首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We examine published sunspot and calcium plage areas for 1620 solar active regions between 1974 and 1985. With these data we study the properties of ensemble-averaged active regions. The average sunspot area per region, the average plage to sunspot area ratio, and the average plage intensity of regions all vary significantly with the sunspot cycle and in correlation with one another. The average plage area per region varies significantly but is uncorrelated with the sunspot cycle and with the other quantities. While the plage and sunspot areas and the plage intensities of individual active regions observed over a two-year period are strongly correlated, the relationship among these quantities appears to change over an 11-yr period. These results suggest the existence of some energetic connection between active region sunspot areas and plage intensities. Further, if energy balance between sunspot luminosity deficits and facular luminosity excesses holds, then standard models relating these quantities to sunspot and plage areas will have to be modified. Overall energy balance can neither be established nor ruled out.Solar Cycle Workshop Paper.  相似文献   

2.
Multiple wavelength observations of sunspot umbrae can only be expalined by an inhomogeneous, two-component model for the structure of the umbral transition region and lower corona. The ‘Wroclaw-Ondrejov sunspot model’ was a first step in this direction. This working model has now been improved using analytic expressions for the atmospheric structure in each component and fitting the free parameters to recent sunspot observations, particularly in EUV lines. The main component has a shallow transition region and a deep-set corona. The second, ‘active’ component has a vast transition region in relatively cool fine structure elements embedded in the coronal main component. The spatial filling factor of this active component amounts to 5–10% in sunspots with bright EUV plumes, but is is more than ten times smaller in sunspot without such plumes. Observations with high spatial and temporal resolutions are necessary to understand in more detail the basic physical processes.  相似文献   

3.
Ermakova  L.V. 《Solar physics》2000,191(1):161-169
In this paper the magnetic flux distribution of bipolar active regions at the sunspot development stage is analyzed. It is shown that the ratio of the total sunspot area in an active region to the maximum one can be used as a characteristic of the development phase. Such a procedure allows combining the data attributed to different active regions for studying evolutionary changes. The expressions describing the evolution of magnetic flux distribution of bipolar active region were obtained and their interpretation with rise and descent of loop like magnetic flux tube leading to active region formation was justified.  相似文献   

4.
Grigoryev  V.M.  Ermakova  L.V. 《Solar physics》2002,207(2):309-321
The process of active region formation was researched by analyzing the densities of electric current and electric current helicity in the photosphere. The observational data were obtained with the vector magnetograph of the Sayan observatory. The appearance (as the sunspot developed) of the part of current helicity which is determined by the vertical components of the magnetic field and electric current density was studied. It is concluded that the loop-like magnetic flux tube which is responsible for the active region emergence contains thinner tubes with the same structure. The electric current system in a sunspot is simplified as the sunspot forms perhaps because the thinner flux tubes are merged together.  相似文献   

5.
R. N. Singh 《Solar physics》1991,136(1):191-193
Five-minutes p-mode oscillations are heavily attenuated in the active sunspot region. A comparative study of wave modes and luminosity variations outside and inside the sunspot region is found to depict certain diagnostic features of sunspot regions.  相似文献   

6.
We describe the decay phase of one of the largest active regions of solar cycle 22 that developed by the end of June 1987. The center of both polarities of the magnetic fields of the region systematically shifted north and poleward throughout the decay phase. In addition, a substantial fraction of the trailing magnetic fields migrated equatorward and south of the leading, negative fields. The result of this migration was the apparent rotation of the magnetic axis of the region such that a majority of the leading polarity advanced poleward at a faster rate than the trailing polarity. As a consequence, this region could not contribute to the anticipated reversal of the polar field.The relative motions of the sunspots in this active region were also noteworthy. The largest, leading, negative polarity sunspot at N24 exhibited a slightly slower-than-average solar rotation rate equivalent to the mean differential rotation rate at N25. In contrast, the westernmost, leading, negative polarity sunspot at N21 consistently advanced further westward at a mean rate of 0.13 km s–1 with respect to the mean differential rotation rate at its latitude. These sunspot motions and the pattern of evolution of the magnetic fields of the whole region constitute evidence of the existence of a large-scale velocity field within the active region.Solar Cycle Workshop Paper.  相似文献   

