首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On 29–30 September 1996, an earthquake sequence occurred in the Füzesgyarmat region in eastern Hungary. The main shock had a magnitude of ML = 3.2 and was felt with a maximum intensity 4 MSK. It was preceded by a foreshock with a magnitude of ML = 2.8 and was followed, within six hours, by five aftershocks with magnitudes 2.1ML 3.1. The dynamic source parameters of the Füzesgyarmat earthquake sequence have been derived from P-wave spectra of the Hungarian seismograph stations. The average of the obtained values at different stations shows that the main shock occurred on a fault length of 610 m, with relative displacement of 1.13 cm, stress drop of 7 bar and seismic moment of 3.96*1021 dyne.cm. The main shock was small to yield data for a full mechanism solution and no reliable single fault plane solution could be obtained due to the low signal to noise ratio at the recording stations. The parameters of the foreshock are fault length of 560m, seismic moment of 2.09*1021 dyne.cm, stress drop of 5.53 bar and relative displacement of 0.73 cm. The five aftershocks show source parameters similar to the foreshock stress drops (5.26 5.76 bar), fault lengths (415 L 600 m), seismic moments (8.36*1020 Mo 2.31*1021 dyne.cm) and relative displacements (0.52 0.91 cm).  相似文献   

2.
IntroductionSince the late 1970s, the quickly developed global digital seismograph network has been providing high quality recordings of large earthquakes in global scale, based on which digital seismology has made great progress. Compared with large earthquakes, moderate and small sized shocks have more frequent occurrence, and comprise clues to geological tectonics and tectonic stress field in a region. Preceding and following a large earthquake, usually occur numbers of small events that im…  相似文献   

3.
The main goal of this study is to provide moment tensor solutions for small and moderate earthquakes of the 2009 L’Aquila seismic sequence (central Italy). The analysis was performed by using data coming from the permanent Italian seismic network run by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) and the “Cut And Paste” (CAP) method based on broadband waveform inversion. Focal mechanisms, source depths and moment magnitudes are determined through a grid search technique. By allowing time shifts between synthetics and observed data the CAP method reduces dependence of the solution on the assumed velocity model and on earthquake location. We computed seismic moment tensors for 312 earthquakes having local magnitude in the range between 2.7 and 5.9. The CAP method has made possible to considerably expand the database of focal mechanisms from waveform analysis in the lowest magnitude range (i.e. in the neighborhood of magnitude 3) without overlooking the reliability of results. The obtained focal mechanisms generally show NW–SE striking focal planes in agreement with mapped faults in the region. Comparisons with the already published solutions and with seismological and geological information available allowed us to proper interpret the moment tensor solutions in the frame of the seismic sequence evolution and also to furnish additional information about less energetic seismic phases. Focal data were inverted to obtain the seismogenic stress in the study area. Results are compatible with the major tectonic domain. We also obtained a relation between moment and local magnitude suitable for the area and for the available magnitude range.  相似文献   

4.
An earthquake sequence comprising almost 2000 events occurred in February–July 2001 on the southern coast of the Corinth Gulf.Several location methods were applied to 171 events recorded by the regional network PATNET. The unavailability of S-wave readings precluded from reliable depth determination. For the mainshock of April 8, ML= 4.7, the depth varied from 0 to 20 km. The amplitude spectra of complete waveforms at three local stations (KER,SER, DES; epicentral distances 17, 26 and 56 km) were inverted between 0.1 and 0.2 Hz for double-couple focal mechanism and also for the depth. The optimum solution (strike 220°, dip 40°, rake ‒160°, and depth of 8 km) was validated by forward waveform modeling.Additionally, the mainshock depth was further supported by the P- and S-wave arrival times from the local short-period network CRLNET (Corinth Rift Laboratory).The scalar seismic moment was 2.5e15 Nm,and the moment rate function was successfully simulated by a triangle of the 0.5 second duration. This is equivalent to a 1–1.5 km fault length, and a static stress drop 2–6 MPa. This value is important for future strong ground motion simulation of damaging earthquakes in Aegion region, whose subevents may be modeled according to the studied event. The T axis of the mainshock (azimuth 176° and plunge 67°), is consistent with the regional direction of extension N10°. However, none of the nodal planes can be associated to an active structure seen at the surface. The relationship of this earthquake sequence with deeper faults (e.g. possible detachment at about 10 km) is also unclear.  相似文献   

