首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Multidisciplinary models are useful for integrating different disciplines when addressing water planning and management problems. We combine water resources management, water quality and habitat analysis tools that were developed with the decision support system AQUATOOL at the basin scale. The water management model solves the allocation problem through network flow optimization and considers the environmental flows in some river stretches. Once volumes and flows are estimated, the water quality model is applied. Furthermore, the flows are evaluated from an ecological perspective using time series of aquatic species habitat indicators. This approach was applied in the Tormes River Water System, where agricultural demands jeopardize the environmental needs of the river ecosystem. Additionally, water quality problems in the lower part of the river result from wastewater loading and agricultural pollution. Our methodological framework can be used to define water management rules that maintain water supply, aquatic ecosystem and legal standards of water quality. The integration of ecological and water management criteria in a software platform with objective criteria and heuristic optimization procedures allows realistic assessment and application of environmental flows to be made. Here, we improve the general methodological framework by assessing the hydrological alteration of selected environmental flow regime scenarios.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation Paredes-Arquiola, J., Solera, A., Martinez-Capel, F., Momblanch, A., and Andreu, J., 2014. Integrating water management, habitat modelling and water quality at the basin scale and environmental flow assessment: case study of the Tormes River, Spain. Hydrological Sciences Journal, 59 (3–4), 878–889.  相似文献   

2.
Abstract

The strong wet and dry seasons of tropical monsoon hydrology in India necessitate development of storage and flow diversion schemes for utilization of water to meet various social and economic needs. However, the river valley schemes may cause adverse flow-related impacts due to storage, flow diversion, tunnelling and spoil disposal. There may be critical reaches in which altered flows are not able to sustain the river channel ecology and riparian environment that existed prior to implementation of the storage and diversion schemes. In the past, environmental flows in India have usually been understood as the minimum flow to be released downstream from a dam as compensation for riparian rights, without considering the impacts on the river ecosystem. Rivers in India have been significantly influenced by anthropogenic activities over the past 60 years and have great social and religious significance to the vast population. This paper explores various aspects of past, present and future environmental flow assessment (EFA) in India highlighted by case studies from rivers across the nation. It demonstrates that multidisciplinary studies requiring expertise from a range of fields are needed for EFA, and that environmental flows are necessary for aquatic ecosystems to remain in a healthy state and for the sustainable use of water resources. The major focus areas for the development of EFA research in India are the creation of a shareable database for hydrological, ecological and socioeconomic data, developing hydrology–ecology relationships, evaluation of ecosystem services, addressing pollution due to anthropogenic activities and promotion of research on EFA. At the same time, efforts will be needed to develop new methods or refine existing methods for India.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation Jain, S.K. and Kumar, P., 2014. Environmental flows in India: towards sustainable water management. Hydrological Sciences Journal, 59 (3–4), 751–769.  相似文献   

3.
Abstract

This investigation presents a new approach to estimate the costs resulting from the introduction of environmental flows in the arid Huasco River basin, located in the Atacama Region of Chile, one of the most sophisticated private water markets worldwide. The aim is to provide information to the water users, who hold the right to decide on water use, and thereby support the inclusion of environmental flows into decision-making. Costs are estimated by calculating the loss of agricultural productivity resulting from a trade-off between users and environmental flow requirements in times of water scarcity. Based on environmental flow requirements calculated by International Union for Conservation of Nature (IUCN), and hydrological supply-and-demand modelling using the Water Evaluation and Planning (WEAP) model, economic parameters of water productivity are calculated for the main economic sectors and then included in hydrological analysis. The study presents concrete costs that might be imposed on the water users during times of water scarcity, and confirms that there are significant variations in water productivity between different sectors.
Editor Z.W. Kundzewicz; Guest editor M. Acreman

Citation Wagnitz, P., Núñez, J., and Ribbe, L., 2014. Cost of environmental flow during water scarcity in the arid Huasco River basin, northern Chile. Hydrological Sciences Journal, 59 (3–4), 700–712.  相似文献   

