首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements of the concentrations of H2O2 and methyl hydroperoxide (MHP), O3, and SO2 over Imizu City, Toyama Prefecture, Japan were performed in March using a helicopter. H2O2 concentrations were higher at an altitude of approximately 2,400 m (8,000 ft). The H2O2 concentrations (< 0.8 ppb) in the spring were much lower than those observed during the summer observations. MHP was also higher in the high-altitude atmosphere. Lower concentrations of H2O2 were observed when high air pollutants were actively transported from Asian continent. The concentrations of H2O2 were mostly lower than those of SO2; this condition is called oxidant limitation. If H2O2 concentration rises in cold months, the acidification of cloud water may be accelerated at high elevations in central Japan where air pollution is actively transported.  相似文献   

2.
Measurements of hydroperoxides (H2O2 and MHP) at ground level were made from 2012 to 2015 in Imizu City, Toyama Prefecture in central Japan. H2O2 and MHP concentrations ranged from 0.01 to 3.5 ppb and from below the level of detection (< 0.01 ppb) to 1.4 ppb, respectively. The concentrations of H2O2 and MHP were high in the summer and low in the winter. The H2O2 concentration was at its maximum in July and August, whereas the concentration of O3 in the daytime was highest in May and June. The ratio of [H2O2]/[SO2] presented clear seasonal variations. Many cases showed the condition of [H2O2] < [SO2], called oxidant limitation especially in the cold months. Hydroperoxide concentrations in the rainwater were also high in the summer. The concentrations of MHP were much lower than those of H2O2 in the rain water. High concentrations of H2O2 (> 2.5 ppb) were detected in the summer during the inflow of air pollution. The concentrations of H2O2 were significantly high in July and August of 2013. The H2O2 was well correlated with the O3 in July and August whereas there was no correlation between O3 and H2O2 in May and June. There was a negative correlation between NOX and H2O2.  相似文献   

3.
The photochemical oxidation of SO2 in the presence of NO and C3H6 was studied in a 18.2 liter pyrex reactor. When light intensity, irradiation time and SO2 concentration were constant, SO4 2- concentration, derived from the total volume of aerosol produced, peaked when [C3H6]/[NO] was approximately 6.0. Another increase im SO4 2- formation was reached at very high ratios (>50). The experimental observations are consistent with the two SO2 oxidation mechanisms. At low [C3H6]/[NO] ratios, the processes proceed via the HO–SO2 reaction, while at high ratios the O3–C3H6 adduct is assumed to oxidize SO2 to produce SO4 2- aerosols.  相似文献   

4.
A one-dimensional cloud model with size-resolved microphysics and size-resolved aqueous-phase chemistry, driven by prescribed dynamics, has been used to study gas scavenging by weak precipitation developed from low-level, warm stratiform clouds. The dependence of the gas removal rate on the physical and chemical properties of precipitation has been explored under controlled initial conditions. It is found that the removal of four gaseous species (SO2, NH3, H2O2 and HNO3) strongly depends on the total droplet surface area, regardless the mean size of droplets. The removal rates also correlate positively with the precipitation rate, especially for precipitation having a mean radius larger than 20 μm. The dependence of the scavenging coefficients on the total droplet surface area is stronger than on the precipitation rate. The removal rates of SO2, NH3 and H2O2 by precipitation strongly depend on the others' initial concentrations. When NH3 (or H2O2) concentration is much lower than that of SO2, the removal rate of SO2 is then controlled by the concentration of H2O2 (or NH3). The removal of NH3 (or H2O2) also directly depends on the concentration of SO2. NH3 and H2O2 can also indirectly affect each other's removal rate through interaction with SO2. The scavenging coefficient of SO2 increases with the concentration ratio of NH3 to SO2 if the ratio is larger than 0.5, while the scavenging coefficient of NH3 increases with the concentration ratio of SO2 to NH3 when the ratio is smaller than 1. The scavenging coefficient of H2O2 generally increases with the concentration ratio of SO2 to H2O2. Although the Henry's law equilibrium approach seems to be able to simulate gas scavenging by cloud droplets, it causes large errors when used for simulating the scavenging of soluble gas species by droplets of precipitating sizes.  相似文献   

