首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

In many of the world’s river basins, the water resources are over-allocated and/or highly modified, access to good quality water is limited or competitive and aquatic ecosystems are degraded. The decline in aquatic ecosystems can impact on human well-being by reducing the ecosystem services provided by healthy rivers, wetlands and floodplains. Basin water resources management requires the determination of water allocation among competing stakeholders including the environment, social needs and economic development. Traditionally, this determination occurred on a volumetric basis to meet basin productivity goals. However, it is difficult to address environmental goals in such a framework, because environmental condition is rarely considered in productivity goals, and short-term variations in river flow may be the most important driver of aquatic ecosystem health. Manipulation of flows to achieve desired outcomes for public supply, food and energy has been implemented for many years. More recently, manipulating flows to achieve ecological outcomes has been proposed. However, the complexity of determining the required flow regimes and the interdependencies between stakeholder outcomes has restricted the implementation of environmental flows as a core component of Integrated Water Resources Management (IWRM). We demonstrate through case studies of the Rhône and Thames river basins in Europe, the Colorado River basin in North America and the Murray-Darling basin in Australia the limitations of traditional environmental flow strategies in integrated water resources management. An alternative ecosystem approach can provide a framework for implementation of environmental flows in basin water resources management, as demonstrated by management of the Pangani River basin in Africa. An ecosystem approach in IWRM leads to management for agreed triple-bottom-line outcomes, rather than productivity or ecological outcomes alone. We recommend that environmental flow management should take on the principles of an ecosystem approach and form an integral part of IWRM.

Editor D. Koutsoyiannis

Citation Overton, I.C., Smith, D.M., Dalton J., Barchiesi S., Acreman M.C., Stromberg, J.C., and Kirby, J.M., 2014. Implementing environmental flows in integrated water resources management and the ecosystem approach. Hydrological Sciences Journal, 59 (3–4), 860–877.  相似文献   

2.
Abstract

A MIKE SHE model of the Mekong, calibrated and validated for 12 gauging stations, is used to simulate climate change scenarios associated with a 2°C increase in global mean temperature projected by seven general circulation models (GCMs). Impacts of each scenario on the river ecosystem and, hence, uncertainty associated with different GCMs are assessed through an environmental flow method based on the range of variability approach. Ecologically relevant hydrological indicators are evaluated for the baseline and each scenario. Baseline-to-scenario change is assessed against thresholds that define likely risk of ecological impact. They are aggregated into single scores for high and low flows. The results demonstrate considerable inter-GCM differences in risk of change. Uncertainty is larger for low flows, with some GCMs projecting high and medium risk at the majority of locations, and others suggesting widespread no or low risk. Inter-GCM differences occur along the main Mekong, as well as within major tributaries.
Editor Z.W. Kundzewicz

Citation Thompson, J.R., Laizé, C.L.R., Green, A.J., Acreman, M.C., and Kingston, D.G., 2014. Climate change uncertainty in environmental flows for the Mekong River. Hydrological Sciences Journal, 59 (3–4), 935–954.  相似文献   

3.
Sophocleous M 《Ground water》2007,45(4):393-401
Conflicts between ecosystems and human needs for fresh water are increasing. The purpose of this paper is to raise awareness in the hydrogeologic community of environmental flows (EFs) and to address the major challenges involved in their protection. Ground water is a key component of EFs, and therefore hydrogeologists are called upon to get involved in the ongoing debates about maintaining healthy riverine ecosystems. Promising opportunities for achieving EFs in both underallocated and overallocated basins as well as new methods for protecting fresh water ecosystems developed in different countries are outlined. EF protection measures include private water trusts, "upside-down instream flow water rights," the "public trust" doctrine, and water markets, among other measures. A number of knowledge gaps are identified, to which hydrogeologists could contribute, such as our rudimentary knowledge about ground water-dependent ecosystems, aspects of stream-aquifer interactions, and the impacts of land-use changes. The values that society places on the different uses of water ultimately determine where the water is allocated. EF requirements can be legitimately recognized and addressed by basing the environmental needs of hydrologic systems on robust science, focusing on increasing the productivity of water use, engaging society in understanding the benefits and costs of decisions that affect ecosystems, and taking advantage of various opportunities for achieving EF goals.  相似文献   

