首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
断层阶区对产生超剪切地震破裂的促进作用   总被引:2,自引:2,他引:0       下载免费PDF全文
地震时若断层发生超剪切破裂,地震灾害会显著加剧.因此研究超剪切破裂的形成机理有着非常重要的科学意义.本文利用动力有限单元方法,模拟断层破裂从初始断层跳跃传播到另一条平行的次级断层(断层阶区)时破裂速度的变化情况,并分析断层阶区几何特征等物理参数对产生超剪切地震破裂的促进作用.计算结果表明,断层阶区的诸多物理因素(如:重叠长度、相隔距离以及摩擦系数等)都会对破裂的传播速度产生影响.在一定条件下,破裂传播速度会由在初始断层上的亚剪切波速度,转换为在次级断层上的超剪切波速度.在破裂速度转换过程中,断层间隔起着重要作用,当断层阶区中两断层垂直间隔距离小到一定程度时,破裂跳跃阶区后,破裂速度不会发生变化.所以对于分段断层(可视为一种特殊的断层阶区),由于其断层垂直间隔为0,也就不会出现破裂速度变化的现象,模拟结果对此也进行了证实.然而,若断层间隔太大,当其距离超过一定的限度后,破裂通常无法跨越断层阶区继续传播,而是终止在初始断层上.模拟结果还表明,初始断层与次级断层之间的重叠距离也十分重要,只有当断层阶区中两平行断层之间的重叠部分达到一定长度后,断层的破裂速度才有可能发生转换.此外,计算结果显示,破裂过程中断层面上的应力变化可能是破裂传播速度发生转换的直接原因.最后,模拟还发现,当破裂跨越断层阶区发生速度转换时,破裂需要停顿一定的时间,以便积聚足够的能量来实现破裂速度的增快.  相似文献   

2.
断层的破裂速度是描述地震震源过程的重要物理量.如果震源破裂的传播速度超过剪切波速,将会对地震波场产生影响,造成更大的破坏性.超剪切破裂的产生受多种因素影响,断层的几何形状是因素之一.本文针对弯折断层的情况,采用三维空间非结构化网格的边界积分方法计算参数空间中的破裂相图,从中分析超剪切破裂的产生条件.以15°、25°和40°为例,得到了不同断层弯折角度的破裂相图.在本文的初始应力设置下,通过对不同的无量纲化临界滑动弱化位移Dc和初始剪应力Te参数组合的结果进行交叉对比发现,对于弯折面处于压缩区的断层模型,不可持续传播的自发停止破裂的发生条件与弯折角无关.而对于可持续传播破裂,其在平面断层的传播速度也不受弯折角影响;在弯折部分,随弯折角度增大,破裂传播速度越小,正应力越大,破裂强度越大,破裂越难以越过弯折交界线继续传播(如40°).对比三个不同弯折角的相图,弯折角越小,越容易发生超剪切破裂,即发生超剪切的参数空间越大.同时,随着初始剪应力的增大,超剪切不仅可以发生在弯折面上,甚至在平面部分就可以发生.总体而言,Dc较小、Te较大时,破裂传播速度更大,更容易形成超剪切破裂.另外,因克服弯折交界处的正应力而产生的错位延迟效应也与弯折角度正相关.  相似文献   