5.
The main goal of this study is to provide moment tensor solutions for small and moderate earthquakes of the Matese seismic sequence in southern Italy for the period of December 2013–January 2014. We estimate the focal mechanisms of 31 earthquakes with local magnitudes related to the Matese earthquake seismic sequence (December 2013–January 2014) in Southern-Central Italy which are recorded by the broadband stations of the Italian National Seismic Network and the Mediterranean Very Broadband Seismographic Network (MedNet) run by the Istituto Nazionale di Geofisica e Vulcanologia (INGV). The solutions show that normal faulting is the prevailing style of seismic deformation in agreement with the local faults mapped out in the area. Comparisons with already published solutions and with seismological and geological information available allowed us to properly interpret the moment tensor solutions in the frame of the seismic sequence evolution and also to furnish additional information about less energetic seismic phases. Focal data were inverted to obtain the seismogenic stress in the study area. The results are compatible with the major tectonic domain of the area.  相似文献   

6.
We study source properties of the main earthquakes of the 1997–98 Umbria-Marche (central Italy) sequence by analysis of regional-distanceand teleseismic long period and broadband seismograms recorded by MedNet and IRIS/GSN stations. We use a modified Harvardcentroid-moment tensor (CMT) algorithm to allow inversion of long period waveforms, primarily Rayleigh and Love waves, for small earthquakes (4.2 MW 5.5) at local to regional distances (<15°). For the seven largest earthquakes (MW>5.2) moment tensors derived from local and regional data agree well with those determined using teleseismic waveforms and standard methods of analysis. We also determine moment tensors for a foreshock and 12 other aftershocks, that were too small for global analysis. Focal depth and rupture propagation are analyzed for three largest shocks by inversion of teleseismic broadband body waves. The earthquakes are generally located at shallow depth (5 km or shallower) and are characterized by normal faulting mechanisms, with a NE-SW tension axis. The presumed principal fault plane dips at a shallow angle towards the SW. Only one of the events analyzed has an entirely different faulting geometry, indicating instead right-lateral strike-slip motion on a plane approximately E-W, or left-lateral faulting on a N-S plane. The other significant exception to the regular pattern of mechanisms is represented by the March 26, 1998, event, located at 51 km depth. Its connection with the shallow earthquake sequence is unclear and intriguing. The time evolution of the seismic sequence is unusual,with the mainshock accounting for only approximately 50% of the total moment release. The broadband teleseismic waveforms of the main, September 26, 09:40, earthquake are very complicated for the size of the event and suggest a complex rupture. In our favored source model, rupture initiated at 5 km depth, propagated updip and was followed, 3 seconds later, by a shallower subevent with a slightly rotated mechanism.  相似文献   

7.
SourceparametersoftheGonghe,QinghaiProvince,China,earthquakefrominversionofdigitalbroadbandwaveformdataLI-SHENGXU(许立生)andYUN...  相似文献   

8.
Since March 2014, an unusually large amount of earthquakes occur southeast of the city of Darmstadt in the northern Upper Rhine Graben. During the period, until April 2015, we have recorded 356 earthquakes with magnitudes ranging from ML?=??0.6 to 4.2. We identified two source clusters separated laterally by about 5 km. The hypocentres within these clusters are aligned vertically extending over a depth range from 1 to 8 km with a lateral extent of about 1 to 2 km. Focal mechanisms show left-lateral strike-slip movements; b values are changing with time between b?=?0.6 and b?=?0.9. This is the first time in almost 150 years that such high earthquake rates have been observed in the region. Historical accounts dating back to the nineteenth century report of over 2000 felt earthquakes over a time span from 1869 to 1871. From these, maximum intensities of VII have been estimated. Other seismic activities in the region were reported in the 1970s. The observations of the 2014–2015 earthquake series do not completely match a typical main shock–aftershock sequence or a typical earthquake swarm. Especially the activity at the beginning of the earthquake series may be considered as a mixture of a main shock–aftershock sequence and a short-lasting swarm event. Whether or not the time gap between the current seismic activity, which actually takes place at the same locations as parts of the seismic swarm in 1869–1871, and the seismic activity in the nineteenth century or the seismic activity in the 1970s can be interpreted as a seismic cycle remains unclear.  相似文献   

