首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Xiaotian–Mozitan Shear Zone(XMSZ) is the boundary of the Dabie High-grade Metamorphic Complex(DHMC) and the North Huaiyang Tectonic Belt. It was deformed in ductile conditions with a top-to-NW/WNW movement.Geothermometers applied to mineral parageneses in mylonites of the shear zone give a temperature range of 623–691°C for the predeformation and 515–568°C for the syndeformation, respectively, which indicates a retrograde process of evolution.A few groups of zircon U-Pb ages were obtained from undeformed granitic veins and different types of deformed rocks in the zone. Zircons from the felsic ultramylonites are all magmatic, producing a weighted mean 206 Pb/238 U age of 754 ± 8.1 Ma, which indicates the time of magmatic activities caused by rifting in the Neoproterozoic. Zircons from the granitic veins, cutting into the mylonites, are also of magmatic origin, producing a weighted mean 206 Pb/238 U age of 130 ± 2.5 Ma,which represents the time of regional magmatic activity in the Cretaceous. Zircons from the mylonitic gneisses are of anatectic-metamorphic origins and are characterized by a core-mantle interior texture, which yielded several populations of ages including the Neoproterozoic ages with a weighted mean 206 Pb/238 U age of 762 ± 18 Ma, similar to that of the felsic ultramylonites and the Early Cretaceous ages with a weighted mean 206 Pb/238 U age of 143 ± 1.8 Ma, indicating the anatectic metamorphism in the Dabie Orogenic Belt(DOB). Based on integrated analysis of the structure, thermal conditions of ductile deformation and the contact relations of the dated rocks, the activation time of the Xiaotian–Mozitan Shear Zone is constrained between ~143 Ma and 130 Ma, during which the DOB was undergoing a transition in tectonic regime from compression to extension. Therefore, the deformation and evolution of this shear zone plays an instrumental role in fully understanding this process. This research also inclines us to the interpretation of it as an extensional detachment, with regard to the tectonic properties of the shear zone. It may also be part of a continental scale extension in the background of the North China Block's cratonic destruction, dominated by the subduction and roll-back of the Paleo-Pacific plate, but more detailed work is needed in order to unravel its complicated development.  相似文献   

2.
Liu  Han-Lun  Han  Yi  Wang  Ke-Yong  Li  Wen  Li  Jian  Cai  Wen-Yan  Fu  Li-Juan 《Arabian Journal of Geosciences》2018,11(24):1-13
Arabian Journal of Geosciences - Soil toxic metal pollution is one of the most prominent environmental problems in the rapid industrialization of societies because of the considerable harm caused...  相似文献   

3.
We undertook zircon U-Pb dating and geochemical analyses of volcanic rocks from the Manitu Formation in the Hongol area,northeastern Inner Mongolia,to determine their age,petrogenesis and sources,which are important for understanding the Late Mesozoic tectonic evolution of the Great Xing'an Range.The volcanic rocks of the Manitu Formation from the Hongol area consist primarily of trachyandesite,based on their chemical compositions.The zircons from two of these trachyandesites are euhedral-subhedral in shape,display clear oscillatory growth zoning and have high Th/U ratios(0.31-1.15),indicating a magmatic origin.The results of LA-ICP-MS zircon U-Pb dating indicate that the volcanic rocks from the Manitu Formation in the Hongol area formed during the early Early Cretaceous with ages of 138.9-140.5 Ma.The volcanic rocks are high in alkali(Na_2O + K_2O = 6.22-8.26 wt%),potassium(K_2O = 2.49-4.58 wt%) and aluminium(Al_2O_3 = 14.27-15.88 wt%),whereas they are low in iron(total Fe_2O_3 = 3.76-6.53 wt%) and titanium(TiO_2 = 1.02-1.61 wt%).These volcanic rocks are obviously enriched in large ion lithophile elements,such as Rb,Ba,Th and U,and light rare earth elements,and are depleted in high field strength elements,such as Nb,Ta and Ti with pronounced negative anomalies.Their Sr-Nd-Pb isotopic compositions show positive ε_(Nd)(t)(+0.16‰ to+1.64‰) and low T_(DM)(t)(694-767 Ma).The geochemical characteristics of these volcanic rocks suggest that they belong to a shoshonitic series and were likely generated from the partial melting of an enriched lithospheric mantle that was metasomatised by fluids released from a subducted slab during the closure of the MongolOkhotsk Ocean.Elemental and isotopic features reveal that fractional crystallization with the removal of ferromagnesian minerals,plagioclase,ilmenite,magnetite and apatite played an important role during the evolution of the magma.These shoshonitic rocks were produced by the partial melting of the enriched lithospheric mantle in an extensional regime,which resulted from the gravitational collapse following the final closure of the Mongol-Okhotsk Ocean in the Middle-Late Jurassic.  相似文献   