4.
ABSTRACT

The concept of Integrated Water Resources Management (IWRM) has enjoyed immense popularity and thus has been the preferred approach for river basin management. IWRM generally has a strong focus on rational choice, based on a technocratic conceptual interpretation of the conventional hydrological cycle. However, uncritical acceptance of IWRM runs the risk of blinding policy makers and academics for the defining impact of context, socio-cultural, political, historical and cognitive dimensions in water cooperation. Human behaviour in water cooperation was tested and observed during eight experiments with the Jordan River Basin Boardgame Exercise (JRBBE) played with respondent groups from inside and outside the Jordan River Basin. The experiments consisted of one control group outside the basin and seven respondent groups both outside and inside the basin. This article argues that the role of identities, beliefs and perception-of-the-other, should be taken more into account in order to develop successful and socio-political sustainable river basin management.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR not assigned  相似文献   

5.
Consideration of environmental flows in river basin management poses great challenges. Environmental flows are interpreted as the natural or regulated releases of water needed in a river to maintain specified valued features of the river ecosystems. This has never been considered explicitly in water resources management of a river basin. An attempt is, therefore, made here to reflect the perception and implications of environmental flows in water resources management. Assessment approaches are reviewed in the context of flow characteristics of a river system and recommendations are put forward on what is to be done to adopt this new concept in practice.  相似文献   

6.
Abstract

The Okavango River system flows through Angola, Namibia and Botswana. It is in near-natural condition and supports globally iconic wetlands and wildlife. The basin’s people are poor and development is inevitable: the next decade is critical. The river could become an example of responsible planning that resolutely addresses the three pillars of sustainable development. Recognizing this, the Member States completed a transboundary diagnostic analysis (TDA) in 2010 funded by the three governments and the Global Environment Facility. A central feature of the TDA was a basin-wide environmental flow assessment using the DRIFT (Downstream Response to Imposed Flow Transformation) holistic approach. This produced scenarios of increasing water resource use that spelled out the costs and benefits in terms of the health of the river ecosystem, associated social structures and local and national economies. The results were used to help create a transboundary strategic action programme, which the Member States are now beginning to act on. This article describes the DRIFT application, the findings and how these could be used to help achieve sustainable development.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation King, J., Beuster, H., Brown, C., and Joubert, A., 2014. Pro-active management: the role of environmental flows in transboundary cooperative planning for the Okavango River system. Hydrological Sciences Journal, 59 (3–4), 786–800.  相似文献   

7.
Abstract

We developed a water-use conflict analysis framework to determine environmental flows that optimally balance water requirements for ecosystems and human activities. This framework considers trade-offs between water use for ecosystem health and agricultural processes and considers temporal variations in hydrological processes. It comprises three separate models that (a) analyse water balance between agriculture and initial environmental flows, (b) identify outcomes of varying balances in water use, and (c) determine recommended environmental flows for sustainable water use. We applied the framework to a region downstream of the Yellow River in China. Based on our results, we recommend a water management plan that allocates more water to ecosystem services than is currently allocated and that does not increase predicted economic losses. In addition, we found that recommended flows change depending on the ecological objectives considered and whether technologies or methodologies that improve water-use efficiency are employed.
Editor Z.W. Kundzewicz; Guest editor M. Acreman

Citation Pang, A., Sun, T., and Yang, Z., 2014. A framework for determining recommended environmental flows for balancing agricultural and ecosystem water demands. Hydrological Sciences Journal, 59 (3–4), 890–903.  相似文献   

8.
Abstract

The hydrology of water-dependent ecosystems around the world has been altered as a result of flow regulation and extraction for a variety of purposes including agricultural and urban water supply. The flow regime of the Murray-Darling Basin in Australia is no exception, with attendant impacts on the health of the environment. Restoration of parts of the flow regime is a key feature of environmental flow delivery. However, environmental flow delivery in a system that is managed primarily to provide a secure and stable supply for irrigation presents challenges for managers seeking to return more natural flow variability in line with ecosystem requirements. The institutional arrangements governing releases of water from storage can influence the ability of managers to respond to natural cues, such as naturally rising flows in a river. As such, the legal and governance aspects of environmental flow delivery are likely to be important influences on the outcomes achieved.
Editor Z.W. Kundzewicz; Guest editor M. Acreman

Citation Banks, S.A. and Docker, B.B., 2014. Delivering environmental flows in the Murray-Darling Basin (Australia)—legal and governance aspects. Hydrological Sciences Journal, 59 (3–4), 688–699.  相似文献   

