed with and without the above pretreatments. No significant difference was found in the isotope ratios of treated and untreated samples. It appears that most of the pretreatments may not be necessary when dealing with planktonic foraminifera, especially G. sacculifer. Analysis of two different size fractions (> 400 μm and 250–400 μm) of this species reveals that the smaller size fraction is enriched in 18O and depleted in 13C relative to the bigger size fraction. It is therefore necessary to choose a proper size fraction for isotopic analyses.  相似文献   

4.
The determination of total organic carbon content and composition in detrital sediments requires careful removal of their carbonate minerals. In detrital sediments containing large amounts of carbonates, including dolomite, this can only be achieved by liquid acid leaching that may solubilise a significant proportion of the organic carbon. For a set of detrital sediments from the Himalayan system and the Amazon River as well as five geological reference materials, we determined the proportion of organic carbon (Corg) solubilised during acid leaching. This proportion is significant for all analysed sediments and generally tends to increase with the organic carbon content. Compared to other types of sediments analysed, clay fractions extracted from river sediments and bed sediments with very low organic carbon content have high and low proportions of acid soluble Corg respectively. In Himalayan and Amazon river sediments, the proportion of Corg solubilised during acid leaching was relatively constant with average values of 14 and 19 % respectively. Thus, it is possible to correct the Corg content for the dissolved organic carbon content measured after decarbonation. Data presented here show that Corg dissolved during liquid acid leaching must be taken into account. After careful calibration, the method presented here should, therefore, be applied to any carbonate-rich detrital sediment.  相似文献   

5.
Expanded sedimentary records from the Tethys reveal unique faunal and isotopic changes across the Palaeocene-Eocene (P-E) transition. Unlike in the open oceans, the Tethys exhibits a gradual decrease of 1.5% in δ13C values prior to the rapid δ13C excursion. Associated with the 613C excursion is a decrease in calcite burial, increase in detrital content and appearance of a unique opportunistic planktic foraminifera1 assemblage (e.g. compressed acarininids). The existence of a prelude decrease in δ13C values in the Tethys suggests that the P-E δ13C excursion may have occurred in two steps and over a few hundred thousand years, rather than as one step over a few thousand years as previously suggested. This slower excursion rate is readily explained by changing organic carbon weathering or burial rates and avoids the need of invoking ad hoc scenarios.  相似文献   

6.
Bulk carbonate samples of hemipelagic limestone–marl alternations from the Middle and Upper Triassic of Italy are analysed for their isotopic compositions. Middle Triassic samples are representative of the Livinallongo Formation of the Dolomites, while Upper Triassic hemipelagites were sampled in the Pignola 2 section, within the Calcari con Selce Formation of the Southern Apennines in Southern Italy. Triassic hemipelagites occur either as nodular limestones with chert nodules or as plane‐bedded limestone–marl alternations which are locally silicified. In the Middle Triassic Livinallongo Formation, diagenetic alteration primarily affected the stable isotopic composition of sediment surrounding carbonate nodules, whereas the latter show almost pristine compositions. Diagenesis lowered the carbon and oxygen isotope values of bulk carbonate and introduced a strong correlation between δ13C and δ18O values. In the Middle Triassic successions of the Dolomites, bulk carbonate of nodular limestone facies is most commonly unaltered, whereas carbonate of the plane‐bedded facies is uniformly affected by diagenetic alteration. In contrast to carbonate nodules, plane‐bedded facies often show compaction features. Although both types of pelagic carbonate rocks show very similar petrographic characteristics, scanning electron microscopy studies reveal that nodular limestone consists of micrite (< 5 μm in diameter), whereas samples of the plane‐bedded facies are composed of calcite crystals ca 10 μm in size showing pitted, polished surfaces. These observations suggest that nodular and plane‐bedded facies underwent different diagenetic pathways determined by the prevailing mineralogy of the precursor sediment, i.e. probably high‐Mg calcite in the nodular facies and aragonite in the case of the plane‐bedded facies. Similar to Middle Triassic nodular facies, Upper Triassic nodular limestones of the Lagonegro Basin are also characterized by uncorrelated δ13C and δ18O values and exhibit small, less than 5 μm size, crystals. The alternation of calcitic and aragonitic precursors in the Middle Triassic of the Dolomites is thought to mirror rapid changes in the type of carbonate production of adjacent platforms. Bioturbation and dissolution of metastable carbonate grains played a key role during early lithification of nodular limestone beds, whereby early stabilization recorded the carbon isotopic composition of sea water. The bulk carbonate δ13C values of Middle and Upper Triassic hemipelagites from Italy agree with those of Tethyan low‐Mg calcite shells of articulate brachiopods, confirming that Triassic hemipelagites retained the primary carbon isotopic composition of the bottom sea water. A trend of increasing δ13C from the Late Anisian to the Early Carnian, partly seen in the data set presented here, is also recognized in successions from tropical palaeolatitudes elsewhere. The carbon isotopic composition of Middle and Upper Triassic nodular hemipelagic limestones can thus be used for chemostratigraphic correlation and palaeoenvironmental studies.  相似文献   

