首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 466 毫秒
1.
Let {Z(s):sD⊆ℝ d } be a zero mean stationary random field observed at a finite number of locations. Lahiri (Sankhya Ser. A 65:356–388, 2003) proved spatial central limit theorems (CLT) for ∑ i=1 n Z(s i ) assuming a ‘nearly infill domain sampling’. Applications of his results depended on the underlying spatial sampling region and the design in a complicated fashion. The main objective of this paper is to provide CLTs that could be applied easily in practice. We present two main results assuming a ‘nearly infill domain sampling’ defined mainly in terms of dependence. Theorem 1 establishes a CLT for ∑ i=1 n Z(s i ) and Theorem 2 is obtained mainly for applications to density estimates. We report on a simulation study for illustrating a way of applying our results in practice.  相似文献   

2.
Direct Sequential Co-simulation with Joint Probability Distributions   总被引:1,自引:1,他引:0  
The practice of stochastic simulation for different environmental and earth sciences applications creates new theoretical problems that motivate the improvement of existing algorithms. In this context, we present the implementation of a new version of the direct sequential co-simulation (Co-DSS) algorithm. This new approach, titled Co-DSS with joint probability distributions, intends to solve the problem of mismatch between co-simulation results and experimental data, i.e. when the final biplot of simulated values does not respect the experimental relation known for the original data values. This situation occurs mostly in the beginning of the simulation process. To solve this issue, the new co-simulation algorithm, applied to a pair of covariates Z 1(x) and Z 2(x), proposes to resample Z 2(x) from the joint distribution F(z 1,z 2) or, more precisely, from the conditional distribution of Z 2(x 0), at a location x 0, given the previously simulated value z1(l)(x0)z_{1}^{(l)}(x_{0}) (F(Z2|Z1=z1(l)(x0)F(Z_{2}|Z_{1}=z_{1}^{(l)}(x_{0}) ). The work developed demonstrates that Co-DSS with joint probability distributions reproduces the experimental bivariate cdf and, consequently, the conditional distributions, even when the correlation coefficient between the covariates is low.  相似文献   

3.
The variance-based cross-variogram between two spatial processes, Z1 (·) and Z2 (·), is var (Z1 ( u ) – Z2 ( v )), expressed generally as a bivariate function of spatial locations uandv. It characterizes the cross-spatial dependence between Z1 (·) and Z2 (·) and can be used to obtain optimal multivariable predictors (cokriging). It has also been called the pseudo cross-variogram; here we compare its properties to that of the traditional (covariance-based) cross-variogram, cov (Z1 ( u ) – Z1 ( v ), Z2 ( u ) – Z2 ( v )). One concern with the variance-based cross-variogram has been that Z1 (·) and Z2 (·) might be measured in different units (apples and oranges). In this note, we show that the cokriging predictor based on variance-based cross-variograms can handle any units used for Z1 (·) and Z2 (·); recommendations are given for an appropriate choice of units. We review the differences between the variance-based cross-variogram and the covariance-based cross-variogram and conclude that the former is more appropriate for cokriging. In practice, one often assumes that variograms and cross-variograms are functions of uandv only through the difference uv. This restricts the types of models that might be fitted to measures of cross-spatial dependence.  相似文献   