9.
Abstract

Environmental flows have scarcely been considered in river water management in Bangladesh. This study attempts to assess the environmental flow requirements in the Halda River, Bangladesh. Thus, the objectives are to estimate the Halda River flow with different return periods/probabilities, which was done using the log-Pearson Type III distribution (LPIII), and to mitigate the environmental problems in the Halda River using the building block method. The LPIII distribution was used to estimate the expected extreme and satisfactory flows for fish habitat at Panchpukuria station and the expected extreme water levels at Panchpukuria, Narayanhat, Telpari and Enayethat stations. It was found that floods are likely to occur at least once in 2.1, 1.02, 1.75 and 1.25 years at Panchpukuria, Narayanhat, Telpari and Enayethat stations, respectively. The results of flow and water quality analyses suggest that environmental flow requirements cannot be achieved in this river throughout the year. The environmental flow requirements and conservation of fish resources can be achieved by implementing the suggestions provided in conjunction with a comprehensive awareness programme, investigations and trade-off analyses being among the suggestions.

Editor Z.W. Kundzewicz; Associate editor B. Sivakumar

Citation Akter, A. and Ali, Md. H., 2012. Environmental flow requirements assessment in the Halda River, Bangladesh. Hydrological Sciences Journal, 57 (2), 326–343.  相似文献   

10.
In the Southern African Development Community region, Integrated Water Resources Management (IWRM) principles and tools are being implemented through the existing regional framework for water resources development and management. The IWRM approach is applied at river basin level seeking a balance between the economic efficiency, social equity and environmental sustainability in water resources management and development. This paper uses composite indexes to analyze the performance of River Basin Organizations (RBOs) as key implementing agents of the IWRM framework. The assessment focuses on three RBOs that fall under the Regional Water Administration for Southern Mozambique (ARA-Sul) jurisdiction, namely: Umbeluzi, Incomati and Limpopo River Basin Management Units. The analysis focus on the computation of a set of multidimensional key performance indicators developed by Hooper (2010) but adapted to the Mozambican context. This research used 24 out of 115 proposed universal key performance indicators. The indicators for this case study were selected based on their suitability to evaluate performance in line with the legal and institutional framework context that guides the operations of RBOs in Mozambique. Finally these indicators were integrated in a composite index, using an additive and multiplicative aggregation method coupled with the Analytic Hierarchy Process technique employed to differentiate the relative importance of the various indicators considered. The results demonstrate the potential usefulness of the methodology developed to analyze the RBOs performance and proved useful in identifying the main performance areas in need of improvement for better implementation of IWRM at river basin level in Mozambique. This information should support both the IWRM framework adaptation to local context and the implementation at river basin level in order to improve water governance.  相似文献   

11.
Abstract

The aim of this article is to assess the impact of four scenarios combining possible changes in climate, atmospheric carbon dioxide, land use and water use by 2050, on the specific set of ecologically relevant flow regime indicators that define environmental flow requirements in a semi-natural river basin in Poland. This aim is presented through a modelling case study using the Soil and Water Assessment Tool (SWAT). Indicators show both positive and negative responses to future changes. Warm projections from the IPSL-CM4 global climate model combined with sustainable land- and water-use projections (SuE) produce the most negative changes, while warm and wet projections from the MIROC3.2 model combined with market-driven projections (EcF) gave the most positive changes. Climate change overshadows land- and water-use change in terms of the magnitude of projected flow alterations. The future of environmental water quantity is brighter under the market-driven rather than the sustainability-driven scenario, which shows that sustainability for terrestrial ecosystems (e.g. more forests and grasslands) can be at variance with sustainability for riverine and riparian ecosystems (requiring sufficient amount and proper timing of river flows).
Editor D. Koutsoyiannis

Citation Piniewski, M., Okruszko, T., and Acreman, M.C., 2014. Environmental water quantity projections under market-driven and sustainability-driven future scenarios in the Narew basin, Poland. Hydrological Sciences Journal, 59 (3–4), 916–934.  相似文献   