5.
北京秋季一次典型大气污染过程多站点分析   总被引:3,自引:1,他引:2  
多站点多种大气污染物的同步在线观测对深入剖析大气污染的成因和演变机制有重要意义。以龙潭湖、北京325 m塔、双清路和阳坊4监测站点实时NOx、SO2、O3、PM2.5和PM10浓度观测数据为基础,介绍了北京地区2010年10月3~11日发生的一次典型污染过程。不同污染物在污染过程中变化特征不一致,表现为NOx、SO2、O3浓度有明显日变化,而PM浓度升高后一直维持在高值,日变化幅度很小。通过分析不同站点、相同污染物之间的相关性和变异系数发现,4站点间一次污染物NO和SO2空间浓度差别大,变异系数分别为77%和70%,相关系数低于0.44;而二次污染物NO2、PM2.5、O3空间浓度差别较小,变异系数分别为34%、36%和29%,相关系数均超过0.54。结合中尺度气象模式研究发现,该污染过程中,850 hPa高空持续的西南暖平流造成华北地区显著平流逆温,与近地层辐射逆温共同作用,使北京地区混合层高度维持在1200 m以下。低混合层高度和低风速限制了大气垂直和水平扩散,造成北京地区近地层污染物累积,形成重度污染。  相似文献   

6.
Simulation of the Effect of an Increase in Methane on Air Temperature   总被引:2,自引:0,他引:2  
The infrared radiative effect of methane was analyzed using the 2D, interactive chemical dynamical radiative SOCRATES model of the National Center for Atmospheric Research. Then, a sensitivity experi ment, with the methane volume mixing ratio increased by 10%, was carried out to study the influence of an increase of methane on air temperature. The results showed that methane has a heating effect through the infrared radiative process in the troposphere and a cooling effect in the stratosphere. However, the cooling effect of the methane is much smaller than that of water vapor in the stratosphere and is negligible in the mesosphere. The simulation results also showed that when methane concentration is increased by 10%, the air temperature lowers in the stratosphere and mesosphere and increases in the troposphere. The cooling can reach 0.2 K at the stratopause and can vary from 0.2-0.4 K in the mesosphere, and the temperature rise varies by around 0.001-0.002 K in the troposphere. The cooling results from the increase of the infrared radiative cooling rate caused by increased water vapor and O3 concentration, which are stimulated by the increase in methane in most of the stratosphere. The infrared radiation cooling of methane itself is minor. The depletion of O3 stimulated by the methane increase results indirectly in a decrease in the rate of so- lar radiation heating, producing cooling in the stratopause and mesosphere. The tropospheric warming is mainly caused by the increase of methane, which produces infrared radiative heating. The increase in H2O and O3 caused by the methane increase also contributes to a rise in temperature in the troposphere.  相似文献   

7.
For the purpose of testing our previously described theory of SO2 scavenging a laboratory investigation was carried out in the UCLA 33 m long rainshaft. Drops with radii between 250 and 2500 m were allowed to come to terminal velocity, after which they passed through a chamber of variable length filled with various SO2 concentrations in air. After falling through a gas separating chamber consisting of a fluorocarbon gas the drops were collected and analyzed for their total S content in order to determine the rate of SO 2 absorption.The SO2 concentration in air studied ranged between 1 and 60% (v). Such relatively large concentrations were necessary due to the short times the drops were exposed to SO2 in the present setup. The present experimental results were therefore not used to simulate atmospheric conditions but rather to test our previously derived theory which is applicable to any laboratory or atmospheric condition. Comparison of our studies with the results from our theory applied to our laboratory conditions led to predicted values for the S concentration in the drops which agreed well with those observed if the drops had radii smaller than 500 m. In order to obtain agreement between predicted and observed S concentrations in larger drops, an empirically derived eddy diffusivity for SO2 in water had to be included in the theory to take into account the effect of turbulent mixing inside such large drops.In a subsequent set of experiments, drops initially saturated with S (IV) were allowed to fall through S-free air to determine the rate of SO 2 desorption. The results of these studies also agreed well with the results of our theoretical model, thus justifying the reversibility assumption made in our theoretical models.In a final set of experiments, the effects of oxidation on SO2 absorption was studied by means of drops containing various amounts of H2O2. For comparable exposure times to SO2, the S concentration in drops with H2O2 was found to be up to 10 times higher than the concentration in drops in which no oxidation occurred.  相似文献   

8.
Abstract

Aqueous‐phase H2O2 production in a rainband and its possible effect on sulphate production are studied by means of a two‐dimensional numerical model. In‐cloud peroxide production is incorporated into this chemistry model and its simulation results are compared with those in which aqueous‐phase H2O2 came only from the dissolution of gaseous H2O2 from the cloud interstitial air.