4.
We document the development of a suite of carbonate mineral reference materials for calibrating SIMS determinations of δ18O in samples with compositions along the dolomite–ankerite solid solution series [CaMg(CO3)2–CaFe(CO3)2]. Under routine operating conditions for the analysis of carbonates for δ18O with a CAMECA IMS 1280 instrument (at WiscSIMS, University of Wisconsin‐Madison), the magnitude of instrumental bias along the dolomite–ankerite series decreased exponentially by ~ 10‰ with increasing Fe content in the dolomite structure, but appeared insensitive to minor Mn substitution [< 2.6 mol% Mn/(Ca+Mg+Fe+Mn)]. The compositional dependence of bias (i.e., the sample matrix effect) was calibrated using the Hill equation, which relates bias to the Fe# of dolomite–ankerite [i.e., molar Fe/(Mg+Fe)] for thirteen reference materials (Fe# = 0.004–0.789); for calibrations employing either 10 or 3 μm diameter spot size measurements, this yielded residual values ≤ 0.3–0.4‰ relative to CRM NBS 19 for most reference materials in the suite. Analytical precision was ± 0.3‰ (2s, standard deviations) for 10‐μm spots and ± 0.7‰ (2s) for 3‐μm spots, based on the spot‐to‐spot repeatability of a drift monitor material that ‘bracketed’ each set of ten sample‐spot analyses. Analytical uncertainty for individual sample analyses was approximated by a combination of precision and calibration residual values (propagated in quadrature), suggesting an uncertainty of ± 0.5‰ (2s) for 10‐μm spots and ± 1‰ (2s) for 3‐μm spots.  相似文献   

5.
Spatial prediction and ordinary kriging   总被引:11,自引:0,他引:11  
Suppose data {Z(s i ):i=1, ..., n} are observed at spatial locations {s i :i=1, ..., n}. From these data, an unknownZ(s 0) is to be predicted at a known locations 0c, or, ifZ(s0) has a component of measurement error, then a smooth versionS(s 0) should be predicted. This article considers the assumptions needed to carry out the spatial prediction using ordinary kriging, and looks at how nugget effect, range, and sill of the variogram affect the predictor. It is concluded that certain commonly held interpretations of these variogram parameters should be modified.This paper was presented at MGUS 87 Conference, Redwood City, California, 14 April 1987.  相似文献   

6.
The space domain version of the turning bands method can simulate multidimensional stochastic processes (random fields) having particular forms of covariance functions. To alleviate this limitation a spectral representation of the turning bands method in the two-dimensional case has shown that the spectral approach allows simulation of isotropic two-dimensional processes having any covariance or spectral density function. The present paper extends the spectral turning bands method (STBM) even further for simulation of much more general classes of multidimensional stochastic processes. Particular extensions include: (i) simulation of three-dimensional processes using STBM, (ii) simulation of anisotropic two- or three-dimensional stochastic processes, (iii) simulation of multivariate stochastic processes, and (iv) simulation of spatial averaged (integrated) processes. The turning bands method transforms the multidimensional simulation problem into a sum of a series of one-dimensional simulations. Explicit and simple expressions relating the cross-spectral density functions of the one-dimensional processes to the cross-spectral density function of the multidimensional process are derived. Using such expressions the one-dimensional processes can be simulated using a simple one-dimensional spectral method. Examples illustrating that the spectral turning bands method preserves the theoretical statistics are presented. The spectral turning bands method is inexpensive in terms of computer time compared to other multidimensional simulation methods. In fact, the cost of the turning bands method grows as the square root or the cubic root of the number of points simulated in the discretized random field, in the two- or three-dimensional case, respectively, whereas the cost of other multidimensional methods grows linearly with the number of simulated points. The spectral turning bands method currently is being used in hydrologic applications. This method is also applicable to other fields where multidimensional simulations are needed, e.g., mining, oil reservoir modeling, geophysics, remote sensing, etc.  相似文献   