4.
This paper deals with the petrology and U–Pb dating of coesite-bearing garnet–phengite schist from the Kebuerte Valley, Chinese western Tianshan. It mainly consists of porphyroblastic garnet, phengite, quartz and chlorite with minor amounts of paragonite, albite, zoisite and chloritoid. The well preserved coesite inclusions (∼100 μm) in garnet are encircled by a narrow rim of quartz. They were identified by optical microscopy and confirmed by Raman spectroscopy. Using the computer program THERMOCALC, the peak metamorphic conditions of 29 kbar and 565 °C were obtained via garnet isopleth geothermobarometry. The predicted UHP peak mineral assemblage comprises garnet + jadeite + lawsonite + carpholite + coesite + phengite. The metapelite records prograde quartz–eclogite-facies metamorphism, UHP coesite–eclogite-facies peak metamorphism, and a late greenschist-facies overprint. Phase equilibrium modeling predicts that garnet mainly grew in the mineral assemblages garnet + jadeite + lawsonite + chloritoid + glaucophane + quartz + phengite and garnet + jadeite + lawsonite + carpholite + glaucophane + quartz + phengite. SHRIMP U–Pb zircon dating of the coesite-bearing metapelite yielded the peak metamorphic age 320.4 ± 3.7 Ma. For the first time, age data of coesite-bearing UHP metapelite from the Chinese western Tianshan are presented in this paper. They are in accord with published ages obtained from eclogite from other localities in the Chinese western Tianshan and the Kyrgyz South Tianshan and therefore prove a widespread occurrence of UHP metamorphism.  相似文献   

5.
花敖包特超大型银多金属矿床位于大兴安岭南段,矿体主要呈脉状赋存于二叠系寿山沟组的断裂中,部分矿体呈囊状产于寿山沟组与华力西期蛇绿岩的接触带中。矿体主要包括银铅锌锑矿体、锡铜矿体、铜铅锌矿体、锡矿体和银矿体。花敖包特矿床可划分为4个成矿阶段,分别为石英-锡石-毒砂-黄铁矿阶段(Ⅰ阶段)、石英-绢云母-锡石-黄铜矿-毒砂-磁黄铁矿-闪锌矿-黝铜矿阶段(Ⅱ阶段)、石英-绢云母-萤石-方解石-闪锌矿-方铅矿-黄铁矿-辉锑矿-含银硫盐矿物阶段(Ⅲ阶段)和石英-方解石-黄铁矿-辉银矿-深红银矿阶段(Ⅳ阶段)。对花敖包特矿区2件次流纹岩样品开展了LA-ICP-MS锆石U-Pb定年,分别获得135.4±0.8Ma和134.8±0.8Ma的年龄。对成矿Ⅰ阶段锡矿石和Ⅱ阶段锡铜矿石进行了LA-ICP-MS锡石U-Pb定年,分别获得136.3±2.0Ma和134.3±1.7Ma的加权平均年龄。定年结果表明,花敖包特矿床次流纹岩、锡矿体和锡铜矿体均形成于早白垩世。尽管二者形成时间相近,但脉体穿切关系及矿化分带特征均表明次流纹岩并非成矿物质和成矿流体的主要来源。本文认为,花敖包特矿床真正的成矿地质体为隐伏于矿区深部的次火山岩钟,其矿床成因类型为与次火山岩相关的热液矿床。  相似文献   