Results are presented for two different polluted situations ‐ Case 1 having initial SO2 and sulphate aerosol profiles representative of a moderately polluted air mass, and Case 2 having chemical profiles expected to increase the relative importance of oxidation to nucleation as a means of contributing sulphate to cloud and rain. Sulphate production increased in both cases, although in Case 1 the effect of this increase on the concentration of sulphate in rain is negligible because nucleation and scavenging of aerosol are the major processes by which sulphate enters cloud and rain. In Case 2, sulphate concentrations in rain increase by 5–10%. Under environmental conditions of low sulphate aerosol, where oxidation reactions are the dominant means for sulphate to enter cloud and rain, the neglect of sulphate produced by the additional H2O2 may lead to error. The usual uncertainties in the initial SO2 and sulphate aerosol vertical profiles, however, could be a more significant source of error in simulations of the chemistry of cloud and precipitation than the neglect of aqueous‐phase peroxide production during the lifetime of even a long‐lived system.  相似文献   

9.
An experimental study involving the Mainz vertical wind tunnel is described where the rate of SO2 removed from the air by freely suspended water drops was measured for SO2 concentrations in the gas phase ranging between 50 and 500 ppb, and for various H2O2 concentrations in the liquid phase. In a first set of experiments, the pH inside the SO2 absorbing drops was monitored by means of colour pH indicators added to the drops. In a second set of experiments, the amount of SO2 scavenged by the drops was determined as sulfate by an ionchromatograph after the drops had been removed from the vertical air stream of the wind tunnel after various times of exposure to SO2. The results of our experimental study were compared with the theoretical gas diffusion model of Walcek and Pruppacher which was reformulated for the case of SO2 concentrations in the ppbv(v) range for which the main resistance to diffusion lies in the gas phase surrounding the drop. Excellent agreement between experiment and theory was obtained. Encouraged by this agreement, the theory was used to investigate the rate of sulfate production inside a drop as a function of pH. The sulfate production rate, which includes transport and oxidation, was compared with the production rate based on bulk equilibrium, as cited in the literature.  相似文献   

10.
The soot-ozone reaction at low concentrations (ppm O3) hasbeen examined todetermine any influence of solar radiation on its products and kinetics. Theeffect of simulatedsolar radiation is to change the product distribution towardsCO2(g), CO (g) and H2O(g) at theexpense of soot surface functional groups formation. Little effect on theextent or rate ofdiminution of O3 through this rapid reaction is observed. Theinitial rate laws for formation ofall products remain the same under simulated solar radiation, with changes inthe rate constants(and thus in the relative importance of mechanistic pathways) responsible forthe differingproduct distributions. Decarboxylation of soot surface functionalities hasbeen shown to be onepossible mechanism underlying these effects. Atmospheric soot, particularlythat emitted nearthe tropopause by increasing numbers of subsonic and supersonic aircraft, mayplay a role inozone depletion; the rapid diminution of ozone in soot's presence isunaffected by solarradiation.  相似文献   

11.
During a 3-year study, gaseous hydrogenperoxide (H2O2) concentrations were measuredas part of the SANA project at the Melpitz FieldResearch Station and in the city of Leipzig. Typicaldaily mean H2O2 mixing ratios on sunny dayswere 0.15 to 0.25 ppbv with maximum values of 0.3 to0.5 ppbv at Melpitz, and 0.3 to 0.6 ppbv with maximumvalues of 0.4 to 1.0 ppbv in Leipzig. Over the entireperiod of the project the maximum hourly mean valueswere 2.1 ppbv and 5.3 ppbv in Melpitz and Leipzig,respectively. The data were not complete enough to show a trend.Linear regression analysis shows, that ozone(O3), temperature and solar radiation arepositively correlated with H2O2, whereasnitrogen oxides (NOx), carbon monoxide (CO) andrelative humidity are negatively correlated. Negativecorrelation between H2O2 and CO is caused byjoint occurrence of CO with NOx in exhaust gases.Negative correlation between H2O2 andrelative humidity is not necessarily in contradictionto the accelerating effect of water vapour onH2O2 formation. The strong positivecorrelation of H2O2 with the dew pointdifference however seems to better reflect theinfluence of water vapour. Multiple linear regression analysis (MLRA) of thecomponents measured, indicates the great influence of CO on the formation of H2O2 in the gasphase.  相似文献   