9.
This paper discusses results from ongoing research on long-term earthquake prediction for the Kuril–Kamchatka island arc based on the concepts of seismic gaps and the seismic cycle. We developed a forecast for the next 5 years (April 2016 through March 2021) for all segments of the earthquake-generating zone along the Kuril–Kamchatka arc. The 20 segments of the arc were analyzed to develop forecasts of the appropriate phases of the seismic cycle, a normalized parameter of the rate of small earthquakes (A10), the magnitudes of moderate earthquakes that are expected with probabilities of 0.8, 0.5, and 0.15, the maximum expected magnitudes, and the probabilities of great (M ≥ 7.7) earthquakes. We discuss the seismic process in the Kuril–Kamchatka earthquake-generating zone before and after the deep-focus May 24, 2013 M 8.3 earthquake in the Sea of Okhotsk. The results corroborate the high seismic hazard in the area of Petropavlovsk-Kamchatskii and the urgent need for continuing with and expanding the ongoing work of seismic retrofitting and seismic safety enhancement. We quote practical results from applications of the method during 30 years.  相似文献   

10.
The change in the mean temperature in Finland is investigated with a dynamic linear model in order to define the sign and the magnitude of the trend in the temperature time series within the last 166 years. The data consists of gridded monthly mean temperatures. The grid has a 10 km spatial resolution, and it was created by interpolating a homogenized temperature series measured at Finnish weather stations. Seasonal variation in the temperature and the autocorrelation structure of the time series were taken account in the model. Finnish temperature time series exhibits a statistically significant trend, which is consistent with human-induced global warming. The mean temperature has risen very likely over 2 °C in the years 1847–2013, which amounts to 0.14 °C/decade. The warming after the late 1960s has been more rapid than ever before. The increase in the temperature has been highest in November, December and January. Also spring months (March, April, May) have warmed more than the annual average, but the change in summer months has been less evident. The detected warming exceeds the global trend clearly, which matches the postulation that the warming is stronger at higher latitudes.  相似文献   

11.
All available data on the January 23, 1880, earthquake near San Cristobal, Western Cuba, are compiled and presented here. The earthquake reached a maximum intensity of eight degrees (MSK) and caused three fatalities. It was accompanied by 65 aftershocks and was felt as far away as the Florida Keys. Twentieth century specialists has associated this event, in its day the strongest recorded (Ms = 6.2) in the region, with the Pinar fault. The Pinar fault is well expressed topographically as the boundary between the Guaniguanico Range in the north and an alluvial plain to the south. Most of the major damage caused by the earthquake was located on the alluvial plain, which in consequence has been considered the epicenter area. In the study presented here, the data compiled from the first reports of Father Benito Vines Martorell, S.J., and Pedro Salteraín y Legarra, indicate that the seismic structure was located in the alluvial plain, and that it was the Guane fault, and not the Pinar fault, that was responsible for the earthquake. The Guane fault, found below the alluvial sediments, extends NE-SW for over 110 km. Its eastern extreme, near San José de las Lajas (La Habana), is linked to another active fault which represents a seismoactive knot responsible for the earthquake of March 9, 1995 (I = 5 degrees, MSK). Seismic events of the Western Cuban region are related to the transpressive interaction of the North American and Caribbean Plates, damped by oceanic structures.  相似文献   