7.
We have made use of the nearly complete linear polarization of synchrotron radiation to study the polarization dependence of X-ray absorption near-edge structure (XANES) and extended fine structure (EXAFS) in oriented single crystals of gillespite (BaFe2+ Si4O10; Fe2 + in square-planar coordination, point symmetry C 4), anatase (TiO2; Ti4+ in octahedral coordination, point symmetry D 2d), and epidote (Ca2(Al, Fe3+)3SiO4)3(OH); Fe3+ in distorted octahedral coordination, point symmetry (C s). For gillespite, the Fe K-XANES spectrum varies strongly with E-vector orientation of the incident X-ray beam. When the E-vector lies in the plane of the FeO4 group (i.e., perpendicular to the c-axis), multiple-scattering features at 7127 and 7131 eV intensify, whereas when the E-vector is perpendicular to the plane of the FeO4 group (i.e., parallel to the c-axis), a strongly-polarized 1s to 4p bound state transition occurs at 7116 eV and a localized continuum resonance occurs at 7122 eV. The Fe-K-EXAFS spectrum of gillespite is also highly polarization dependent. When the E-vector is perpendicular to c, all four nearest-neighbor oxygens around Fe2+ contribute to the EXAFS signal; when E is parallel to c, the EXAFS signal from nearest-neighbors is reduced by at least 86%. The unpolarized Ti K-XANES spectrum of anatase has three relatively strong pre-edge features at 4967.1, 4969.9, and 4972.7 eV which have resisted definitive interpretation in past studies. The lowest energy feature has a strong xy polarization dependence, suggesting a large amount of 4p x,y character, and it is also very sharp, indicating a well-defined transition energy. Both of these observations are consistent with an excitonic state with a binding energy of 2.8 eV. The two higher energy features, which are characteristic of octahedrally-coordinated Ti4+, show little polarization dependence and are probably due to 1s to 3d bound-state transitions, with a small degree of np character in the final state wavefunction. Interpretation of the polarization dependence of Fe K-XANES spectra for epidote is not as straightforward due to the lower space group symmetry (P21/m) relative to gillespite (P4/ncc) and anatase (I41/amd) and the lower point group symmetry (C s) of the M(3) site which contains most of the Fe3+ in the epidote structure. However, the presence of a shoulder at 7121 eV in the E parallel to b spectrum and its absence in the E normal to bc spectrum are consistent with it being a 1s to 4p z bound-state transition. Strong, weakly x, y polarized features near 7126 eV in both spectra are most likely due to localized continuum transitions. Also, the 1s to 3d pre-edge intensity varies in intensity with E-vector orientation which is consistent with displacement of Fe3+ from the center of the M(3) octahedral site. Analysis of EXAFS spectra of epidote in these two polarizations yields bond distances which are within 0.04 Å of previous single-crystal X-ray diffraction analysis. This study demonstrates the utility of polarized X-ray absorption spectroscopy in quantifying the energies and orbital compositions of final state wavefunctions associated with various X-ray induced transitions in transition-metal containing minerals. It also shows that reasonably accurate M-O distances can be obtained for individual bonds oriented in crystallographically non-equivalent directions.  相似文献   

8.
The major stochastic elements in the fission track dating method are (i) the number of spontaneous fission tracks (N s ) in a sample, and (ii) the number of induced tracks (N i ) observed when the sample is irradiated with neutrons. The foundations for the statistical uncertainty in these measures are of two kinds: (i) there exists a definite probability of uranium fission by means of natural decay and by neutron activation, and (ii) within a crystal the distribution of uranium is not uniform and perhaps follows something like a Poisson law. In any event, the natural logarithm of the ratio (N s /N i ) is proportional to age. A plausible statistical fission track dating model should, therefore, start by considering the joint distribution of N s and N i . In this paper a joint bivariate normal model is described which allows the rigorous definition of the probability distributions of Ns, N i , the ratio N s /N i , and age itself. A general computer program (FISSION) has been developed to perform all the necessary computations. By accounting for the correlation between N s and N i , the statistical model here ascribes smaller standard errors to N s /N i (and therefore age) than do previous methods. In addition, the error associated with neutron flux is a significant factor in the age relationships and has been incorporated into the model.  相似文献   