7.
The Late Neoproterozoic Buah Formation (Nafun Group, Oman) is a carbonate unit outcropping in the Jabal Akhdar and Huqf areas. It is composed mostly of shallow‐water carbonates deposited on a distally steepened carbonate ramp. Correlation of two δ13C isotope shifts shows that in the Jabal Akhdar ramp differentiation into fast and slow subsiding areas was followed by lateral progradation. In the Huqf area, however, a uniform scenario of upward shallowing of the facies and lateral progradation is demonstrated by chemostratigraphic timelines cross‐cutting the facies belts. The chemostratigraphic profiles show that the Buah Formation was deposited during sea‐level highstand conditions and that ramp differentiation was due to synsedimentary tectonics. High‐resolution correlation of δ13C profiles from the same lithostratigraphic unit (whether Precambrian or Phanerozoic in age) lacking biostratigraphic data can shed light on carbonate systems dynamics, tectonic vs. eustatic controls on depositional sequences and basin subsidence.  相似文献   

8.
Oxygen isotopic compositions of silicates in eclogites and whiteschists from the Kokchetav massif were analyzed by whole‐grain CO2‐laser fluorination methods. Systematic analyses yield extremely low δ18O for eclogites, as low as ?3.9‰ for garnet; these values are comparable with those reported for the Dabie‐Sulu UHP eclogites. Oxygen isotopic compositions are heterogeneous in samples of eclogite, even on an outcrop scale. Schists have rather uniform oxygen isotope values compared to eclogites, and low δ18O is not observed. Isotope thermometry indicates that both eclogites and schists achieved high‐temperature isotopic equilibration at 500–800 °C. This implies that retrograde metamorphic recrystallization barely modified the peak‐metamorphic oxygen isotopic signatures. A possible geological environment to account for the low‐δ18O basaltic protolith is a continental rift, most likely subjected to the conditions of a cold climate. After the basalt interacted with low δ18O meteoric water, it was tectonically inserted into the surrounding sedimentary units prior to, or during subduction and UHP metamorphism.  相似文献   

9.
This paper addresses global oxygenation and establishment of a marine sulphate reservoir in the Palaeoproterozoic. We report syn-depositional, marine, anhydrite-containing pseudomorphs after Ca-sulphates as widespread throughout the Tulomozero Formation in the SE Fennoscandian Shield, implying that surface waters were oxidized and a large SO marine reservoir was developed as early as 2100 Ma. The Ca-sulphates and associated magnesite and halite precipitated syn-depositionally from oxidized, evolved and modified seawater in coastal playa, sabkha and intertidal flat settings. 87Sr/86Sr and δ13C of associated 13C-rich stromatolitic dolostones were environmentally controlled with the highest ratios occurring in playa and sabkha carbonates. The results imply that the Palaeoproterozoic δ13Ccarb excursion was amplified by 8‰ by local environmental factors and calls into question many observations of putative δ13C global signals reported previously from similar Palaeoproterozoic, evaporitic, dolostones. The local environmental amplification can explain a large regional and intercontinental δ13C discrepancy observed in synchronous carbonates.  相似文献   