12.
In this paper changes in focal mechanisms) parameters of wave spectra, and stress drops for the Ms=5.0 forcshock and Ms=6.0 mainshock in February 2001 in Yajiang County, Sichuan, and seismicity in cpiccntral region are studied. Comparison of focal mechanisms for the Yajiang earthquakes with distribution patterns of aftcrshocks, the nodal plane Ⅰ, striking in the direction of NEN, of the Yajiang M=5.0 event is chosen as the faulting plane, the nodal plane Ⅱ, striking in the direction of WNW, of the M=6.0 event as the faulting plane. The strikes of the two faulting planes are nearly perpendicular to each other. The level of stress drops in the cpicentral region before the occurrence of the M=6.0 earthquake increases, which is consistent with increase of seismicity in the epicentral region. The rate decay of the Yajiang earthquake sequence, changes in wave spectra for foreshocks and aftershocks,and focal mechanisms are complex.  相似文献   

13.
Introduction An MS=6.0 earthquake occurred on February 23, 2001 in Yajiang county, Sichuan Province. The earthquake is located on the east of the southeast segment of the Litang-Dewu fault with strike of NW. Before the event, on February 14, an MS=5.0 earthquake took place nearly in the same place. In 1948 an MS=7.3 earthquake occurred on the northwestern segment of the Litang fault. The length of the surface rupture belt caused by the earthquake is 70 km, which extended from Litang to…  相似文献   

14.
15.
A 12-year period experimental data, from 1 January 1995, to 20 August 2007, have been examined for possible correlations between Seismic Electric Signals (SES) of the VAN method and source parameters of the corresponding earthquakes in Western Greece. During that period 13 earthquakes of magnitude M W ≥ 5 with epicenters in the area 19–24°E, 36–41°N and available the CMT solutions (Centroid Moment Tensor focal mechanism solutions) have been found to be preceded by a SES each time at one of the three VAN stations of IOA, PIR or PAT. The results of IOA and PIR stations are compared to those reported by Uyeda et al. 1999, for the previous period 1983–1994. The IOA station seems to be sensitive to earthquakes with thrust type mechanisms being mainly consistent to its past behavior. The PIR station, which is moved from its previous position by few kilometers, exhibits some changes. It detects now both strike slip and thrust type earthquakes and becomes sensitive to new areas indicating probably the strong dependence of the SES station detection ability upon its location.  相似文献   

16.
This paper presents quantitative estimates of parameters for the Tolbachik Fissure Eruption of 2012–2013 (TFE) for the period between November 27, 2012 and June 5, 2013. It is shown that the eruption was the most violent during the first 2 days (with a mean lava discharge rate of 440 m3/s), when the maximum number of lava vents were active along the entire fissured zone. The rate was decreasing during the subsequent 2 weeks (the mean was 140 m3/s). Lava effusion had been occurring at an almost uniform rate at near 18 m3/s from the later half of December 2012 to June 2013. The eruption was predominantly effusive in character. Six months of activity yielded 0.52 km3 lava to cover an area of 35.23 km2. The volume of pyroclastics within 1.5 km of the new fissured zone did not exceed 0.1 km3. We made maps to show the location of the fissured zone, the main vents, and lava flows on the slope of Ploskii Tolbachik Volcano. It was found that the 1975–1976 collapse pit in the smaller summit caldera of Ploskii Tolbachik has been left nearly intact during the Tolbachik Fissure Eruption of 2012–2013.  相似文献   

17.
Observed trends in the seismic performance of eight severely damaged reinforced concrete (RC) structures after the February 27, 2010, Chile earthquake are presented in this article. After a reconnaissance and surveying process conducted immediately after the earthquake, several aspects not conventionally considered in building design were observed in the field. Most of the considered structures showed extensive localized damage in walls of lower stories and first basements. Several factors indicate that damage was brittle, and occurred mainly in recent RC structures supported on soft soils with some degree of vertical and/or horizontal irregularity. Non-ductile behavior has been inferred due to the lack of evidence of spread damage in the structure, and the fact that very similar structural configurations existed nearby without apparent damage. Some key aspects in understanding the observed damage are: geographical orientation of the building, presence of vertical and horizontal irregularities, wall thickness and reinforcement detailing, and lack of sources for energy dissipation. Additionally, results of a building-code type analysis are presented for the 4 most critical buildings, and Demand/Capacity ratios are calculated and compared with the observed behavior. It is concluded that the design codes must be revised relative to wall design provisions.  相似文献   