9.
The strain associated with the Horn Head Slide, a major tectonic break in the Dalradian rocks of NW Ireland, is recorded by pebbles in an adjacent quartzite horizon. Mean X/Y ratios of the deformed pebble shapes in excess of 8.0 are seen closest to the slide and the field of three-dimensional shapes lies along the K = 1 line. The usual methods of separating initial shape ratio (Ri) and tectonic strain ratio (Rs) from the deformed shape ratio (Rf) of ellipsoidal markers are based on measurements of variation in fluctuation (e.g., the (Rf/φ technique). However, due to the high X/Y strains in this situation and since the pebbles initially lay parallel to bedding and to a principal plane of the finite strain ellipsoid, fluctuation is generally very low. Thus, except for the least deformed X/Y data, the Rf/φ technique is inapplicable and other methods are used. For X/Y data with mean (Rf > 4.0: Rs is calculated as the harmonic mean of Rf; maximum Ri values only are obtained from the range of Rf data. For all Y/Z and X/Z data: Ri is calculated from the logarithmic range (ωlog) of Rf; Rs is simply obtained from the geometric mean of Rf modified by Ri. It is concluded from this that a varying prolate tectonic strain (K - 1.5) reaching X/Y values in excess of 8.00 was coaxially superimposed on an initial oblate shape fabric to produce the present field of deformed pebbles in the quartzite near the slide.  相似文献   

10.
Since 1980 the main goal of geochemical investigations in Lithuania has been the estimation of technogene changes of microelements in the earth's surface sediments. For this purpose the geochemical mapping at various scales has been employed: at regional scale (1:2,500,000-1:500,000), at large scale (1:50,000-1:25,000), and at local scales 1:10,000-1:1000. The most important tasks are to determine and to establish the geochemical background for technogene changes in the topsoil layer and in the water reservoir bottom sediments. When mapping the zones of increased technogenical load the increase of concentration for most microelements in soils (ground) and in water reservoirs were established. Zn, Pb, Cu, Sn. Ag, Cr and Ni are the main elements-pollutants of these zones, concentrations of which exceed the background values from a few up to a dozen times. In certain cases their concentrations and the concentrations of specific elements, such as Sb, Bi. Ce, La, exceed thousands times the background value. At such zones the danger of pollution is increased due to the occurrence of mobile and potentially mobile toxic elements. During the soil mapping within the towns and factories not only the concentration of elements and the associations of elements-pollutants have been ascertained, but also the approximate contamination dangerous for biota -the total index of contamination (Zs) — has been calculated. The additional index that shows dangerous pollution is the maximum permissible by general sanitary concentration of chemical elements in soil (MPLCs) used in Lithuania. At some extremely contaminated zones (Zs > 128) the migration forms of toxic elements were determined by AAS-ES (gradual extraction using reagents of various acidity). The geochemical mapping data are used for the land-use, for the selection of geochemical monitoring polygons, hydrochemical. ecomedical and other investigations.  相似文献   

11.
Biotite crystals were counted in standard thin sections which originated from the diamond drill core of the mafic norite formation at Strathcona mine, Sudbury Nickel Irruptive. Pearson's method of moments is suitable to fit Types III and VII to the biotite data and its log 10 transformation values, as the number of samples (thin sections)is large (351).Based on the two models and the Edgeworth series (utilizing the log 10 data)probability values p,that biotite occurrences lie in the interval mean ± Z standard deviations is derived. Results are compared with the usual normal probability values pZ corresponding to Zand it is shown that the Edgeworth series generated the largest pvalues for intervals when pZ values are large; for intermediate or lower pZ s. Types VII and III models produced larger ps, relative to the Normal and the Edgeworth series.  相似文献   

12.
Approximate local confidence intervals are constructed from uncertainty models in the form of the conditional distribution of the random variable Z given values of variables [Zi, i=1,...,n]. When the support of the variable Z is any support other than that of the data, the conditional distributions require a change of support correction. This paper investigates the effect of change of support on the approximate local confidence intervals constructed by cumulative indicator kriging, class indicator kriging, and probability kriging under a variety of conditions. The conditions are generated by three simulated deposits with grade distributions of successively higher degree of skewness; a point support and two different block supports are considered. The paper also compares the confidence intervals obtained from these methods using the most used measures of confidence interval effectiveness.  相似文献   