10.
11.
We report silicon isotopic determinations for USGS rock reference materials BHVO-1 and BHVO-2 using a Nu Plasma multi-collector (MC)-ICP-MS, upgraded with a new adjustable entrance slit, to obtain medium resolution, as well as a stronger primary pump and newly designed sampler and skimmer cones ("B" cones). These settings, combined with the use of collector slits, allowed a resolution to be reached that was sufficient to overcome the 14N16O and 14N2 interferences overlying the 30Si and the 28Si peaks, respectively, in an earlier set-up. This enabled accurate measurement of both δ30Si and δ29Si. The δ value is expressed in per mil variation relative to the NBS 28 quartz reference material. Based on data acquired from numerous sessions spread over a period of six months, we propose a recommended average δ30Si of −0.33 ± 0.05‰ and −0.29 ± 0.11‰ (2se) for BHVO-1 and BHVO-2, respectively. Our BHVO grand mean silicon isotope composition (δ30Si =−0.31 ± 0.06‰) is significantly more negative than the only published value for BHVO-2, but is in very good agreement with the recently established average value of ocean island basalts (OIB), confirming the conclusion that the OIB reservoir has a distinct isotopic composition from the solar reservoir as sampled by chondrites.  相似文献   

12.
The carbonate carbon isotope record of the Phanerozoic is marked by repeated high-amplitude excursions towards more positive values. Although the interpretation of C-isotope events remains controversial, they are regarded as a proxy of the global C-cycle. Using δ13COrg-measurements of samples from DSDP Site 416, it is shown that a classic example of platform drowning coincided with the onset of the mid-Valanginian carbon-cycle excursion. Widespread carbonate platform drowning would have contributed to the observed positive shift in the C-isotope record. As choking of carbonate production was compensated by increased organic production, both processes favoured a shift in marine carbon partitioning from the oxidized to the reduced carbon reservoir. This would have resulted in an increased flux of CO2 from the atmosphere into the marine and sedimentary carbon reservoir.  相似文献   

13.
The cause of the middle Miocene Badenian salinity crisis in the Central Paratethys is addressed by examining the palaeotemperature evolution of Badenian waters before and after the deposition of evaporites. Selected foraminifer taxa ( Globigerinoides spp., Globigerina bulloides , and Uvigerina ) characterizing, respectively, the near-surface, intermediate, and bottom layers of the water column, were studied in two boreholes of SW Poland. The δ18O and δ13C values for these taxa show distinct differences which can be explained by the temperature difference between surface and bottom waters during deposition. These values also show temporal changes corresponding to the water temperature evolution in the Badenian basin. Different and quickly changing environmental conditions have been inferred from changes in foraminifer assemblages. They explain why biostratigraphic subdivisions based on well-recognized assemblages are the most accurate approach for determining the biostratigraphy of middle Miocene deposits in the Central Paratethys. The results of isotopic studies indicate that evaporites occur in a part of the Badenian section that was characterized by the lowest temperatures in the studied sections.  相似文献   

14.
Boron isotope data are presented for Cenozoic Western Anatolia rocks, which define two main associations: (i) calc-alkaline, shoshonitic and ultra-potassic rocks (Early to Middle Miocene); and (ii) Late Miocene–Quaternary intraplate alkali basalts. Boron data, together with Sr–Nd isotope and other trace elements, are consistent with a progressive dehydration of the slab, producing fluid phases gradually depleted in B (and 11B). These fluids were added to the supraslab mantle, triggering a partial melting that gave rise to orogenic magmatism. The stretching and tearing of the slab caused by the faster convergence of Greece over Africa with respect to Anatolia facilitated an interaction of the upwelling subslab asthenosphere with residual slab-fluids during the Late Miocene followed by production of typical intraplate magmas during the Pleistocene–Holocene, whose relatively high δ11B (approximately −2‰) is considered representative of the local asthenosphere not affected by subduction contamination.  相似文献   