6.
Cratonic stabilization was a critical crustal process during the Hadean to Archean for the formation of cratons.The understanding of how and where this process took place is significant to evaluate the architecture of continents.The Singhbhum Craton of eastern India has well preserved Precambrian volcanosedimentary sequences.The Simlipal volcano-sedimentary complex of Singhbhum Craton consists of circular bands of mafic volcanic rocks interlayered with quartzites/shales/phyllites.In the present study,we report petrographic and geochemical characteristics of quartzites from Simlipal Complex coupled with U–Pb ages of detrital zircons and zircon geochemistry to understand the provenance and depositional conditions and its connection with the crustal stabilization in the Singhbhum Craton.The quartzites are texturally mature with sub-angular to sub-rounded quartz grains followed by feldspars embedded in a silty matrix.Based on modal compositions and major element ratios,these quartzites are categorized as quartz arenite and sub-lithic arenites.Trace element abundances normalized to Archean Upper Continental Crust(AUCC)display positive anomalies at U,Zr,Hf and negative anomalies at Nb.REE patterns are characterized by negative Eu anomalies(Eu/Eu*=0.47–0.97)and flat HREE suggesting felsic provenance.These quartzites show depletion of LILE,enrichment of HFSE and transition metals relative to AUCC.High weathering indices such as CIA,PIA,and ICV are suggestive of moderate to intense chemical weathering.Low trace element ratios such as Th/Cr,Th/Sc,La/Sc,La/Co and Th/Co indicate a predominantly felsic source for these rocks.The overall geochemical signatures indicate passive margin deposition for these quartzites.Detrital zircons from the Simlipal quartzites yield U–Pb ages 3156±31 Ma suggesting Mesoarchean crustal heritage.The trace element geochemistry of detrital zircons suggests that the zircons are magmatic in origin and possibly derived from the 3.1 Ga anorogenic granite/granitoid provenance of Singhbhum Craton.These observations collectively indicate the Mayurbhanj Granite and Singhbhum Granite(SBG-III)provenance for these quartzites,thereby tracking the stabilization of the eastern Indian Shield/Singhbhum Craton back to Mesoarchean.  相似文献   

7.
The Sidingheishan mafic-ultramafic intrusion is located in the eastern part of the Northern Tianshan Mountain, along the southern margin of the Central Asian Orogenic Belt in northern Xinjiang autonomous region of China. The Sidingheishan intrusion is mainly composed of wehrlite, olivine websterite, olivine gabbro, gabbro and hornblende gabbro. At least two pulses of magma were involved in the formation of the intrusion. The first pulse of magma produced an olivine-free unit and the second pulse produced an olivine-bearing unit. The magmas intruded the Devonian granites and granodiorites.An age of 351.4±5.8 Ma(Early Carboniferous) for the Sidingheishan intrusion has been determined by U-Pb SHRIMP analysis of zircon grains separated from the olivine gabbro unit. A U-Pb age of 359.2±6.4 Ma from the gabbro unit has been obtained by LA-ICP-MS. Olivine of the Sidingheishan intrusion reaches 82.52 mole% Fo and 1414 ppm Ni. On the basis of olivine-liquid equilibria, it has been calculated that the MgO and FeO included in the parental magma of a wehrlite sample were approximately10.43 wt% and 13.14 wt%, respectively. The Sidingheishan intrusive rocks are characterized by moderate enrichments in Th and Sm, slight enrichments in light REE, and depletions in Nb, Ta, Zr and Hf. The ε_(Nd)(t) values in the rock units vary from +6.70 to +9.64, and initial ~(87)Sr/~(86)Sr ratios range between 0.7035 and0.7042. Initial ~(206)Pb/~(204)Pb, ~(207)Pb/~(204)Pb and ~(208)Pb/~(204)Pb values fall in the ranges of 17.23-17.91,15.45-15.54 and 37.54-38.09 respectively. These characteristics are collectively similar to the Heishan intrusion and the Early Carboniferous subduction related volcanic rocks in the Santanghu Basin, North Tianshan and Beishan area. The low(La/Gd)_(PM) values between 0.26 and 1.77 indicate that the magma of the Sidingheishan intrusion was most likely derived from a depleted spinel-peridotite mantle.(Th/Nb)_(PM)ratios from 0.59 to 20.25 indicate contamination of the parental magma in the upper crust.Crystallization modeling methods suggest that the parental magma of the Sidingheishan intrusion was generated by flush melting of the asthenosphere and subsequently there was about 10 vol%contamination from a granitic melt. This was followed by about 5 vol% assimilation of upper crustal rocks. Thus, the high-Mg basaltic parental magma of Sidingheishan intrusion is interpreted to have formed from partial melting of the asthenosphere during the break-off of a subducted slab.  相似文献   