13.
Tokutaro Hatori 《GeoJournal》1996,38(3):313-319
The regional characteristics of tsunami magnitudes in the SE Asia region are discussed in relation to earthquake magnitudes during the period from 1960 to 1994. Tsunami magnitudes on the Imamura-Iida scale are investigated by the author's method (Hatori 1979, 1986) using the data of inundation heights near the source area and tide-gauge records observed in Japan. The magnitude values of the Taiwan tsunamis showed relatively to be small. On the contrary, the magnitudes of tsunamis in the vicinities of the Philippines and Indonesia exceed more than 1–2 grade (tsunami heights: 2–5 times) compared to earthquakes with similar size on the circum-Pacific zone. The relation between tsunami magnitude, m, and earthquake magnitude, M s, is expressed as m = 2.66 M s– 17.5 for these regions. For example, the magnitudes for the 1976 Mindanao tsunami (M s= 7.8, 3702 deaths) and the 1992 Flores tsunami (M s= 7.5, 1713 deaths) were determined to be m = 3 and m = 2.5, respectively. The focal depth of tsunamigenic earthquakes is shallower thand< 36 km, and the detectively of tsunamis is small for deep earthquakes being d > 40 km. For future tsunamis, it is indispensable to take precautions against shallow earthquakes having the magnitudes M s> 6.5.  相似文献   

14.
Vp and Vs values have been measured experimentally and calculated for granulite-facies lower crustal xenoliths from central Ireland close to the Caledonian Iapetus suture zone. The xenoliths are predominantly foliated and lineated metapelitic (garnet–sillimanite–K-feldspar) granulites. Their metapelitic composition is unusual compared with the mostly mafic composition of lower crustal xenoliths world-wide. Based on thermobarometry, the metapelitic xenoliths were entrained from depths of c. 20–25 ± 3.5 km and rare mafic granulites from depths of 31–33 ± 3.4 km. The xenoliths were emplaced during Lower Carboniferous volcanism and are considered to represent samples of the present day lower crust.Vp values for the metapelitic granulites range between 6.26 and 7.99 km s− 1 with a mean value of 7.09 ± 0.4 km s− 1. Psammite and granitic orthogneiss samples have calculated Vp values of 6.51 and 6.23 km s− 1, respectively. Vs values for the metapelites are between 3.86 and 4.34 km s− 1, with a mean value of 4.1 ± 0.15 km s− 1. The psammite and orthogneiss have calculated Vs values of 3.95 and 3.97 km s− 1, respectively.The measured seismic velocities correlate with density and with modal mineralogy, especially the high content of sillimanite and garnet. Vp anisotropy is between 0.15% and 13.97%, and a clear compositional control is evident, mainly in relation to sillimanite abundance. Overall Vs anisotropy ranges from 1% to 11%. Poisson's ratio (σ) lies between 0.25 and 0.35 for the metapelitic granulites, mainly reflecting a high Vp value due to abundant sillimanite in the sample with the highest σ. Anisotropy is probably a function of deformation associated with the closure of the Iapetus ocean in the Silurian as well as later extension in the Devonian. The orientation of the bulk strain ellipsoid in the lower crust is difficult to constrain, but lineation is likely to be NE–SW, given the strike-slip nature of the late Caledonian and subsequent Acadian deformation.When corrected for present-day lower crustal temperature, the experimentally determined Vp values correspond well with velocities from the ICSSP, COOLE I and VARNET seismic refraction lines. Near the xenolith localities, the COOLE I line displays two lower crustal layers with in situ Vp values of 6.85–6.9 and 6.9–8.0 km s− 1, respectively. The upper (lower velocity) layer corresponds well with the metapelitic granulite xenoliths while the lower (higher velocity) layer matches that of the basic granulite xenoliths, though their metamorphic pressures suggest derivation from depths corresponding to the present-day upper mantle.  相似文献   