3.
The Zuccale fault is a regional, low-angle, normal fault, exposed on the Isle of Elba in central Italy that accommodated a total shear displacement of 6–8 km. The fault zone structure and fault rocks formed at <8 km crustal depth. The present-day fault structure is the final product of several deformation processes superposed during the fault history. In this study, we report results from a series of rotary shear experiments performed on 1-mm thick powdered gouges made from several fault rock types obtained from the Zuccale fault. The tests were done under conditions ranging from room temperature to in situ conditions (i.e., at temperatures up to 300 °C, applied normal stresses up to 150 MPa, and fluid-saturated.) The ratio of fluid pressure to normal stress was held constant at either λ = 0.4 or λ = 0.8 to simulate an overpressurized fault. The samples were sheared at a constant sliding velocity of 10 μm/s for at least 5 mm, after which a velocity-stepping sequence from 1 to 300 μm/s was started to determine the velocity dependence of friction. This can be represented by the rate-and-state parameter (a–b), which was determined by an inversion of the data to the rate-and-state equations. Friction of the various fault rocks varies between 0.3 and 0.8, similar to values obtained in previous studies, and decreases with increasing phyllosilicate content. Friction decreases mildly with temperature, whereas normal stress and fluid pressure do not affect friction values systematically. All samples exhibited velocity strengthening, conditionally stable behavior under room temperature conditions and (ab) increased with increasing sliding velocity. In contrast, velocity weakening, accompanied by stick–slips, was observed for the strongest samples at 300 °C and sliding velocities below 10 μm/s. An increase in fluid pressure under these conditions led to a further reduction in (a–b) for all samples, so that they exhibited unstable, stick–slip behavior at low sliding velocity. The results suggest that phyllosilicate-bearing fault rocks can deform by stable, aseismic creep at low, resolved shear stress and low shear rate conditions. An increase in fluid pressure or loading of stronger portions could lead to a runaway instability. The runaway instability might be limited in size because of (1) the fault heterogeneity, (2) the observed strengthening at higher sliding velocities, and (3) a co-seismic drop in pore-fluid pressure.  相似文献   

4.
The 10 January 2018 MW7.5 Swan island, Honduras earthquake occurred on the Swan island fault, which is a transform plate boundary between the North American and Caribbean plates. Here we back-project the rupture process of the earthquake using dense seismic stations in Alaska, and find that the earthquake ruptured at least three faults (three stages) for a duration of ~40 s. The rupture speed for the longest fault (stage 3) is as fast as 5 km/s, which is much faster than the local shear wave velocity of ~4 km/s. Supershear rupture was incidentally observed on long and straight strike-slip faults. This study shows a supershear rupture that occured on a strike-slip fault with moderate length, implying that supershear rupture might commonly occur on large strike-slip earthquakes. The common occurrence of supershear rupture on strike-slip earthquakes will challenge present understanding of crack physics, as well as strong ground motion evaluation in earthquake engineering.  相似文献   

5.
This paper reports stick-slip behaviors of Indian gabbro as studied using a new large-scale biaxial friction apparatus, built in the National Research Institute for Earth Science and Disaster Prevention (NIED), Tsukuba, Japan. The apparatus consists of the existing shaking table as the shear-loading device up to 3, 600 kN, the main frame for holding two large rectangular prismatic specimens with a sliding area of 0.75 m2 and for applying normal stresses σn up to 1.33 MPa, and a reaction force unit holding the stationary specimen to the ground. The shaking table can produce loading rates v up to 1.0 m/s, accelerations up to 9.4 m/s2, and displacements d up to 0.44 m, using four servocontrolled actuators. We report results from eight preliminary experiments conducted with room humidity on the same gabbro specimens at v = 0.1-100 mm/s and σn = 0.66-1.33 MPa, and with d of about 0.39 m. The peak and steady-state friction coefficients were about 0.8 and 0.6, respectively, consistent with the Byerlee friction. The axial force drop or shear stress drop during an abrupt slip is linearly proportional to the amount of displacement, and the slope of this relationship determines the stiffness of the apparatus as 1.15×108 N/m or 153 MPa/m for the specimens we used. This low stiffness makes fault motion very unstable and the overshooting of shear stress to a negative value was recognized in some violent stick-slip events. An abrupt slip occurred in a constant rise time of 16-18 ms despite wide variation of the stress drop, and an average velocity during an abrupt slip is linearly proportional to the stress drop. The use of a large-scale shaking table has a great potential in increasing the slip rate and total displacement in biaxial friction experiments with large specimens.  相似文献   