8.
The North China Craton (NCC) witnessed a prolonged subduction–accretion history from the early to late Palaeoproterozoic, culminating with final collision at ca. 1.85 Ga and assembling the continental blocks into the cratonic framework. Subsequently, widespread post-collisional magmatism occurred, particularly along the Trans-North China Orogen (TNCO) that sutures the Eastern and Western blocks of the NCC. Here we present petrological, geochemical, and zircon U–Pb geochronological and Lu–Hf data from a pyroxenite (websterite)–gabbro–diorite suite at Xinghe in Inner Mongolia along the northern segment of the TNCO. The internal structures and high Th/U values of the zircons from the gabbro–diorite suite suggest magmatic crystallization. LA-ICP-MS U–Pb age data on three gabbros and one diorite from the suite yield emplacement ages of 1786.1 ± 4.8, 1783 ± 15 ,1754 ± 16 and 1767 ± 13 Ma, respectively. The εHf(t) shows mostly positive values (up to 5.8), with the lowest value at –4.2, suggesting that the magma was derived from dominantly juvenile sources. The generally low SiO2 and high MgO values, and other trace element features of the Xinghe suite are consistent with fractionation from a mantle-derived magma with a broadly E-MORB affinity, with no significant crustal contamination. Recent studies clearly establish that the major magmatic pulse associated with rifting of the NCC within the Columbia supercontinent occurred in the late Mesoproterozoic at ca. 1.3–1.2 Ga associated with mantle plume activity. This, together with the lack of robust geochemical imprints of rift-related magmatism in the Xinghe suite, prompts us to suggest a tectonic model that envisages magma genesis associated with post-collisional extension during slab break-off, following the westward subduction of the Eastern Block and its collision with the Western Block. The resulting asthenospheric upwelling and heat input might have triggered the magma generation from a heterogeneous, subduction-modified sub-lithospheric mantle source for the Xinghe rocks, as well as for similar late Palaeoproterozoic suites in the TNCO.  相似文献   

9.
The Marwar Supergroup(NW Peninsular India)is thought to be of Ediacaran-Cambrian age,based on previous paleontological and geochronological studies.However,direct constraints on the onset of sedimentation within the Marwar basin are still scarce.In this study,we report U–Pb zircon,LA-ICP-MS,and SIMS ages from the Chhoti Khatu felsic volcanic rocks,interlayered with the Jodhpur Group sandstones(Lower Marwar Supergroup).The cathodoluminescence images of the zircons indicate complex morphologies,and core-rim textures coupled with the wide range of ages indicate that they are likely inherited or in the case of thin poorly indurated ash-beds,detrital in origin.The age spectra of 68 zircon analyses from our sampling display a dominant 800–900 Ma age peak corresponding to the age of basement"Erinpura granite"rocks in the region.The youngest inherited zircon from a felsic ash layer yielded a U–Pb age of651 Ma±18 Ma that,together with previous studies and paleontological evidence,indicates a postCryogenian age for the initiation of Marwar sedimentation following a~125 Ma hiatus between the end of Malani magmatism and Marwar deposition.  相似文献   