4.
Abstract

The Okavango River system flows through Angola, Namibia and Botswana. It is in near-natural condition and supports globally iconic wetlands and wildlife. The basin’s people are poor and development is inevitable: the next decade is critical. The river could become an example of responsible planning that resolutely addresses the three pillars of sustainable development. Recognizing this, the Member States completed a transboundary diagnostic analysis (TDA) in 2010 funded by the three governments and the Global Environment Facility. A central feature of the TDA was a basin-wide environmental flow assessment using the DRIFT (Downstream Response to Imposed Flow Transformation) holistic approach. This produced scenarios of increasing water resource use that spelled out the costs and benefits in terms of the health of the river ecosystem, associated social structures and local and national economies. The results were used to help create a transboundary strategic action programme, which the Member States are now beginning to act on. This article describes the DRIFT application, the findings and how these could be used to help achieve sustainable development.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation King, J., Beuster, H., Brown, C., and Joubert, A., 2014. Pro-active management: the role of environmental flows in transboundary cooperative planning for the Okavango River system. Hydrological Sciences Journal, 59 (3–4), 786–800.  相似文献   

5.
Abstract

River managers worldwide are increasingly addressing flow needs for ecosystem processes and services in their management plans for dams and reservoirs. However, while planning and scientific assessments have advanced substantially, successful re-operation of infrastructure to achieve environmental benefits has been more limited. The Sustainable Rivers Project (SRP) was formalized in 2002, as a national partnership between the United States Army Corps of Engineers and The Nature Conservancy to define and implement environmental flows through adaptive reservoir management. The project has focused on eight demonstration basins containing 36 Corps dams, but is designed to direct the collective experience from these sites to help guide agency-wide operational changes for as many as 600 dams to benefit up to 80 000 river kilometres and tens of thousands of hectares of related floodplain and estuarine habitat. This article summarizes the progress to date on defining and implementing environmental flows through the SRP, and evaluates the technical, social, legal, and institutional factors that act as dominant enabling conditions and constraints to implementation.
Editor Z.W. Kundzewicz; Guest editor M. Acreman  相似文献   

6.
The ecohydrological separation hypothesis states that transpiration through plants and drainage to streams and groundwater are sourced from separate soil water pools, which possess distinct isotopic signatures. Evidence for ecohydrological separation has relied on the globally ubiquitous observation that plant water and draining water are isotopically distinct. We evaluated the ecohydrological separation hypothesis in the Dry Creek Experimental Watershed in the semiarid, snow‐dominated landscape of southwest Idaho, USA. We found that plant water is indeed isotopically distinct from streams and groundwater. However, we were unable to track those waters to subsurface soil waters, nor were we able to relate soil water mobility to isotopic composition. Soil waters of different mobility can be isotopically similar, and isotopic distinction in soil water can occur for reasons not related to mobility. We suggest that isotopic distinction between root‐absorbed and draining waters may not be an appropriate indicator of ecohydrological separation of soil waters, and that hydrologic explanations for such isotopic distinction may not be sufficient.  相似文献   

7.
Abstract

Water resource use limits ensure protection of environmental values and define the availability and reliability of water supply for out-of-channel use. We examined how three types of scientific tools (environmental flow setting methods, hydrological analyses for setting total allocations and spatial frameworks) have been used to define limits across jurisdictional regions comprising multiple catchments in New Zealand. We found that recently developed minimum flow and total allocation setting tools are widely used. Spatial frameworks are increasingly used to discriminate and account for variation in environmental characteristics, thereby increasing the specificity of water resource use limits. The uptake of scientific tools has enabled improvements in the clarity of water management objectives and the transparency of limits defined by regional water management plans. We argue that more integrated use of scientific tools could improve the clarity and transparency of regional limits by explicitly demonstrating the trade-off between out-of-channel use and protection of environmental values.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation Snelder, T.H., Rouse, H.L., Franklin, P.A., Booker, D.J., Norton, N., and Diettrich, J., 2014. The role of science in setting water resource use limits: case studies from New Zealand. Hydrological Sciences Journal, 59 (3–4), 844–859.  相似文献   