6.
正应力扰动对断层滑动失稳影响的实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
利用双轴伺服控制加载装置,采用三块花岗闪长岩标本组成的含有两个滑动面的直剪结构,开展了摩擦滑动实验.实验中通过在垂直滑动面的载荷上叠加正弦波状和方波状的扰动,研究了正应力扰动对断层黏滑失稳的影响.研究表明,在恒定的正应力和位移速率下,标本表现为规则的黏滑,叠加正应力扰动后,随扰动振幅的增加黏滑发生时间与扰动的相关性增大,黏滑应力降和时间间隔的分布趋于离散.黏滑应力降和时间间隔的平均值随平均正应力的增加呈线性增长,扰动叠加后黏滑应力降的离散度随平均正应力的增加而增大;黏滑应力降和时间间隔主要受应力变化幅度的影响,而与应力变化的速率关系不大.剪应力和正应力扰动都会对断层黏滑失稳产生影响,而正应力扰动的影响更明显.这两种扰动对断层黏滑失稳影响的机制存在差异,剪应力扰动只是改变断层滑动的推动力,而正应力扰动则改变了断层面上凹凸体的接触状态.  相似文献   

7.
It is a long-standing question whether granular fault material such as gouge plays a major role in controlling fault dynamics such as seismicity and slip-periodicity. In both natural and experimental faults, granular materials resist shear and accommodate strain via interparticle friction, fracture toughness, fluid pressure, dilation, and interparticle rearrangements. Here, we isolate the effects of particle rearrangements on granular deformation through laboratory experiments. Within a sheared photoelastic granular aggregate at constant volume, we simultaneously visualize both particle-scale kinematics and interparticle forces, the latter taking the form of force-chains. We observe stick-slip deformation and associated force drops during an overall strengthening of the shear zone. This strengthening regime provides insight into granular rheology and conditions of stick-slip periodicity, and may be qualitatively analogous to slip that accompanies longer term interseismic strengthening of natural faults. Of particular note is the observation that increasing the packing density increases the stiffness of the granular aggregate and decreases the damping (increases time-scales) during slip events. At relatively loose packing density, the slip displacements during the events follow an approximately power-law distribution, as opposed to an exponential distribution at higher packing density. The system exhibits switching between quasi-periodic and aperiodic slip behavior at all packing densities. Higher packing densities favor quasi-periodic behavior, with a longer time interval between aperiodic events than between quasi-periodic events. This difference in the time-scale of aperiodic stick-slip deformation is reflected in both the kinematics of interparticle slip and the force-chain dynamics: all major force-chain reorganizations are associated with aperiodic events. Our experiments conceptually link observations of natural fault dynamics with current models for granular stick-slip dynamics. We find that the stick-slip dynamics are consistent with a driven harmonic oscillator model with damping provided by an effective viscosity, and that shear-transformation-zone, jamming, and crackling noise theories provide insight into the effective stiffness and patterns of shear localization during deformation.  相似文献   

8.
朱守彪  袁杰  缪淼 《地球物理学报》2017,60(10):3832-3843
由于2010年玉树地震(Ms=7.1)产生了超剪切地震破裂,所以地震灾害特别严重.国内外地球科学家对该地震产生超剪切破裂过程的物理机制一直非常关注,但至今没有给出满意的解答.为此,文中根据玉树地震发震断层的实际几何构建有限单元数值模型,模型中的断层由2个断层段构成,它们之间有约10°的夹角,形成断层拐折.模拟结果表明,玉树地震的破裂由2个子事件组成;当破裂在震源所在的断层上成核后,先在第一个断层段上传播,其速度为亚剪切波速度;当破裂一旦越过断层拐折,在第二个断层段上传播时,破裂速度就立即转变为超剪切波速度.计算结果显示,当断层发生超剪切破裂时,断层上的位错幅度、破裂产生的地震波速度及加速度都会显著增大,从而造成地震灾害大大增加,这很可能是玉树地震的震害特别严重的重要原因.从模拟实验中还看到,若是模型中的断层没有发生拐折,在模型的其他参数都保持不变的情况下,破裂速度不会发生变化.但是,若初始应力场的方位与断层之间的夹角发生变化,这时断裂系统中尽管存在断层拐折,也不是一定能产生超剪切破裂.只有当初始应力方位与断层之间的夹角以及断层走向变化的偏角二者之间的关系恰到好处时,断层拐折才有可能促使断层破裂由亚剪切转化为超剪切破裂.所以,玉树地震之所以能产生超剪切地震破裂,恰恰是发震断层几何与初始应力场方位之间的关系达到某种"最佳状态"的结果.这也可能是天然地震中超剪切破裂事件稀少的原因之一.因此,研究超剪切地震破裂过程的动力学机制,对于深入研究地震震源过程、地震灾害评估等有着非常重要的科学意义.  相似文献   