10.
《Gondwana Research》2014,25(1):338-357
Four isolated metamorphic complexes located within post-collisional granitoids occupying up to 70% of the total area, were distinguished in Sinai (Egypt) and Elat area (southern Israel), the northernmost part of the Arabian–Nubian Shield. The metamorphic rocks include metasediments, felsic and mafic metavolcanic rocks intruded by granitic, dioritic, and gabbroic plutons, all subjected to penetrative deformation.We present new SIMS U–Pb dating of zircons from 13 rock units comprising metasediments, volcanic rocks, gneisses and plutons from three metamorphic complexes (Sa'al, Feiran–Solaf, and Kid). In addition we present a SIMS U–Pb titanite age of a granitic gneiss previously dated using zircon. On the basis of the new and published U–Pb data, three successive Meso- to Neoproterozoic island arcs formed during a period of ca. 500 My are recognized. The Sa'al arc (represented by the oldest arc rocks in the ANS) evolved from 1.03 to 0.93 Ga (100 My); the Feiran–Elat arc developed from ca. 870 to 740 Ma (130 My), and the Kid arc formed from ca. 640 to 620 Ma (20 My). Evidence for an older, ca. 1.1 Ga, pre-Sa'al island arc was established from the zircon xenocryst population, though no exposures of rocks of this age were found. In the Sa'al and Kid arcs both volcanic and sedimentary rocks are preserved, whereas in the Elat–Feiran arc volcanic rocks are missing. We suggest that at ~ 700 Ma the Elat−Feiran arc was subjected to rifting that resulted in separating of the Qenaia block and its movement to the SE.  相似文献   

11.
The South Tianshan Orogen and adjacent regions of Central Asia are located in the southwestern part of the Central Asian Orogenic Belt.The formation of South Tianshan Orogen was a diachronous,scissors-like process,which took place during the Palaeozoic,and its western segment was accepted as a site of the fnal collision between the Tarim Craton and the North Asian continent,which occurred in the late Palaeozoic.However,the post-collisional tectonic evolution of the South Tianshan Orogen and adjacent regions remains debatable.Based on previous studies and recent geochronogical data,we suggest that the fnal collision between the Tarim Craton and the North Asian continent occurred during the late Carboniferous.Therefore,the Permian was a period of intracontinental environment in the southern Tianshan and adjacent regions.We propose that an earlier,small-scale intraplate orogenic stage occurred in late Permian to Triassic time,which was the frst intraplate process in the South Tianshan Orogen and adjacent regions.The later largescale and well-known Neogene to Quaternary intraplate orogeny was induced by the collision between the India subcontinent and the Eurasian plate.The paper presents a new evolutionary model for the South Tianshan Orogen and adjacent regions,which includes seven stages:(I)late Ordovicianeearly Silurian opening of the South Tianshan Ocean;(II)middle Silurianemiddle Devonian subduction of the South Tianshan Ocean beneath an active margin of the North Asian continent;(III)late Devonianelate Carboniferous closure of the South Tianshan Ocean and collision between the Kazakhstan-Yili and Tarim continental blocks;(IV)early Permian post-collisional magmatism and rifting;(V)late PermianeTriassic the frst intraplate orogeny;(VI)JurassicePalaeogene tectonic stagnation and(VII)NeoceneeQuaternary intraplate orogeny.  相似文献   