15.
This study is Part II of a series that documents the development of a suite of calibration reference materials for in situ SIMS analysis of stable isotope ratios in Ca‐Mg‐Fe carbonates. Part I explored the effects of Fe2+ substitution on SIMS δ18O bias measured from the dolomite–ankerite solid solution series [CaMg(CO3)2–CaFe(CO3)2], whereas this complementary work explores the compositional dependence of SIMS δ13C bias (calibrated range: Fe# = 0.004–0.789, where Fe# = molar Fe/(Mg+Fe)). Under routine operating conditions for carbonate δ13C analysis at WiscSIMS (CAMECA IMS 1280), the magnitude of instrumental bias increased exponentially by 2.5–5.5‰ (session‐specific) with increasing Fe‐content in the dolomite structure, but appeared insensitive to minor Mn substitution [< 2.6 mole % Mn/(Ca+Mg+Fe+Mn)]. The compositional dependence of bias (i.e., the matrix effect) was expressed using the Hill equation, yielding calibration residual values ≤ 0.3‰ relative to CRM NBS‐19 for eleven carbonate reference materials (6‐μm‐diameter spot size measurements). Based on the spot‐to‐spot repeatability of a drift monitor material that ‘bracketed’ each set of ten sample‐spot analyses, the analytical precision was ± 0.6–1.2‰ (2s, standard deviations). The analytical uncertainty for individual sample analyses was approximated by combining the precision and calibration residual values (propagated in quadrature), suggesting an uncertainty of ± 1.0–1.5‰ (2s).  相似文献   

16.
Six tourmaline samples were investigated as potential reference materials (RMs) for boron isotope measurement by secondary ion mass spectrometry (SIMS). The tourmaline samples are chemically homogeneous and cover a compositional range of tourmaline supergroup minerals (primarily Fe, Mg and Li end‐members). Additionally, they have homogeneous boron delta values with intermediate precision values during SIMS analyses of less than 0.6‰ (2s). These samples were compared with four established tourmaline RMs, that is, schorl IAEA‐B‐4 and three Harvard tourmalines (schorl HS#112566, dravite HS#108796 and elbaite HS#98144). They were re‐evaluated for their major element and boron delta values using the same measurement procedure as the new tourmaline samples investigated. A discrepancy of about 1.5‰ in δ11B was found between the previously published reference values for established RMs and the values determined in this study. Significant instrumental mass fractionation (IMF) of up to 8‰ in δ11B was observed for schorl–dravite–elbaite solid solutions during SIMS analysis. Using the new reference values determined in this study, the IMF of the ten tourmaline samples can be modelled by a linear combination of the chemical parameters FeO + MnO, SiO2 and F. The new tourmaline RMs, together with the four established RMs, extend the boron isotope analysis of tourmaline towards the Mg‐ and Al‐rich compositional range. Consequently, the in situ boron isotope ratio of many natural tourmalines can now be determined with an uncertainty of less than 0.8‰ (2s).  相似文献   

17.
Attenuation of photosynthetically available radiation (PAR) measured using a light meter, was related to Secchi disk, horizontal black disk and horizontal sighting ranges observed in a coastal lagoon of the Southern California Current System. Vertical attenuation coefficient (KPAR) was calculated from radiometric PAR profiles. Vertical (ZD) and horizontal (HS) sighting ranges were measured with white (Secchi depth or ZSD, HS W ) and black (Z BD, HS B ) targets. Empirical power models for the KPAR-ZSD (KPAR=1.47 ZSD −1.13), KPAR-Z BD (KPAR=0.98 Z BD −1.26), KPAR-HS W (KPAR=1.22 HS W −1.14) and KPAR-HS B (KPAR=0.73 HS B −1.07) relationships were developed. The parameters of these models may not apply to other water bodies because their values depend on the range of water reflectance in each case, as reported in the literature. This is the first contribution reporting KPAR-HS empirical relations in an estuarine environment but their application may be limited to this coastal lagoon. While this approach may be universal, more data are needed to explore the variability of the parameters between different water bodies.  相似文献   