15.
The estimated depth of formation of authigenic dolomite concretions in the Middle Ordovician Cloridorme Formation, Quebec, ranges from < 1 m to 150–200 m below sea floor (mbsf) (mostly between < 1 and 25 mbsf), based on centre‐to‐margin variations in minus‐cement porosity (80–90% to 45–75%). Formation depths are > 350 mbsf (25–17% porosity) in the Lower Ordovician Levis Formation. Outward‐decreasing δ13CVPDB values (10·2–0·8‰) suggest precipitation in the methane generation zone with an increasing contribution of light carbonate derived by advection from thermocatalytic reactions at depth. Anomalously low δ18OVPDB values (centre‐to‐margin variations of ?0·4 to ?7·5‰) give reasonable temperatures for the concretion centres only if the δ18O of Ordovician sea water was negative (?6‰) and the bottom water was warm (> 15 °C). The 3–5‰ lower values for the concretion margins compared with the centres can be explained if, in addition, volcanic‐ash alteration, organic‐matter decomposition and/or advection of 18O‐depleted water lowered the δ18O of the pore water further by 2·0–4·0‰ during the first 25–200 m of burial. Reasonable growth temperatures for the margins of 17–20 °C are compatible with a lowering of the isotopic ratios by 1 to < 1·3‰ as a temperature effect. The systematic concentric isotope zonation of the concretions suggests that the well‐ordered near‐stoichiometric dolomite is a primary feature and not the result of recrystallization. Diagenetic dolomite beds of the Cloridorme Formation appear to have formed by coalescence of concretions, as shown by randomly sampled traverses that indicate formation at different subsurface depths. Growth of the Cloridorme dolomites was probably limited by calcium availability, at least 50% of which was derived from connate water, and the remainder by diffusion from sea water. Dolomite precipitation was favoured over calcite by very high sedimentation rates, the abundance of marine organic matter in the host sediment and a correspondingly thin sulphate reduction zone. Deep‐seated concretion growth in the Levis Formation required either internal sources for the participating ions (carbonate dissolution event) or porewater advection along faults.  相似文献   

16.
Carbonate mud that accumulated in the deep parts of a late Kimmeridgian carbonate ramp (Iberian Basin, NE Spain) was partly derived by resedimentation from shallow water production areas. High-frequency sea-level changes, probably driven by climatic changes in tune with precession and short-eccentricity cycles, affected carbonate production and the amount of exported sediment. Facies analysis and correlation of three outcrops located in middle and outer ramp settings allows a comparison of high-order sequences (bundles of beds and sets of bundles) across a ramp transect and an assessment of the carbonate factory. Analysis of the storm deposits found in middle ramp settings identifies deepening to shallowing high-frequency cycles based on the level of exported carbonate. In outer ramp areas, many of the bundles exhibit a thinning trend, indicating a progressive decrease of carbonate production and hence, carbonate export during periods of high-frequency sea-level rise. δ13Ccarb values show a gradual increase through the studied long-term transgressive interval ranging from 1·5‰ to 2·8‰. Within this long-term evolutionary trend, short-term δ13Ccarb fluctuations occur that correspond with some of the high-order cycles defined from sedimentary facies analysis. These short-term δ13Ccarb shifts are interpreted as shifts in carbonate export from shallow reef regions to the outer ramp. A consequence of this study is that variation in δ13Ccarb can be used for correlation in outer ramp successions, at least on a basin-wide scale.  相似文献   

17.
Refinements have been made to achieve over 99% yield in the conversion of CO to CO2 in order to improve the reproducibility and accuracy of δ18 O measurements in sulfates. BaSO4 (10-15 mg) was mixed with an identical amount of spectrographic-grade graphite and loaded into a Pt boat. The mixture was gradually heated to 1100 °C to reduce sulfate to CO and CO2; the former gas was simultaneously converted to CO2 by a glow discharge between Pt electrodes immersed in a magnetic field (produced by a pair of external neodymium magnets). A small memory effect was noticed during the analysis (less than 0.3‰ per 10‰ difference in δ18 O between two subsequently analysed samples). The memory effect, however, was suppressed by repetitive preparation of the same specimen. CO2 produced in this way from sulfate reference samples was analysed on a dual inlet and triple collector mass spectrometer along with CO2 equilibrated with VSMOW, GISP and SLAP water reference samples. To avoid large departures of measured isotope ratios from 18O/16O of the working calibrator we used CO2 gas prepared from ocean water sulfate for this purpose. The calibrated δ18 O values (in ‰) obtained in this way for NBS-127, IAEA SO-5 and IAEA SO-6 reference materials were 8.73 ± 0.05, 12.20 ± 0.07 and -10.43 ± 0.12, respectively.  相似文献   