12.
http://www.sciencedirect.com/science/article/pii/S1674987114001091   总被引:2,自引:0,他引:2  
The Wulungu Depression is the northernmost first-order tectonic unit in the Junggar Basin.It can be divided into three sub-units:the Hongyan step-fault zone,the Suosuoquan sag and the Wulungu south slope.The Cenozoic strata in the basin are intact and Mesozoic—Cenozoic deformation can be observed in the Wulungu step-fault zone,so this is an ideal place to study the Mesozoic—Cenozoic deformation.By integration of fault-related folding theories,regional geology and drilling data,the strata of the Cretaceous—Paleogene systems are divided into small layers which are selected as the subjects of this research.The combination of the developing unconformity with existing growth strata makes it conceivable that faults on the step-fault zone have experienced different degrees of reactivation of movement since the Cretaceous.Evolutionary analyses of the small layers using 2D-Move software showed certain differences in the reactivation of different segments of the Wulungu Depression such as the timing of reactivation of thrusting,for which the reactivity time of the eastern segment was late compared with those of the western and middle segments.In addition the resurrection strength was similarly slightly different,with the shortening rate being higher in the western segment than in the other segments.Moreover,the thrust fault mechanism is basement-involved combined with triangle shear fold,for which a forward evolution model was proposed.  相似文献   

13.
The Central India Tectonic Zone(CITZ) marks the trace of a major suture zone along which the south Indian and the north Indian continental blocks were assembled through subduction-accretioncollision tectonics in the Mesoproterozoic.The CITZ also witnessed the major,plume-related,late Cretaceous Deccan volcanic activity,covering substantial parts of the region with continental flood basalts and associated magmatic provinces.A number of major fault zones dissect the region,some of which are seismically active.Here we present results from gravity modeling along five regional profiles in the CITZ, and combine these results with magnetotelluric(MT) modeling results to explain the crustal architecture. The models show a resistive(more than 2000Ω·m) and a normal density(2.70 g/cm~3) upper crust suggesting\ dominant tonalite-trondhjemite-granodiorite(TTG) composition.There is a marked correlation between both high-density(2.95 g/cm~3) and low-density(2.65 g/cm~3) regions with high conductive zones (<80Ω·m) in the deep crust.We infer the presence of an interconnected grain boundary network of fluids or fluid-hosted structures,where the conductors are associated with gravity lows.Based on the conductive nature,we propose that the lower crustal rocks are fluid reservoirs,where the fluids occur as trapped phase within minerals,fluid-filled porosity,or as fluid-rich structural conduits.We envisage that substantial volume of fluids were transferred from mantle into the lower crust through the younger plume-related Deccan volcanism,as well as the reactivation,fracturing and expulsion of fluids transported to depth during the Mesoproterozoic subduction tectonics.Migration of the fluids into brittle fault zones such as the Narmada North Fault and the Narmada South Fault resulted in generating high pore pressures and weakening of the faults,as reflected in the seismicity.This inference is also supported by the presence of broad gravity lows near these faults,as well as the low velocity in the lower crust beneath regions of recent major earthquakes within the CITZ.  相似文献   

14.
http://www.sciencedirect.com/science/article/pii/S1674987114000607   总被引:3,自引:0,他引:3  
The Qinling Complex of central China is thought to be the oldest rock unit and the inner core of the North Qinling Orogenic Belt (NQOB). Therefore, the Qinling Complex is the key to understanding the pre- Paleozoic evolution of the NQOB. The complex, which consists of metagraywackes and marbles, un- derwent regional amphibolite-facies metamorphism. In this study, we constrained the formation age of the Qinling Complex to the period between the late Mesoproterozoic and the early Neoproterozoic (ca. 1062-962 Ma), rather than the Paleoproterozoic as previously thought. The LA-ICP-MS data show two major metamorphic ages (ca. 499 and ca. 420-400 Ma) for the Qinling Complex. The former age is consistent with the peak metamorphic age of the high- and ultra-high pressure (HP-UHP) rocks in the Qinling Complex, indicating that both the HP-UHP rocks and their country rocks experienced intensive regional metamorphism during the Ordovician. The latter age may constrain the time of partial melting in the NQOB between the late Silurian and early Devonian. The Qinling Complex is mostly affiliated with subduction-accretion processes along an active continental margin, and should contain detritus deposited in a forearc basin.  相似文献   