8.
Abstract

We developed a water-use conflict analysis framework to determine environmental flows that optimally balance water requirements for ecosystems and human activities. This framework considers trade-offs between water use for ecosystem health and agricultural processes and considers temporal variations in hydrological processes. It comprises three separate models that (a) analyse water balance between agriculture and initial environmental flows, (b) identify outcomes of varying balances in water use, and (c) determine recommended environmental flows for sustainable water use. We applied the framework to a region downstream of the Yellow River in China. Based on our results, we recommend a water management plan that allocates more water to ecosystem services than is currently allocated and that does not increase predicted economic losses. In addition, we found that recommended flows change depending on the ecological objectives considered and whether technologies or methodologies that improve water-use efficiency are employed.
Editor Z.W. Kundzewicz; Guest editor M. Acreman

Citation Pang, A., Sun, T., and Yang, Z., 2014. A framework for determining recommended environmental flows for balancing agricultural and ecosystem water demands. Hydrological Sciences Journal, 59 (3–4), 890–903.  相似文献   

9.
10.
Abstract

In 2007, the Texas legislature created a program to identify environmental flow standards statewide through the coordinated efforts of scientific and stakeholder groups and rulemaking by the Texas Commission on Environmental Quality. To aid in this task, a Hydrology-based Environmental Flow Regime (HEFR) method was developed that combines a suite of user-customizable hydrologic statistics with an implementation framework. Following the concepts of the Natural Flow Paradigm, the methodology includes the separation of a long-term hydrograph into key flow components (e.g. subsistence, base, high-flow pulse and overbank) defined by the Texas Instream Flow Program. Seasonal, annual and inter-annual flow component statistics were then coupled with biology, water quality and geomorphology overlays, where available, and with implementation rules applied to example large-scale water supply projects to support development of environmental flow standards for use in water rights permit conditions. The HEFR methodology and resulting flow recommendations are compared to two contemporary in-stream flow studies and adopted environmental flow standards. Subsistence flows were fairly similar. Baseflows were in a similar range, but fewer than three seasonal levels have sometimes been specified in in-stream flow studies. Episodic events are quite different in terms of magnitude, frequency, duration and applicable number.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation Opdyke, D.R., Oborny, E.L., Vaugh, S.K., and Mayes, K.B., 2014. Texas environmental flow standards and the hydrology-based environmental flow regime methodology. Hydrological Sciences Journal, 59 (3–4), 820–830.  相似文献   

11.
In water-deficient rivers, environmental flows (e-flows) are usually sustained via inter-basin water transfer projects from water-sufficient rivers, but these projects incur tremendous costs and may lead to many negative ecological effects, such as ecological invasion. This research proposed to transfer hydropower instead of water from water-sufficient rivers, because hydropower could substitute for water to promote economic development and reduce water withdrawal from water-deficient rivers (conserved water). In addition, based on the analysis of eco-hydrological processes, the flow regime alteration plays an important role in restoring riverine ecosystem. With the goal of minimum flow regime alternation, we set up two scenarios to distribute the annual conserved water, and determined the optimal amount of transferred hydropower and the optimal use of conserved water, which could effectively sustain the e-flows. Accordingly, this paper established a computable general equilibrium model to analyse the substitution of hydropower for water in a water-deficient river basin, and determined the water withdrawal volume that could be reduced. We adopted a range-of-variability approach to measure the degree of flow regime alteration, and optimized the flow regime management scheme. The Luanhe River Basin was adopted as a study case. The results showed that: the water-hydropower equivalent decreased as the transferred hydropower into the Luanhe River Basin increased; a transferred hydropower amount of 22.46 kWh/s, equivalent to 18.30 m3/s conserved water, was optimal for the river basin; the conserved water should be distributed to the Luanhe River in the proportions of 0.55:0.1:0.35 during the wet, normal and dry seasons, respectively, which is the optimal scheme to sustain the hydrological processes of the river.  相似文献   