9.
为更好地理解层状硅酸盐对断层强度、滑动速度依赖性及地震活动特征的影响,利用双轴摩擦实验对含白云母岩盐断层带在干燥及含水条件下摩擦的速度依赖性进行了实验研究,并观测了摩擦滑动过程中的声发射,分析了断层带的微观结构.实验结果表明,干燥条件下含白云母岩盐断层带在0.1 ~ 100μm/s的速度范围内表现为黏滑和速度弱化,增大σ2会使断层带从速度弱化向速度强化转化,速度依赖性转换出现在0.1 μm/s,其中断层滑动表现为稳滑或应力释放时间较长的黏滑事件;含水条件下含白云母岩盐断层带在0.05 ~0.01μm/s的速度范围内表现为速度强化,0.1 ~10μm/s的速度范围内表现为速度弱化,50~100μm/s的速度范围内又转换为速度强化行为.含白云母岩盐断层带在干燥条件下一次黏滑伴随一个或一丛声发射事件,而在含水条件下与稳滑相对应,滑动过程中并未记录到声发射事件.显微结构观察表明,速度弱化域的主要变形机制是岩盐颗粒的脆性破裂和局部化的滑动;干燥条件下,速度强化域的主要变形机制是岩盐颗粒的均匀破裂;含水条件下2个速度强化域对应不同的微观机制,高速域的速度强化受控于岩盐颗粒在白云母相互连结形成的网状结构上的滑动及其均匀碎裂作用,而低速域的速度强化还受岩盐的压溶作用控制.通过与岩盐断层带摩擦实验结果对比可知,白云母的存在对于燥岩盐断层带摩擦滑动方式和速度依赖性没有显著影响,而在含水条件下白云母的存在使得岩盐断层带滑动趋于稳定.实验结果为分析含层状硅酸盐断层的强度和稳定性提供了依据.此外,在速度依赖性转换域上观察到的应力缓慢释放的现象进一步证实了在岩盐断层带摩擦滑动过程中观察到的现象,这对慢地震机制研究具有参考意义.  相似文献   

10.
The study of stick-slip is directly connected with the formulation of the consistent concept of seismicity migration and explanation of the nature of strain waves observed at the contacts of blocks and plates. We propose a phenomenological model to describe the initiation of stick-slip at the rough contact of blocks of rocks. The model contains the leading factors of stick-slip process (friction, roughness of contact surfaces, and asperity). The model reproduces the universal profile of slip velocity and displacement, velocity of dynamic rupture observed in experiments. The stick-slip motion at a rough surface of a fault is shown to be a nonlinear process and can be described by the generalized sine-Gordon equation. The results of calculations and a comparison with experimental data testify to the existence of waves of a new type — solitary waves of sliding. The analogies are found between the strain waves generated due to stick-slip at the contact of the blocks of rocks, strain waves in the crustal faults, and those within the lithosphere.  相似文献   

11.
We investigate the evolution of wear and friction along experimental faults composed of solid rock blocks. This evolution is analyzed through shear experiments along five rock types, and the experiments were conducted in a rotary apparatus at slip velocities of 0.002–0.97 m/s, slip distances from a few millimeters to tens of meters, and normal stress of 0.25–6.9 MPa. The wear and friction measurements and fault surface observations revealed three evolution phases: A) An initial stage (slip distances <50 mm) of wear by failure of isolated asperities associated with roughening of the fault surface; B) a running-in stage of slip distances of 1–3 m with intense wear-rate, failure of many asperities, and simultaneous reduction of the friction coefficient and wear-rate; and C) a steady-state stage that initiates when the fault surface is covered by a gouge layer, and during which both wear-rate and friction coefficient maintain quasi-constant, low levels. While these evolution stages are clearly recognizable for experimental faults made from bare rock blocks, our analysis suggests that natural faults “bypass” the first two stages and slip at gouge-controlled steady-state conditions.  相似文献   