15.
We present three 3D numerical models of deep subduction where buoyant material from an oceanic plateau and a plume interact with the overriding plate to assess the influence on subduction dynamics,trench geometry,and mechanisms for plateau accretion and continental growth.Transient instabilities of the convergent margin are produced,resulting in:contorted trench geometry;trench migration parallel with the plate margin;folding of the subducting slab and orocline development at the convergent margin;and transfer of the plateau to the overriding plate.The presence of plume material beneath the oceanic plateau causes flat subduction above the plume,resulting in a "bowed" shaped subducting slab.In plateau-only models,plateau accretion at the edge of the overriding plate results in trench migration around the edge of the plateau before subduction is re-established directly behind the trailing edge of the plateau.The plateau shortens and some plateau material subducts.The presence of buoyant plume material beneath the oceanic plateau has a profound influence on the behaviour of the convergent margin.In the plateau + plume model,plateau accretion causes rapid trench advance.Plate convergence is accommodated by shearing at the base of the plateau and shortening in the overriding plate.The trench migrates around the edge of the plateau and subduction is re-established well behind the trailing edge of the plateau,effectively embedding the plateau into the overriding plate.A slab window forms beneath the accreted plateau and plume material is transferred from the subducting plate to the overriding plate through the window.In all of the models,the subduction zone maintains a relatively stable configuration away from the buoyancy anomalies within the downgoing plate.The models provide a dynamic context for plateau and plume accretion in Phanerozoic accretionary orogenic systems such as the East China Orogen and the Central Asian Orogen(Altiads),which are characterised by accreted ophiolite complexes with diverse geochemical affinities,and a protracted evolution of accretion of exotic terranes including oceanic plateau and terranes with plume origins.  相似文献   

16.
The study of fluid inclusions in high-grade rocks is especially challenging as the host minerals have been normally subjected to deformation, recrystallization and fluid-rock interaction so that primary in- clusions, formed at the peak of metamorphism are rare. The larger part of the fluid inclusions found in metamorphic minerals is typically modified during uplift. These late processes may strongly disguise the characteristics of the "original" peak metamorphic fluid. A detailed microstructural analysis of the host minerals, notably quartz, is therefore indispensable for a proper interpretation of fluid inclusions. Cathodoluminescence (CL) techniques combined with trace element analysis of quartz (EPMA, LA- [CPMS) have shown to be very helpful in deciphering the rock-fluid evolution. Whereas high-grade metamorphic quartz may have relatively high contents of trace elements like Ti and A1, low- temperature re-equilibrated quartz typically shows reduced trace element concentrations. The result- ing microstructures in CL can be basically distinguished in diffusion patterns (along microfractures and grain boundaries), and secondary quartz formed by dissolution-reprecipitation. Most of these textures are formed during retrograde fluid-controlled processes between ca. 220 and 500 ℃, i.e. the range of semi-brittle deformation (greenschist-facies) and can be correlated with the fluid inclusions. In this way modified and re-trapped fluids can be identified, even when there are no optical features observed under the microscope.  相似文献   

17.
The eastern Pontides orogenic belt provides a window into continental arc magmatism in the Alpine-Himalayan belt.The late Mesozoic-Cenozoic geodynamic evolution of this belt remains controversial.Here we focus on the nature of the transition from the adakitic to non-adakitic magmatism in the Kale area of Gumushane region in NE Turkey where this transition is best preserved.The adakitic lithologies comprise porphyries and hyaloclastites.The porphyries are represented by biotite-rich andesites,hornblende-rich andesite and dacite.The hayaloclastites represent the final stage of adakitic activity and they were generated by eruption/intrusion of adakitic andesitic magma into soft carbonate mud.The non-adakitic lithologies include basaltic-andesitic volcanic and associated pyroclastic rocks. Both rock groups are cutting by basaltic dikes representing the final stage of the Cenozoic magmatism in the study area.We report zircon U-Pb ages of 48.71±0.74 Ma for the adakitic rocks,and 44.68±0.84 Ma for the non-adakitic type,suggesting that there is no significant time gap during the transition from adakitic to non-adakitic magmatism.We evaluate the origin,magma processes and tectonic setting of the magmatism in the southern part of the eastern Pontides orogenic belt.Our results have important bearing on the late Mesozoic-Cenozoic geodynamic evolution of the eastern Mediterranean region.  相似文献   