7.
We study active region NOAA 9684 (N06L285) which produced an X1.0/3B flare on November 4, 2001 associated with a fast CME (1810 km s−1) and the largest proton event (31 700 pfu) in cycle 23. SOHO/MDI continuum image data show that a large leading sunspot rotated counter-clockwise around its umbral center for at least 4 days prior to the flare. Moreover, it is found from SOHO/MDI 96 m line-of-sight magnetograms that the systematic tilt angle of the bipolar active region, a proxy for writhe of magnetic fluxtubes, changed from a positive value to a negative one. This signifies a counter-clockwise rotation of the spot-group as a whole. Using vector magnetograms from Huairou Solar Observing Station (HSOS), we find that the twist of the active region magnetic fields is dominantly left handed (αbest = −0.03), and that the vertical current and current helicity are predominantly negative, and mostly distributed within the positive rotating sunspot. The active region exhibits a narrow inverse S-shaped Hα filament and soft X-ray sigmoid distributed along the magnetic neutral line. The portion of the filament which is most closely associated with the rotating sunspot disappeared on November 4, and the corresponding portion of the sigmoid was observed to erupt, producing the flare and initiating the fast CME and proton event. These results imply that the sunspot rotation is a primary driver of helicity production and injection into the corona. We suggest that the observed active region dynamics and subsequent filament and sigmoid eruption are driven by a kink instability which occurred due to a large amount of the helicity injection.  相似文献   

8.
Kumar  Brajesh  Jain  Rajmal  Tripathy  S.C.  Vats  Hari Om  Deshpande  M.R. 《Solar physics》2000,191(2):293-307
A time series of GONG Dopplergrams for the period 10–14 May 1997 from Udaipur and Big Bear sites has been used to measure the velocity fluctuations in a sunspot (NOAA active region 8038) and quiet photosphere simultaneously. We observe that the power of pre-dominant p mode is reduced in the sunspot as compared to quiet photosphere by 39–52% depending on the location of the sunspot region on the solar disk. We also observe a relative peak frequency deviation of p modes in the sunspot, of the order of 80–310 Hz, which shows a linear dependence on the magnetic field gradient in the active region. The maximum frequency deviation of 310 Hz on 12 May appears to be an influence of a long-duration solar flare that occurred in this active region. We interpret this relative peak frequency deviation as either due to power re-distribution of p modes in the sunspot or a consequence of frequency modulation of these modes along the magnetic flux tubes due to rapidly varying magnetic field structure.  相似文献   

9.
本影振荡是出现在太阳黑子内的一种常见现象,精确测定它们的振荡周期对于理解黑子的结构和演化有着重要意义。应用快速傅里叶变换方法对空间望远镜HINODE在2007年5月1日观测的活动区AR10953内的黑子本影数据进行了细致的分析,结果发现在该活动区本影内存在一种典型的3 min振荡,其振荡周期约为154 s。  相似文献   

10.
Sunspots are solar features located in active regions of the Sun, whose number is an indicator of the Sun's magnetic activity. With a substantial increase in the quantity of solar image data, the automated detection and verification of various solar features have become increasingly important for the accurate and timely forecasts of solar activity and space weather. In order to use the high time-cadence SDO/HMI data to extract the main sunspot features for forecasting solar activities, we have established an automatic detection method of sunspots based on mathematical morphology, and calculated the sunspot group area and sunspot number. By comparing our results with those obtained from the Solar Region Summary compiled by NOAA/SWPC, it is found that the sunspot group areas and sunspot numbers computed with our algorithm are in good agreement with the active region values released by SWPC, and the corresponding correlation coefficients for the sunspot group area and sunspot number are 0.77 and 0.79, respectively. By using the method of this paper, the high time-cadence feature parameters can be obtained from the HMI data to provide the timely and accurate inputs for the solar activity forecast.  相似文献   