12.
Abstract

Quantifying the impacts of climate change on the hydrology and ecosystem is important in the study of the Loess Plateau, China, which is well known for its high erosion rates and ecosystem sensitivity to global change. A distributed ecohydrological model was developed and applied in the Jinghe River basin of the Loess Plateau. This model couples the vegetation model, BIOME BioGeochemicalCycles (BIOME-BGC) and the distributed hydrological model, Water and Energy transfer Process in Large river basins (WEP-L). The WEP-L model provided hydro-meteorological data to BIOME-BGC, and the vegetation parameters of WEP-L were updated at a daily time step by BIOME-BGC. The model validation results show good agreement with field observation data and literature values of leaf area index (LAI), net primary productivity (NPP) and river discharge. Average climate projections of 23 global climate models (GCMs), based on three emissions scenarios, were used in simulations to assess future ecohydrological responses in the Jinghe River basin. The results show that global warming impacts would decrease annual discharge and flood season discharge, increase annual NPP and decrease annual net ecosystem productivity (NEP). Increasing evapotranspiration (ET) due to air temperature increase, as well as increases in precipitation and LAI, are the main reasons for the decreasing discharge. The increase in annual NPP is caused by a greater increase in gross primary productivity (GPP) than in plant respiration, whilst the decrease in NEP is caused by a larger increase in heterotrophic respiration than in NPP. Both the air temperature increase and the precipitation increase may affect the changes in NPP and NEP. These results present a serious challenge for water and land management in the basin, where mitigation/adaption measures for climate change are desired.

Editor Z.W. Kundzewicz; Associate editor D. Yang

Citation Peng, H., Jia, Y.W., Qiu, Y.Q., and Niu, C.W., 2013. Assessing climate change impacts on the ecohydrology of the Jinghe River basin in the Loess Plateau, China. Hydrological Sciences Journal, 58 (3), 651–670.  相似文献   

13.
Abstract

The term “environmental flows” is now widely used to reflect the hydrological regime required to sustain freshwater and estuarine ecosystems, and the human livelihoods and well-being that depend on them. The definition suggests a central role for ecohydrological science to help determine a required flow regime for a target ecosystem condition. Indeed, many countries have established laws and policies to implement environmental flows with the expectation that science can deliver the answers. This article provides an overview of recent developments and applications of environmental flows on six continents to explore the changing role of ecohydrological sciences, recognizing its limitations and the emerging needs of society, water resource managers and policy makers. Science has responded with new methods to link hydrology to ecosystem status, but these have also raised fundamental questions that go beyond ecohydrology, such as who decides on the target condition of the ecosystem? Some environmental flow methods are based on the natural flow paradigm, which assumes the desired regime is the natural “unmodified” condition. However, this may be unrealistic where flow regimes have been altered for many centuries and are likely to change with future climate change. Ecosystems are dynamic, so the adoption of environmental flows needs to have a similar dynamic basis. Furthermore, methodological developments have been made in two directions: first, broad-scale hydrological analysis of flow regimes (assuming ecological relevance of hydrograph components) and, second, analysis of ecological impacts of more than one stressor (e.g. flow, morphology, water quality). All methods retain a degree of uncertainty, which translates into risks, and raises questions regarding trust between scientists and the public. Communication between scientists, social scientists, practitioners, policy makers and the public is thus becoming as important as the quality of the science.
Editor Z.W. Kundzewicz

Citation Acreman, M.C., Overton, I.C., King, J., Wood, P., Cowx, I.G., Dunbar, M.J., Kendy, E., and Young, W., 2014. The changing role of ecohydrological science in guiding environmental flows. Hydrological Sciences Journal, 59 (3–4), 433–450  相似文献   

14.
Abstract

In order to apply the EU Water Framework Directive for temporary streams, it is important to quantify the space–time development of different aquatic states. We report on research on the development of aquatic states for temporary streams in the Evrotas basin, Greece. The SIMGRO regional hydrological model was used in a GIS framework to generate flow time series for the Evrotas River and all major tributaries. Five flow phases were distinguished: flood conditions, riffles, connected pools, isolated pools and dry bed conditions. Thresholds based on local hydraulic characteristics were identified per stream reach and flow phase, enabling the frequency of flow phases per month and the average frequencies for all streams to be derived. Three historical scenarios within the 20th century, marking periods of major changes in water management, were investigated. Additionally, a climate scenario for the 2050s was analysed. Simulations revealed that low flows are now much lower, mainly because more groundwater is abstracted for irrigation. The consequence is that stretches of the river fall dry during several months, causing the ecological status to deteriorate.
Editor Z.W. Kundzewicz Associate editor X. Chen  相似文献   