18.
Jurassic-Cretaceous sediments of Transdanubian Range in Northern Hungary mostly retain their primary magnetizations and are suitable for detailed bio- and magnetostratigraphic studies. The Lókút section, 13 m in thickness, is localized in the central part of the Transdanubian Range. It contains the Jurassic/Cretaceous boundary in pelagic carbonate facies. Although the colour of the rocks changes from reddish-pinkish in the bottom to almost white at the top of the section, magnetite was identified as a magnetic carrier without evidence of hematite. Integrated bio- and magnetostratigraphical investigations resulted in construction of chronostratigraphical scheme. The section, embraces magnetozones from M21r to M18r, of upper Lower Tithonian (Parastomiosphaera malmica Zone) to Lower Berriasian age (Calpionella alpina Subzone). Sedimentation rate of pelagic limestones increased from 1–3 m/My during Tithonian to 5–7 m/My during Berriasian. The sedimentation rate and its changes up the section are comparable to those from the Jurassic/Cretaceous boundary sections of Trento plateau (Southern Alps, Italy) — sedimentary environments of Trento plateau and central Transdanubian Range in that time might be similar. Sedimentation rate within Umbrian Apennine basins and Križna unit in the Western Tatra Mts. seems significantly higher. Analysis of rock magnetic parameters reveals that detrital input was much lower into the Lókút section than into Križna basin in the Tatra Mts. (Zliechov trough). Increase of sedimentation rate occurs in both sections in the Upper Tithonian — Lower Berriasian. It coincides with the onset of calpionellid limestone facies and is related to increased productivity of calcareous micro- and nannoplankton. Detailed correlation of both sections basing on rock magnetic parameters and susceptibility changes is, however, not possible. They are dependent mostly on the local sedimentary conditions (Bakony Mts. — deep water plateau; Križna unit — deep water trough) and correlation with any “global” paleoenvironmental (climatic, eustatic) trends is not straightforward.  相似文献   

19.
Permeability differences in multi-cycle loess–paleosol aeolian sediments, which are still poorly understood, have the potential to significantly improve our understanding of climatic change during the glacial–interglacial periods of the Quaternary. In this study, the permeability of a well-preserved and continuous loess–paleosol sequence in the South Jingyang Plateau was investigated. Weathering intensity was inferred using a series of climate proxies including grain-size distribution, magnetic susceptibility and mineralogy. The results of laboratory tests showed that the average saturated hydraulic conductivity of loess layers is higher than that of paleosol layers. Also, clear differences between loess and paleosol were found in terms of depth variations of the vertical and horizontal saturated hydraulic conductivities. Differences in loess–paleosol were also found for other proxies for pedogenic weathering [i.e. clay content, sand content, Kd value (ratio of coarse silt to clay), magnetic susceptibility, dolomite content and the ratios of hornblende/illite and hornblende/chlorite]. Our results showed a high permeability of loess layers associated with weak pedogenic weathering during cold/dry paleoclimatic conditions in glacial stages. On the contrary, paleosol layers developed in a warm/humid climate during the interglacial stages experienced strong pedogenic weathering that resulted in lower permeability. Based on these results, we construct a connection between Quaternary climate change theory and the modern hydrological system. This provides a scientific basis for investigating the distribution and pollution of groundwater resources in the local region. © 2020 John Wiley & Sons, Ltd.  相似文献   

20.
We consider the results from the ongoing 2010–2011 work on long-term earthquake prediction for the Kuril-Kamchatka arc based on the pattern of seismic gaps and the seismic cycle. We develop a forecast for the next 5 years, from September 2011 to August 2016, for all segments of the Kuril-Kamchatka arc earthquake-generating zone. For 20 segments we predict the appropriate phases of the seismic cycle, the normalized rate of small earthquakes (A10), the magnitudes of moderate earthquakes to be expected with probability 0.8, 0.5, and 0.15, and the maximum possible magnitudes and probability of occurrence for great (M ≥ 7.7) earthquakes. This study serves as another confirmation that it is entirely necessary to continue the work in seismic retrofitting in the area of Petropavlovsk-Kamchatskii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号