12.
《水文科学杂志》2013,58(6):1105-1120
Abstract

Under the European Union Water Framework Directive, Member States must put in place a river basin planning framework to determine what measures are necessary to maintain and improve the ecological status for all surface water bodies. The governmental organisations legally responsible for implementing the Directive in the UK have recognised that an appropriate river flow regime is fundamental to maintain a healthy river and, as a result, they need to regulate abstractions and effluent discharges and ensure sufficient water is released from impoundments. This paper reports on the process of producing environmental standards that define the maximum abstraction allowable from UK rivers, to leave sufficient flow to maintain a healthy river ecosystem. As there are currently insufficient data available to determine the relationships between river flow and ecological status empirically, expert knowledge was captured through a series of workshops at which leading UK freshwater scientists defined maximum levels of river flow regime alteration that would achieve ecological objectives for different river water body types. For the least ecologically sensitive rivers, maximum abstractions in the range 15–35% of the natural flow were proposed, depending on the flow magnitude and time of year. For the most sensitive rivers, the maximum abstraction proposed was in the range 7.5–25%. The knowledge was used by the responsible UK authorities to develop environmental standards. The authorities subsequently used the environmental standards to determine regulatory standards that could be implemented within practical constraints and current licensing policies.  相似文献   

13.
Abstract

Hydrologic metrics have been used widely to quantify flow-ecology relationships; however, there are several challenges associated with their use, including the selection from a large number of available metrics and the limitation that metrics are a synthetic measure of a multi-dimensional flow regime. Using two case studies of fish species density and community composition, we illustrate the use of functional linear models to provide new insights into flow–ecology relationships and predict the expected impact of environmental flow scenarios, without relying on hydrologic metrics. The models identified statistically significant relationships to river flow over the 12 months prior to sampling (r2 range 36–67%) and an environmental flow scenario that may enhance native species’ densities while controlling a non-native species. Hydrologic metrics continue to play an important role in ecohydrology and environmental flow management; however, functional linear models provide an approach that overcomes some of the limitations associated with their use.
Editor Z.W. Kundzewicz; Guest editor M. Acreman

Citation Stewart-Koster, B., Olden, J.D., and Gido, K.B., 2014. Quantifying flow–ecology relationships with functional linear models. Hydrological Sciences Journal, 59 (3–4), 629–644.  相似文献   

14.
Measurements of the anisotropy of magnetic susceptibility (AMS) of natural lavas have shown that AMS varies with depth within a lava flow. We have investigated the reasons for such variation by studying the effects of temperature and strain rate on the AMS of recent lava in the laboratory. Samples of lava from Kilauea were melted and subjected to a range of strain rate and cooling histories. The results show that the degree of anisotropy is a function of both the thermal and shearing history of a sample. High degrees of anisotropy were found only in samples that were deformed at temperatures close to those encountered during eruption and then rapidly quenched. Lavas subjected to similar shear stresses at high temperatures had low degrees of anisotropy if allowed to cool down slowly without further deformation. Additionally, lava subjected to complex shearing yield a lower degree of anisotropy even when high strain rates were imposed on it. These results lead to the conclusion that only the last phase of deformation is detectable using AMS and that high strain rates will not result in high degrees of anisotropy if either deformation ends while lava is still fluid or if the orientation of the maximum shear stress varies with time. The relation between the orientation of the principal susceptibilities and that of shear is less sensitive to variation on shear with time. Consequently, flow directions can be inferred confidently with this type of measurements.  相似文献   

15.
Irrespective of their spatial extent, free-surface shallow flows are challenging measurement environments for most instruments due to the relatively small depths and velocities typically associated with these flows. A promising candidate for enabling measurements in such conditions is Large-scale Particle Image Velocimetry (LSPIV). This technique uses a non-intrusive approach to measure two-dimensional surface velocity fields with high spatial and temporal resolutions. Although there are many publications documenting the successful use of LSPIV in various laboratory and field open-channel flow situations, its performance has not been equally substantiated for measurement in shallow flows. This paper aims at filling in this gap by demonstrating the capabilities of LSPIV to: (a) accurately evaluate complex flow patterns in shallow channel flows; and (b) estimate depth in shallow flows using exclusively LSPIV measurements. The demonstration is provided by LSPIV measurements in three shallow flow laboratory situations with flow depths ranging from 0.05 to 0.31 m. The obtained measurements illustrate the LSPIV flexibility and reliability in measuring velocities in shallow and low-velocity (near-zero) flows. Moreover, the technique is capable to evaluate and map velocity-derived quantities that are difficult to document with alternative measurement techniques (e.g. vorticity and shear stress distributions and mapping of large-scale structure in the body of water).  相似文献   