15.
Tropical river basins are experiencing major hydrological alterations as a result of climate variability and deforestation. These drivers of flow changes are often difficult to isolate in large basins based on either observations or experiments; however, combining these methods with numerical models can help identify the contribution of climate and deforestation to hydrological alterations. This paper presents a study carried out in the Tapaj?s River (Brazil), a 477,000 km2 basin in South‐eastern Amazonia, in which we analysed the role of annual land cover change on daily river flows. Analysis of observed spatial and temporal trends in rainfall, forest cover, and river flow metrics for 1976 to 2008 indicates a significant shortening of the wet season and reduction in river flows through most of the basin despite no significant trend in annual precipitation. Coincident with seasonal trends over the past 4 decades, over 35% of the original forest (140,000 out of 400,000 km2) was cleared. In order to determine the effects of land clearing and rainfall variability to trends in river flows, we conducted hindcast simulations with ED2 + R, a terrestrial biosphere model incorporating fine scale ecosystem heterogeneity arising from annual land‐use change and linked to a flow routing scheme. The simulations indicated basin‐wide increases in dry season flows caused by land cover transitions beginning in the early 1990s when forest cover dropped to 80% of its original extent. Simulations of historical potential vegetation in the absence of land cover transitions indicate that reduction in rainfall during the dry season (mean of ?9 mm per month) would have had an opposite and larger magnitude effect than deforestation (maximum of +4 mm/month), leading to the overall net negative trend in river flows. In light of the expected increase in future climate variability and water infrastructure development in the Amazon and other tropical basins, this study presents an approach for analysing how multiple drivers of change are altering regional hydrology and water resources management.  相似文献   

16.
Abstract

Water resources management should cover both blue water and green water. For green-water management at the river drainage basin scale, the green-water coefficient (C gw) is adopted, defined as the ratio of annual green water to annual precipitation. Based on data from the Middle Yellow River basin, China, for the period 1950 to 2007, we studied the temporal variation in C gw in response to some influencing factors. A decreasing trend in C gw was found. The influence of changes in land management on C gw, reflected by an increase in the area (A sw) of soil and water conservation measures, is emphasized. Using multiple regression analysis, the contributions of A sw and the 5-year moving averages of annual precipitation and air temperature were estimated as 51, 37 and 12%, respectively. The results may provide useful information for better management of water resources, including green and blue water flows in the Yellow River basin.

Editor Z.W. Kundzewicz; Associate editor D. Gerten

Citation Xu, J.-X., 2013. Effects of climate and land-use change on green-water variations in the Middle Yellow River, China. Hydrological Sciences Journal, 58 (1), 1–12.  相似文献   

17.
Stable water isotope surveys have increasingly been integrated into river basins studies, but fewer have used them to evaluate impact of hydropower regulation. This study applies hydrologic and water isotope survey approaches to a Canadian Shield river basin with both regulated and natural flows. Historical streamflow records were used to evaluate the influence of three hydroelectric reservoirs and unregulated portions of the basin on downstream flows and changes in water level management implemented after an extreme flood year (1979). In 2013, water isotope surveys of surface and source waters (e.g., rainfall, groundwater, snowmelt) were conducted to examine spatial and temporal variation in contributions to river flow. Seasonal changes in relative groundwater contribution were assessed using a water‐isotope mass balance approach. Within the basin, two regulated reservoirs exhibited inverted hydrographs with augmented winter flows, whereas a third exhibited a hydrograph dominated by spring snowmelt. In 2013, spatial variation in rain‐on‐snow and air temperatures resulted in a critical lag in snowmelt initiation in the southern and northern portions of the basin resulting in a dispersed, double peak spring hydrograph, contrasting with 1979 when a combination of rain‐on‐snow and coincident snowmelt led to the highest flood on record. Although eastern basin reservoirs become seasonally enriched in δ18O and δ2H values, unregulated western basin flows remain less variable due to groundwater driven baseflow with increasing influence downstream. Combined analysis of historical streamflow (e.g., flood of 1979, drought of 2010) and the 2013 water isotope surveys illustrate extreme meteorological conditions that current management activities are unable to prevent. In this study, the influence of evaporative fractionation on large surface water reservoirs provides important evidence of streamflow partitioning, illustrating the value of stable water isotope tracers for study of larger catchments.  相似文献   