18.
Stable carbon isotope analysis of terrestrial plant leaves preserved in Quaternary lake sediments has the potential to provide high‐resolution reconstructions of past climatic conditions. Preferably, δ13C measurements should be made on a single leaf component, e.g. cellulose, but this approach is often precluded by limited leaf availability. Previous work suggests that reliable palaeoclimatic information also may be derived from δ13C measurements on whole‐leaf tissue, given a similar degree of leaf decomposition between samples. Leaf δ13C data for 12 Scandinavian species of dwarf‐shrubs, shrubs and trees, and a comparison of δ13C data on recent and late Holocene Salix herbacea leaves, revealed that the δ13C signal registered by holocellulose is largely reflected by measurements on whole‐leaf tissue. Holocellulose was found to be consistently enriched in 13C, although this δ13C offset was smaller for subfossil leaves. This supports the use of δ13C measurements on whole‐leaf tissue for climate reconstruction, at least for leaves preserved in soft, late Holocene sediments with minimal diagenetic effects. Leaf carbon and nitrogen data on fresh leaves of the same 12 Scandinavian species, and corresponding data on late Holocene Salix herbacea leaves, suggest that the leaf C:N ratio is a suitable indicator of the degree of leaf decomposition. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
We report a new approach to conduct fast and accurate lithium isotope ratio measurements by MC-ICP mass spectrometry after wet chemical sample preparation. In contrast to most previously published methods our MC-ICP-MS set-up did not use a desolvating system to achieve appropriate ion beam intensities and, therefore, was less affected by matrix-induced shifts of the instrumental mass bias. As the total lithium background and build-up in the sample introduction system was low, previous sample residues could be washed out by an extended uptake of the new sample. Elimination of a nitric acid rinse step increased the sample throughput by a factor of two and allowed the instrumental mass bias drift to be tracked more precisely. δ7Li values of powdered silicate rock reference materials and seawater obtained in this study revealed good accuracy and an overall analytical uncertainty of typically 0.5‰ (2s). On the basis of a comparison between our lithium isotope data and compiled literature data, we recommend preliminary average δ7Li values for seawater (+30.8‰) and several silicate rock reference materials (BHVO-1: +5.0‰; JA-1: +5.6‰; JB-2: +4.8‰). The compilation of published δ7Li values for seawater suggests that the observed large lithium isotope differences are due to inter-method and/or interlaboratory bias. Most recently published δ7Li values for seawater show little variation and confirm a constant lithium isotope composition (at the sub ‰ level) of seawater in well mixed ocean basins.  相似文献   

20.
Mylonitic granites from two shear zones in northern Victoria Land (Antarctica) were investigated in order to examine the behaviour of the U–Th–Pb system in zircon and monazite and of the 40Ar–39Ar system in micas during ductile deformation. Meso‐ and micro‐structural data indicate that shear zones gently dip to the NE and SW, have an opposite sense of shear (top‐to‐the‐SW and ‐NE, respectively) and developed under upper greenschist facies conditions. In situ U–Pb dating by laser‐ablation inductively coupled plasma‐mass spectrometry of zircon areas with well‐preserved igneous zoning patterns (c. 490 Ma) confirm that granites were emplaced during the Early Cambrian to Early Ordovician Ross–Delamerian Orogeny. Monazite from the Bier Point Shear Zone (BPSZ) mainly yielded U–Th–Pb ages of c. 440 Ma, in agreement with in‐situ Ar laserprobe ages of syn‐shear muscovite and with most Ar ages of coexisting biotite. The agreement of ages derived from different decay schemes and from minerals with different crystal‐chemical features suggests that isotope transport in the studied sample was mainly controlled by (re)crystallization processes and that the main episode of ductile deformation in the BPSZ occurred at c. 440 Ma. Cathodoluminscence imaging showed that zircon from the BPSZ contains decomposed areas with faint relics of oscillatory zoning. These areas yielded a U–Pb age pattern which mimics that of monazite but is slightly shifted towards older ages, supporting previous studies which suggest that ‘ghost’ structures may be affected by inheritance. In contrast, secondary structures in zircon from the Mt. Emison Shear Zone (MESZ) predominantly consist of overgrowths or totally recrystallized areas and gave U–Pb ages of c. 450 and 410 Ma. The c. 450‐Ma date matches within errors most monazite U–Th–Pb ages and in‐situ Ar ages on biotite aligned along the mylonitic foliation. This again suggests that isotope ages from the different minerals are (re)crystallization ages and constrains the time of shearing in the MESZ to the Late Ordovician. Regionally, results indicate that shear zones were active in the Late Ordovician–Early Silurian and that their development was partially synchronous at c. 440 Ma, suggesting that they belong to a shear‐zone system formed in response to ~NE–SW‐directed shortening. Taking into account the former juxtaposition of northern Victoria Land and SE Australia, we propose that shear zones represent reactivated zones formed in response to stress applied along the new plate margin as a consequence of contractional tectonics associated with the early stages (Benambran Orogeny) of the development of the Late Ordovician–Late Devonian Lachlan Fold Belt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号