12.
This paper reports internal structures of a wide fault zone at Shenxigou, Dujiangyan, Sichuan province, China, and high-velocity frictional properties of the fault gouge collected near the coseismic slip zone during the 2008 Wenchuan earthquake. Vertical offset and horizontal displacement at the trench site were 2.8 m (NW side up) and 4.8 m (right-lateral), respectively. The fault zone formed in Triassic sandstone, siltstone, and shale about 500 m away from the Yingxiu-Beichuan fault, a major fault in the Longmenshan fault system. A trench survey across the coseismic fault, and observations of outcrops and drill cores down to a depth of 57 m revealed that the fault zone consists of fault gouge and fault breccia of about 0.5 and 250–300 m in widths, respectively, and that the fault strikes N62°E and dips 68° to NW. Quaternary conglomerates were recovered beneath the fault in the drilling, so that the fault moved at least 55 m along the coseismic slip zone, experiencing about 18 events of similar sizes. The fault core is composed of grayish gouge (GG) and blackish gouge (BG) with very complex slip-zone structures. BG contains low-crystalline graphite of about 30 %. High-velocity friction experiments were conducted at normal stresses of 0.6–2.1 MPa and slip rates of 0.1–2.1 m/s. Both GG and BG exhibit dramatic slip weakening at constant high slip rates that can be described as an exponential decay from peak friction coefficient μ p to steady-state friction coefficient μ ss over a slip-weakening distance D c. Deformation of GG and BG is characterized by overlapped slip-zone structures and development of sharp slickenside surfaces, respectively. Comparison of our data with those reported for other outcrops indicates that the high-velocity frictional properties of the Longmenshan fault zones are quite uniform and the high-velocity weakening must have promoted dynamic rupture propagation during the Wenchuan earthquake.  相似文献   

13.
为了深入理解断层带摩擦滑动速度依赖性转换及其机制,利用双轴摩擦实验对干燥及含水条件下岩盐断层带摩擦的速度依赖性进行了实验研究,并观测了摩擦滑动过程中的声发射,分析了断层带的微观结构.实验结果表明,干燥岩盐断层带在0.1~100 μm/s的速度范围内表现为速度弱化,增大σ2会使断层带向速度强化转变;含水条件下岩盐断层带在1~100 μm/s的速度范围内表现为速度弱化,而在0.1~0.01 μm/s的速度范围内表现为速度强化,速度依赖性转换出现在0.1~1 μm/s,其中断层表现为振荡或应力释放时间较长的黏滑事件;岩盐断层带在干燥条件下表现出很强的声发射活动,每个黏滑均对应一丛声发射事件,而在含水条件下一次黏滑只对应一个声发射事件.显微观察表明,局部化的脆性破裂是速度弱化域的主要变形机制,分布式的碎裂流动是干燥岩盐断层带在速度强化域的变形机制,颗粒边界迁移以及压溶作用的塑性变形是含水条件下岩盐断层带在速度强化域的主要变形机制,而脆性破裂和塑性变形共同控制着速度依赖性转换域断层带的变形.水的存在促进岩盐发生塑性变形,进而导致断层带从速度弱化向速度强化转换.上述结果有助于理解断层带上地震活动的特征和慢地震的机制.  相似文献   

14.
The nucleation process of stick-slip instability was analyzed based on the experimental measurements of strain and fault slip on homogeneous and non-homogeneous faults. The results show that the nucleation process of stick-slip on the homogeneous fault is of weak slip-weakening behavior under constant loading point velocity. The existence of a short “weak segment” on the fault makes slip-weakening phenomenon in nucleation process more obvious, while the existence of a long “weak segment” on the fault makes the nucleation process changed. The nucleation is characterized by accelerating slip in a local region and rapid increase of shear stress along the fault in this case, which is more coincident with the rate and state friction law. During the period when fault is locked, increasing of shear stress causes lateral elastic dilation near the fault, and the rebound of the dilation at the time of instability causes an instantaneous increase of normal stress in the fault plane, which is an important factor making fault be rapidly locked and its strength recovered.  相似文献   