18.
In water-deficient rivers, environmental flows (e-flows) are usually sustained via inter-basin water transfer projects from water-sufficient rivers, but these projects incur tremendous costs and may lead to many negative ecological effects, such as ecological invasion. This research proposed to transfer hydropower instead of water from water-sufficient rivers, because hydropower could substitute for water to promote economic development and reduce water withdrawal from water-deficient rivers (conserved water). In addition, based on the analysis of eco-hydrological processes, the flow regime alteration plays an important role in restoring riverine ecosystem. With the goal of minimum flow regime alternation, we set up two scenarios to distribute the annual conserved water, and determined the optimal amount of transferred hydropower and the optimal use of conserved water, which could effectively sustain the e-flows. Accordingly, this paper established a computable general equilibrium model to analyse the substitution of hydropower for water in a water-deficient river basin, and determined the water withdrawal volume that could be reduced. We adopted a range-of-variability approach to measure the degree of flow regime alteration, and optimized the flow regime management scheme. The Luanhe River Basin was adopted as a study case. The results showed that: the water-hydropower equivalent decreased as the transferred hydropower into the Luanhe River Basin increased; a transferred hydropower amount of 22.46 kWh/s, equivalent to 18.30 m3/s conserved water, was optimal for the river basin; the conserved water should be distributed to the Luanhe River in the proportions of 0.55:0.1:0.35 during the wet, normal and dry seasons, respectively, which is the optimal scheme to sustain the hydrological processes of the river.  相似文献   

19.
Abstract

River managers worldwide are increasingly addressing flow needs for ecosystem processes and services in their management plans for dams and reservoirs. However, while planning and scientific assessments have advanced substantially, successful re-operation of infrastructure to achieve environmental benefits has been more limited. The Sustainable Rivers Project (SRP) was formalized in 2002, as a national partnership between the United States Army Corps of Engineers and The Nature Conservancy to define and implement environmental flows through adaptive reservoir management. The project has focused on eight demonstration basins containing 36 Corps dams, but is designed to direct the collective experience from these sites to help guide agency-wide operational changes for as many as 600 dams to benefit up to 80 000 river kilometres and tens of thousands of hectares of related floodplain and estuarine habitat. This article summarizes the progress to date on defining and implementing environmental flows through the SRP, and evaluates the technical, social, legal, and institutional factors that act as dominant enabling conditions and constraints to implementation.
Editor Z.W. Kundzewicz; Guest editor M. Acreman  相似文献   

20.
《水文科学杂志》2013,58(6):1105-1120
Abstract

Under the European Union Water Framework Directive, Member States must put in place a river basin planning framework to determine what measures are necessary to maintain and improve the ecological status for all surface water bodies. The governmental organisations legally responsible for implementing the Directive in the UK have recognised that an appropriate river flow regime is fundamental to maintain a healthy river and, as a result, they need to regulate abstractions and effluent discharges and ensure sufficient water is released from impoundments. This paper reports on the process of producing environmental standards that define the maximum abstraction allowable from UK rivers, to leave sufficient flow to maintain a healthy river ecosystem. As there are currently insufficient data available to determine the relationships between river flow and ecological status empirically, expert knowledge was captured through a series of workshops at which leading UK freshwater scientists defined maximum levels of river flow regime alteration that would achieve ecological objectives for different river water body types. For the least ecologically sensitive rivers, maximum abstractions in the range 15–35% of the natural flow were proposed, depending on the flow magnitude and time of year. For the most sensitive rivers, the maximum abstraction proposed was in the range 7.5–25%. The knowledge was used by the responsible UK authorities to develop environmental standards. The authorities subsequently used the environmental standards to determine regulatory standards that could be implemented within practical constraints and current licensing policies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号