12.
In situ measurements of [OH], [HO2] (square brackets denote species concentrations), and other chemical species were made in the tropical upper troposphere (TUT). [OH] showed a robust correlation with solar zenith angle. Beyond this dependence, however, [OH] did not correlate to its primary source, the product of [O3] and [H2O] ([O3]?[H2O]), or its sink [NOy]. This suggests that [OH] is heavily buffered in the TUT. One important exception to this result is found in regions with very low [O3], [NO], and [NOy]. Under these conditions, [OH] is highly suppressed, pointing to the critical role of NO in sustaining OH in the TUT and the possibility of low [OH] over the western Pacific warm pool due to strong marine convections bringing NO-poor air to the TUT. In contrast to [OH], [HOx] ([OH] + [HO2]) correlated reasonably well with [O3]?[H2O]/[NOy], suggesting that [O3]?[H2O] and [NOy] are the significant source and sink, respectively, of [HOx].  相似文献   

13.
地面观测提供空间点的浓度信息,三维化学模式提供网格面的浓度信息,两者在进行对比验证或同化融合时会因为空间尺度不匹配引入误差,即观测代表性误差。本研究将大气污染地面国控监测站与区县监测站结合起来,获得了京津冀地区高密度地面观测数据,利用该数据首次对京津冀地区6项常规大气污染物(PM2.5、PM10、SO2、NO2、CO和O3)的地面观测代表性误差进行了客观估计,并与Elbern et al.(2007)方法估计的代表性误差进行了对比。结果发现:两种方法对京津冀地区NO2地面观测代表性误差估计非常接近,但Elbern et al.(2007)方法显著低估了SO2、CO和O3地面观测的代表性误差。在此基础上,我们对Elbern et al.(2007)方法及其误差特征参数进行了本地化修正,并增加了PM2.5和PM10的代表性误差特征参数,建立了京津冀大气污染地面观测代表性误差的客观估计方法。  相似文献   

14.
The effect of clouds and cloud chemistry on tropospheric ozone chemistry is tested out in a two-dimensional channel model covering a latitudinal band from 30 to 60° N. Three different methods describing how clouds affect gaseous species are applied, and the results are compared. The three methods are:
  • ?A first order parameterization scheme for the removal of sulphur and other soluble gases by liquid droplets.
  • ?A parameterization scheme for SO2, O3, and H2O2 removal is constructed. The scheme is based on the solubility of gases in liquid droplets, cycling times of air masses between clouds and cloud free areas and on the chemical interaction of SO2 with H2O2 and O3 in the liquid phase.
  • ?Gas-aqueous-phase interactions and aqueous-phase chemical reactions are included in the reaction scheme for a number of components in areas where clouds are present.
  • In all three methods, a full gas-phase chemistry scheme is used. Particular emphasis is given to the study of how the ozone and hydrogen peroxide levels are affected. Significant changes in the distributions are found when aqueous-phase chemical reactions are included. The result is loss of ozone in the aqueous phase, with pronounced reductions in ozone levels in the middle and lower troposphere. Ozone levels are reduced by 10 to 30% with the largest reductions in the remote middle troposphere, bringing the values in better agreement with observations. Changes in H2O2 are harder to predict. Although, in one case study, hydrogen peroxide is produced within the aqueous phase, concentrations are mostly comparable or even lower than in the other cases. Hydrogen peroxide levels are, however, shown to be very pH sensitive. pH values around 5 seem to favour high H2O2 levels. High H2O2 concentrations may be found particularly in the upper part of the clouds under favourable conditions.  相似文献   

    15.
    Measurements of surface ozone (O3), nitric oxide (NO), nitrogen dioxide (NO2), oxides of nitrogen (NOx=NO+NO2) and meteorological parameters have been made at Agra (North Central India, 27°10??N, 78°05??E) in post monsoon and winter season. The diurnal variation in O3 concentration shows daytime in situ photochemical production with diurnal maximum in noon hours ranging from 51 to 54 ppb in post monsoon and from 76 to 82 ppb in winter, while minimum (16?C24 ppb) during nighttime and early morning hours. Average 8-h O3 concentration varied from 12.4 to 83.9 ppb. The relationship between meteorological parameters (solar radiation intensity, temperature, relative humidity, wind speed and wind direction) and surface O3 variability was studied using principal component analysis (PCA), multiple linear regression (MLR) and correlation analysis (CA). PCA and MLR of daily mean O3 concentrations on meteorological parameters explain up to 80 % of day to day ozone variability. Correlation with meteorology is strongly emphasized on days having strong solar radiation intensity and longer sunshine time.  相似文献   