15.
The nucleation process of stick-slip instability was analyzed based on the experimental measurements of strain and fault slip on homogeneous and non-homogeneous faults. The results show that the nucleation process of stick-slip on the homogeneous fault is of weak slip-weakening behavior under constant loading point velocity. The existence of a short "weak segment" on the fault makes slip-weakening phenomenon in nucleation process more obvious, while the existence of a long "weak segment" on the fault makes the nucleation process changed. The nucleation is characterized by accelerating slip in a local region and rapid increase of shear stress along the fault in this case, which is more coincident with the rate and state friction law. During the period when fault is locked, increasing of shear stress causes lateral elastic dilation near the fault, and the rebound of the dilation at the time of instability causes an instantaneous increase of normal stress in the fault plane, which is an important factor making fault be rapidly locked and its strength recovered.  相似文献   

16.
The 1995 Kobe (Hyogo-ken Nanbu) earthquake, M = 7.2, ruptured the Nojima fault in southwest Japan. We have studied core samples taken from two scientific drillholes that crossed the fault zone SW of the epicentral region on Awaji Island. The shallower hole, drilled by the Geological Survey of Japan (GSJ), was started 75 m to the SE of the surface trace of the Nojima fault and crossed the fault at a depth of 624 m. A deeper hole, drilled by the National Research Institute for Earth Science and Disaster Prevention (NIED) was started 302 m to the SE of the fault and crossed fault strands below a depth of 1140 m. We have measured strength and matrix permeability of core samples taken from these two drillholes. We find a strong correlation between permeability and proximity to the fault zone shear axes. The half-width of the high permeability zone (approximately 15 to 25 m) is in good agreement with the fault zone width inferred from trapped seismic wave analysis and other evidence. The fault zone core or shear axis contains clays with permeabilities of approximately 0.1 to 1 microdarcy at 50 MPa effective confining pressure (10 to 30 microdarcy at in situ pressures). Within a few meters of the fault zone core, the rock is highly fractured but has sustained little net shear. Matrix permeability of this zone is approximately 30 to 60 microdarcy at 50 MPa effective confining pressure (300 to 1000 microdarcy at in situ pressures). Outside this damage zone, matrix permeability drops below 0.01 microdarcy. The clay-rich core material has the lowest strength with a coefficient of friction of approximately 0.55. Shear strength increases with distance from the shear axis. These permeability and strength observations reveal a simple fault zone structure with a relatively weak fine-grained core surrounded by a damage zone of fractured rock. In this case, the damage zone will act as a high-permeability conduit for vertical and horizontal flow in the plane of the fault. The fine-grained core region, however, will impede fluid flow across the fault.  相似文献   

17.
We investigate interseismic deformation across the San Jacinto fault at Anza, California where previous geodetic observations have indicated an anomalously high shear strain rate. We present an updated set of secular velocities from GPS and InSAR observations that reveal a 2–3 km wide shear zone deforming at a rate that exceeds the background strain rate by more than a factor of two. GPS occupations of an alignment array installed in 1990 across the fault trace at Anza allow us to rule out shallow creep as a possible contributor to the observed strain rate. Using a dislocation model in a heterogeneous elastic half space, we show that a reduction in shear modulus within the fault zone by a factor of 1.2–1.6 as imaged tomographically by Allam and Ben-Zion (Geophys J Int 190:1181–1196, 2012) can explain about 50 % of the observed anomalous strain rate. However, the best-fitting locking depth in this case (10.4 ± 1.3 km) is significantly less than the local depth extent of seismicity (14–18 km). We show that a deep fault zone with a shear modulus reduction of at least a factor of 2.4 would be required to explain fully the geodetic strain rate, assuming the locking depth is 15 km. Two alternative possibilities include fault creep at a substantial fraction of the long-term slip rate within the region of deep microseismicity, or a reduced yield strength within the upper fault zone leading to distributed plastic failure during the interseismic period.  相似文献   