18.
http://www.sciencedirect.com/science/article/pii/S1674987112000357   总被引:1,自引:0,他引:1  
Field and remote sensing studies reveal that Au-bearing quartz±carbonate lodes in Romite deposit,in the extreme South Eastern Desert of Egypt,are controlled by NNE-striking shear zones that splay from the ca.660—550 Ma Hamisana Zone.Quartz in releasing bends with sinistral shear geometry and abundant boudinaged quartz-carbonate lodes with serrate ribboned fabrics suggest vein formation throughout a transpressive wrench system.Ubiquitous hydrothermal quartz,carbonate,and subordinate chlorite and sericite within the shear zones and as slivers in veins,indicate that gold deposition and hydrothermal alteration occurred under greenschist fades conditions.The Al(Ⅳ) in chlorite indicates a formation temperature of~300℃.comparable with temperatures estimated from arsenopyrite composition for grains intimately associated with gold in quartz veins. The new geological and geochemical data indicate that splays off the Hamisana Zone are potential gold exploration targets.Quartz veins along the high order(2nd or 3rd) structures of this crustal-scale shear zone are favorable targets.In the Romite deposit and in surrounding areas,a Au-As-Cu-Sb-Co-Zn geochemical signature characterizes mineralized zones,and particularly rock chips with>1000 ppm As and high contents of Cu,Zn,and Co target the better mineralized areas. The carbonateδ13Cpdb andδ18OSmow isotope signatures preclude an organic source of the ore fluid,but metamorphic and magmatic sources are still valid candidates.The intense deformation and lack of magmatism in the deposit area argue for metamorphic dewatering of greenstone rocks as the most likely fluid source.The narrow ranges ofδ13C(-4.6‰to -3.1‰) andδ18O(11.9‰-13.7‰) in carbonate minerals in lodes imply a corresponding uniformity to the ambient temperature andδ13CCO213C∑C) of the ore fluids. The calculatedδ18Oh2o values of 6.9‰—7.9‰for ore fluids,based onδ18O values of vein quartz further suggest a likely metamorphic origin.  相似文献   

19.
Global sea-level has changed in a cyclic manner through geologic history, but the regularities of these changes are yet to be fully understood. Despite certain (and sometimes significant) differences, ...  相似文献   

20.
http://www.sciencedirect.com/science/article/pii/S1674987113000352   总被引:1,自引:0,他引:1  
The Yidun Group extends from the Shangri-La region to the south and the Changtai region to the north,and is an important component of the Triassic Yidun arc in the eastern Tibetan plateau.It is composed of the Lieyi,Qugasi,Tumugou and Lanashan Formations from the base upward.Both the Lieyi and Lanashan Formations consist dominantly of black or gray slate and sandstone,whereas the Qugasi and Tumugou Formations have variable amounts of mafic to felsic volcanic rocks and turfs accompanied with gray slate and sandstone.Sandstone from the Yidun Group has variable CIA values from 55 to 76,indicative of mild to moderate weathering condition for the source rocks.All the sandstones define a general weathering trend nearly parallel to the A-CN boundary in the A-CN-K triangular diagram,implying limited effect of diagenetic and post-depositional K-metasomatism.Dominant detrital quartz and feldspar grains of the sandstones suggest predominantly felsic sources.Relatively high Y/Ni and low Cr/V ratios of sandstones from the Yidun Group indicate more contribution from felsic than mafic sources.Similarly,the Yidun sandstones have Co/Th and La/Sc ratios generally similar to upper continental crust (UCC) and cluster between UCC and felsic sources,indicating felsic rocks as primary sources.Granodiorite represents the average chemical composition of sources as evaluated by extending the predicted weathering trend back to the feldspar join in A-CN-K diagram.Prominently high Zr/Sc ratio or Hf concentration and Paleoproterozoic Nd modal ages (1.94-2.21 Ga)point to input of recycling components derived from old sedimentary source in a relatively stable tectonic setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号