18.
Dong  Hui  Xiao  Baohua 《中国地球化学学报》2021,40(2):212-224

Characteristics of phenanthrene and pyrene’s sorption and desorption on two local soils in solutions of simulated groundwater, simulated lung fluid, and simulated saliva were studied with batch equilibrium experiments to understand the fate of PAHs in the karst region of southwestern China and to assess the environmental exposure and the health risk of PAHs. The results showed that the sorption and desorption isotherms of phenanthrene and pyrene on two target soils in the three solution systems could be adequately described by the Freundlich model, while the fitted isotherm parameters for the simulated groundwater solution distinguished notably from those for the simulated body fluid solutions. For the sorption experiments, in the simulated groundwater, the n values were 0.722 and 0.672 for phenanthrene and were 0.724 and 0.663 for pyrene, respectively, on the yellow soil and the limestone soil; The log KF values were 3.118 and 3.323 for phenanthrene and were 3.648 and 3.846 for pyrene, respectively, on the yellow soil and the limestone soil. In the simulated body fluids, the n values for phenanthrene and pyrene ranged from 0.622 to 0.836 and from 0.590 to 0.865, respectively, and the log KF values of phenanthrene and pyrene ranged from 2.845 to 3.327 and from 3.344 to 3.779, respectively. For the desorption experiments, in the simulated groundwater, the n values were 0.662 and 0.744 for phenanthrene and were 0.702 and 0.647 for pyrene, respectively, on the yellow soil and the limestone soil. The log KF values were 3.666 and 3.686 for phenanthrene and were 4.128 and 4.225 for pyrene, respectively, on the yellow soil and the limestone soil. In the simulated body fluids, the n values for phenanthrene and pyrene ranged from 0.612 to 0.668 and from 0.631 to 0.819, respectively, and the log KF values of phenanthrene and pyrene ranged from 3.134 to 3.407 and from 3.533 to 3.839, respectively. The limestone soil had relatively higher log KF values but lower KOC values compared to those of the yellow soil, indicated that the nature of sorbent soils played the dominant role in sorption and desorption behaviors of PAHs. The experimental results showed a remarkable differences in sorption and desorption behaviors of PAHs in simulated body fluids and groundwater. The nonlinearities of measured isotherms and the measured sorption capacities of soils in simulated body fluids were significantly lower than corresponding those in the simulated groundwater, and HI values for simulated body fluids systems were significantly smaller than corresponding those for the simulated groundwater systems. The results underscore cautions in assessing environmental exposure and health risks of PAHs based on their sorption–desorption data in simulated groundwater as this is traditionally done.

  相似文献   

19.
Polarized electronic absorption spectra of single crystalline Co2[SiO4] and (Co0.64Mg0.36)2[SiO4] (E|| a (|| Z), E || b (|| X), E || c (|| Y)) have been studied in the temperature range 293 T/K 1273. The three polarized spectra show a total of 15 bands. Five bands are caused by spin-allowed transitions in Co2+ ions at M1 sites which appear in all polarization directions. Seven polarization-dependent bands can be ascribed to spin-allowed transitions in Co2+ ions at M2 sites and three bands may be assigned to spin-forbidden transitions. The assignment of bands due to Co2+ ions at M1 and M2 sites has been made on the basis of transition energies and intensity ratios. Further arguments have been derived from the comparison of spectra of crystals with different cobalt content, from the analysis of the polarization dependence of the spectra, and from the evolution of band intensities with temperature.  相似文献   

20.
The recently published Iraqi earthquake data file over the period 1905–1984 is used to derive a local I o -M s formula. This is then combined with a local intensity attenuation relationship to compile the observed I o (MM) zoning map for Iraq. Earthquake risk is calculated using the log N (M s )relation for selected design magnitudes and periods and is mapped as the (%) probability of occurrence using a 0.5 deg latitude/longitude grid system. It is observed that the intensity zones and contour distributions are highly influenced by the presence of large magnitude shocks while risk maps reveal the Tauros seismogenic zone as having a greater risk of occurrence than the Zagros zone. The compiled zoning maps are intended for the use of local practising engineers for earthquake-resistant design procedures that are currently being adopted in the country.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号