18.
This paper reports internal structures of a bedding-parallel fault in Permian limestone at Xiaojiaqiao outcrop that was moved by about 0.5 m during the 2008 MW7.9 Wenchuan earthquake. The fault is located about 3 km to the south from the middle part of Yingxiu-Beichuan fault, a major fault in the Longmenshan fault system that was moved during the earthquake. The outcrop is also located at Anxian transfer zone between the northern and central segments of Yingxiu-Beichuan fault where fault system is complex. Thus the fault is an example of subsidiary faults activated by Wenchuan earthquake. The fault has a strike of 243° or N63°E and a dip of 38°NW and is nearly optimally oriented for thrust motion, in contrast to high-angle coseismic faults at most places. Surface outcrop and two shallow drilling studies reveal that the fault zone is several centimeters wide at most and that the coseismic slip zone during Wenchuan earthquake is about 1 mm thick. Fault zone contains foliated cataclasite, fault breccia, black gouge and yellowish gouge. Many clasts of foliated cataclasite and black gouge contained in fault breccia indicate multiple slip events along this fault. But fossils on both sides of fault do not indicate clear age difference and overall displacement along this fault should not be large. We also report results from high-velocity friction experiments conducted on yellowish gouge from the fault zone using a rotary shear low to high-velocity frictional testing apparatus. Dry experiments at normal stresses of 0.4 to 1.8 MPa and at slip rates of 0.08 to 1.35 m/s reveal dramatic slip weakening from the peak friction coefficient of around 0.6 to very low steady-state friction coefficient of 0.1-0.2. Slip weakening parameters of this carbonate fault zone are similar to those of clayey fault gouge from Yingxiu-Beichuan fault at Hongkou outcrop and from Pingxi fault zone. Our experimental result will provide a condition for triggering movement of subsidiary faults or off-fault damage during a large earthquake.  相似文献   

19.
ZHOU Yong-sheng 《地震地质》2019,41(5):1266-1272
Paleo-seismic and fault activity are hard to distinguish in host rock areas compared with soft sedimentary segments of fault. However, fault frictional experiments could obtain the conditions of stable and unstable slide, as well as the microstructures of fault gouge, which offer some identification marks between stick-slip and creep of fault. We summarized geological and rock mechanical distinction evidence between stick-slip and creep in host rock segments of fault, and analyzed the physical mechanisms which controlled the behavior of stick-slip and creep. The chemical composition of fault gouge is most important to control stick-slip and creep. Gouge composed by weak minerals, such as clay mineral, has velocity weakening behavior, which causes stable slide of fault. Gouge with rock-forming minerals, such as calcite, quartz, feldspar, pyroxene, has stick-slip behavior under condition of focal depth. To the gouge with same chemical composition, the deformation mechanism controls the frictional slip. It is essential condition to stick slip for brittle fracture companied by dilatation, but creep is controlled by compaction and cataclasis as well as ductile shear with foliation and small fold. However, under fluid conditions, pressure solution which healed the fractures and caused strength recovery of fault, is the original reason of unstable slide, and also resulted in locking of fault with high pore pressure in core of fault zone. Contrast with that, rock-forming minerals altered to phyllosilicates in the gouges by fluid flow through degenerative reaction and hydrolysis reaction, which produced low friction fault and transformations to creep. The creep process progressively developed several wide shear zones including of R, Y, T, P shear plane that comprise gouge zones embedded into wide damage zones, which caused small earthquake distributed along wide fault zones with focal mechanism covered by normal fault, strike-slip fault and reverse fault. However, the stick-slip produced mirror-like slide surfaces with very narrow gouges along R shear plane and Y shear plane, which caused small earthquake distributed along narrow fault zones with single kind of focal mechanism.  相似文献   

20.
In this paper,compression tests of intact granite samples have been made in a triaxial testing machine with solid confining pressure.From the tests,the influences of confining pressure and loading rate(axial strain rate)on the deformation and fracture process of rock samples,on the stress drop and recurrence interval of stick-slip events,and on the geometric distribution of the main fracture have been studied.The experimental results show that the loading rate influences the stress drop and recurrence interval of stick-slip events greatly.At lower loading rates,the stress drop of stick-slip events is greater,their recurrence interval is longer and shows no regularity in distribution.When the loading rate goes higher,the stress drop will become smaller and the recurrence interval will tend to be constant and stick-slip events show a quasi-periodicity.At lower confining pressures and strain rates,the main fracture may evolve into 2 X-shaped conjugate shear faults; whereas at higher confining pressures and  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号