16.
This paper describes the velocity pattern of a slow‐moving earth flow containing a viscous shear band and a more or less rigid landslide body on top. In the case of small groundwater fluctuations, Bingham's law may describe the velocity of these slow‐moving landslides, with velocity as a linear function of excess shear stress. Many authors have stated that in most cases a non‐linear version of Bingham's law best describes the moving pattern of these earth flows. However, such an exponential relationship fails to describe the hysteresis loop of the velocity, which was found by some authors. These authors showed that the velocity of the investigated earth flows proved to be higher during the rising limb of the groundwater than during the falling limb. To explain the hysteris loop in the velocity pattern, this paper considers the role of excess pore pressure in the rheological behaviour of earth flows by means of a mechanistic model. It describes changes in lateral internal stresses due to a change in the velocity of the earth flow, which generates excess pore pressure followed by pore pressure dissipation. Model results are compared with a hysteresis in the velocity pattern, which was measured on the Valette landslide complex (French Alps). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Abstract

Trends in high and low flows are valuable indicators of hydrological change because they highlight changes in various parts of the frequency distribution of streamflow series. This enables improved assessment of water availability in regions with high seasonal and inter-annual variability. There has been a substantial reduction in water resources in the Duero basin (Iberian Peninsula, Spain) and other areas of the Mediterranean region during the last 50 years, and this is likely to continue because of climate change. In this study, we investigated the evolution and trends in high and low flows in the Spanish part of the Duero basin, and in equivalent or closely-related precipitation indices for the period 1961–2005. The results showed a general trend of decrease in the frequency and magnitude of high flows throughout most of the basin. Moreover, the number of days with low flows significantly increased over this period. No clear relationship was evident between the evolution of high/low flows and changes in the distribution frequencies of the precipitation series. In contrast to what was expected, the number of days with heavy precipitation and the mean annual precipitation did not show significant trends across the basin, and the number of days without rainfall decreased slightly. The divergence between precipitation and runoff evolution was more accentuated in spring and summer. In the absence of trends in precipitation, it is possible that reforestation processes in the region, and increasing temperatures in recent decades, could be related to the decreasing frequency of high flows and the increasing frequency of low flows.

Editor Z.W. Kundzewicz; Associate editor S. Grimaldi

Citation Morán-Tejeda, E., López-Moreno, J.I., Vicente-Serrano, S.M., Lorenzo-Lacruz, J. and Ceballos-Barbancho, A., 2012. The contrasted evolution of high and low flows and precipitation indices in the Duero basin (Spain). Hydrological Sciences Journal, 57 (4), 591–611.  相似文献   

18.
Abstract

In this paper an analytical method to study the hydrodynamic stability of simple barotropic, non-divergent flows is discussed. The method is based on the variational approach introduced by Arnold and derived from the Lyapunov stability criteria. In this context, the sufficient condition for the stability of a steady barotropic flow ψ(x,y) is obtained when dP(ψ)/dPψ = ψ, the derivative of the absolute vorticity P(ψ), is positive definite. In this case, we discuss the effect of higher derivatives dnP(ψ)/dψnψψ = ψ on the non-linear stability. Then we show that some classical examples of oceanic non-divergent flows (i.e. lee waves downstream an Island, steady flows through a Strait, the Fofonoff gyre) are stable to finite-amplitude perturbations.  相似文献   

19.
Abstract

The growth rates of instabilities in these shear flows are bounded by the rate of shear and the relativistic y factor. It is also shown that (i) the Howard Semi-Circle theorem is still valid, and (ii) the critical layer lies in the flow. Beaming effects are taken into account.  相似文献   

20.
ABSTRACT

Environmental flow standards are a management tool that can help to protect the ecosystem services sustained by rivers. Although environmental flow requirements can be assessed using a variety of methods, most of these methods require establishing relationships between flow and habitat of species of concern. Here, we conducted a synthesis of past flow–ecology studies in the southeast USA. For each state or interstate river basin, we used the published data to determine the flow metrics that resulted in the greatest changes in ecological metrics, and the ecological metrics that were most sensitive to hydrologic alteration. The flow metrics that were most important in preserving ecological metrics were high-flow duration and frequency, 3-day maximum and minimum, and number of reversals. The ecological metrics most sensitive to hydrologic alteration were mostly related to presence or absence of key indicator species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号