    16.
    Air pollutant emission rates and concentrations in medieval churches   总被引:1,自引:0,他引:1  
    A series of indoor air quality parameters were determined in two medieval churches, in Cyprus (temperature, relative humidity, total and UV solar radiation, CO2 indoors and O3, NO, NO2 *, HNO3 *, HCl, HCOOH, CH3COOH indoors and outdoors). These data were used as input in a validated indoor air quality model to predict indoor air pollutant source strengths and species concentrations that resulted from dark or photochemical reactions. The NO and NO2 emission rates due to the burning of incense or candles were estimated. Model results revealed that heterogeneous NO formation takes place simultaneously with the heterogeneous HONO formation. Also, model application has shown that indoor NOx emissions resulted in decreased free radical concentrations, in contrast to the organic compound emissions, which increased free radical concentrations. This effect of indoor emissions on indoor radicals can partly explain the indoor enhancement/depression of indoor gaseous acid formation.  相似文献   

    17.
    18.
    The response of tropospheric ozone to a change in solar UV penetration due to perturbation on column ozone depends critically on the tropospheric NO x (NO+NO2) concentration. At high NO x or a polluted area where there is net ozone production, a decrease in column ozone will increase the solar UV penetration to the troposphere and thus increase the tropospheric ozone concentration. However, the opposite will occur, for example, at a remote oceanic area where NO x is so low that there is net ozone destruction. This finding may have important implication on the interpretation of the long term trend of tropospheric ozone. A change in column ozone will also induce change in tropospheric OH, HO2, and H2O2 concentrations which are major oxidants in the troposphere. Thus, the oxidation capacity and, in turn, the abundances of many reduced gases will be perturbed. Our model calculations show that the change in OH, HO2, and H2O2 concentrations are essentially independent of the NO x concentration.  相似文献   

    19.
        
    Using the “lumped mechanism” and “counting species” methods, we developed a condensed gas-phase chemical model based on a simplified one. The modified quasi-steady-state approximation (QSSA) scheme and the error redistribution mass conservation technique are adopted to solve the atmospheric chemistry kinetic equations. Results show that the condensed model can well simulate concentration variations of gas species such as SO2, NOX, O3, H2O2 and conversion rates of SO2 and NOX transformation to H2SO4 and HNO3. These results are in good agreement with those from the simplified model. The conversion rates of SO2 and NOX under different initial concentrations and meteorological conditions are computed, and the results can be directly applied to regional acid deposition model.  相似文献   

    20.
    Ambient air quality in respect of SO2, NO2 and total suspended particulate matter (TSPM) was monitored at Pantnagar, India from May, 2008 to April, 2009 and statistically analyzed with meteorological variables such as relative humidity (RH), wind speed (WS), precipitation (P) and mean air temperature (T). TSPM was found to be the major air pollutant causing significant deterioration of air quality with annual mean concentrations of 280 μg/m3. Further, weekly mean air pollutant concentrations were statistically analyzed through stepwise multiple linear regression analysis in respect of independent meteorological variables to develop suitable statistical models. Both NO2 and TSPM concentrations were found to have been influenced by meteorological variables with coefficient of determination (R2) of 82.21 and 92.84%, respectively. However, atmospheric SO2 revealed only 22.87% of dependencies on meteorological variables. Partial correlation coefficients revealed that wind speed has the maximum influence (77.80 and 31.50%) on proposed equations for NO2 and SO2, closely followed by weekly mean temperature (73.60 and 24.30%). However, in case of TSPM, individual contribution of ambient temperature (94.40%) was found maximum, followed by relative humidity (86.50%). Model performances were evaluated through both quantitative data analysis techniques and statistical methods. Nearly 98 and 95% of potential error has been explained by the model developed for TSPM and NO2, while in case of SO2, it is found as only 61%. Therefore, performances of models (for TSPM and NO2) to predict ambient weekly mean concentrations based on forecasted weather parameters were found to be excellent, however, performance of model developed for SO2 was found only satisfactory.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号