11.
During sunspot cycles 20 and 21, the maximum in smoothed 10.7-cm solar radio flux occurred about 1.5 yr after the maximum smoothed sunspot number, whereas during cycles 18 and 19 no lag was observed. Thus, although 10.7-cm radio flux and Zürich suspot number are highly correlated, they are not interchangeable, especially near solar maximum. The 10.7-cm flux more closely follows the number of sunspots visible on the solar disk, while the Zürich sunspot number more closely follows the number of sunspot groups. The number of sunspots in an active region is one measure of the complexity of the magnetic structure of the region, and the coincidence in the maxima of radio flux and number of sunspots apparently reflects higher radio emission from active regions of greater magnetic complexity. The presence of a lag between sunspot-number maximum and radio-flux maximum in some cycles but not in others argues that some aspect of the average magnetic complexity near solar maximum must vary from cycle to cycle. A speculative possibility is that the radio-flux lag discriminates between long-period and short-period cycles, being another indicator that the solar cycle switches between long-period and short-period modes.Operated by the Association of Universities for Research in Astronomy, Inc. under contract with the National Science Foundation.  相似文献   

12.
Yurchyshyn  Vasyl B.  Wang  Haimin 《Solar physics》2001,203(2):233-238
We study photospheric plasma flows in an active region NOAA 8375, by using uninterrupted high-resolution SOHO/MDI observations (137 intensity images, 44 hours of observations). The active region consists of a stable large spot and many small spots and pores. Analyzing horizontal flow maps, obtained with local correlation tracking technique, we found a system of stable persistent plasma flows existing in the active region. The flows start on either side of the sunspot and extend over 100′′ to the east. Our measurements show that the speed of small sunspots and pores, averaged over 44 hours, was about 100 m s−1, which corresponds to root-mean-square longitudinal drifts of sunspots of 0.67°–0.76° day−1. We conclude that these large-scale flows are due to faster proper motion of the large sunspot relative to the ambient photospheric plasma. We suggest that the flows may be a good carrier to transport magnetic flux from eroding sunspots into the outer part of an active region.  相似文献   

13.
The rotation of sunspots in the solar active region NOAA 10930 was investigated on the basis of the data on the longitudinal magnetic field and the Doppler velocities using magnetograms and dopplergrams taken with the Solar Optical Telescope installed aboard the HINODE mission. Under the assumption of axial symmetry, areally-mean vertical, radial, and azimuthal components of the magnetic field and velocity vectors were calculated in both sunspots. The plasma in the sunspots rotated in opposite directions: in the leading sunspot, clockwise, and in the following sunspot, counterclockwise. The magnetic flux tubes that formed sunspots of the active region on the solar surface were twisted in one direction, clockwise. Electric currents generated as a result of the rotation and twisting of magnetic flux tubes were also flowing in one direction. Azimuthal components of magnetic and velocity fields of both sunspot umbrae reached their maximum on December 11, 2006. By the start of the X3.4 flare (December 13, 2006), their values became practically equal to zero.  相似文献   

14.
The relationship between sunspot area and other observable solar parameters, such as spectral solar irradiance or total magnetic flux, is frequently sought by examining scatterplots of daily data, which generally show a non-linear distribution of points. We show that the scatterplots are consistent with our published result that these observable solar parameters are related to sunspot area by a transformation that is both linear and time invariant, namely by convolution with a finite impulse response function. Most solar parameters are affected by extended active regions, not just by sunspots. The fact that a complex active region evolves much more slowly than its associated sunspots provides a simple physical explanation of the observed non-linearities in scatterplots.  相似文献   

15.
本文对太阳活动第21周、22周(1976年—1992年间)97个质子活动区进行统计分析,包括活动区的面积、型别、磁结构、半影纤维等,结果表明:75%的质子耀斑产生于面积为500≤Sp≤3000单位的黑子群中;耀斑爆发前一天及后一天活动区面积有显著减少;质子活动区含δ复杂磁结构的占70%;具有半影旋涡形态的质子活动区中,约77%的耀斑发生在旋涡黑子出现以后。  相似文献   

16.
17.
We present a multiwavelength analysis of a long-duration, white-light solar flare (M8.9/3B) event that occurred on 04 June 2007 from AR NOAA 10960. The flare was observed by several spaceborne instruments, namely SOHO/MDI, Hinode/SOT, TRACE, and STEREO/SECCHI. The flare was initiated near a small, positive-polarity, satellite sunspot at the center of the active region, surrounded by opposite-polarity field regions. MDI images of the active region show a considerable amount of changes in the small positive-polarity sunspot of δ configuration during the flare event. SOT/G-band (4305 Å) images of the sunspot also suggest the rapid evolution of this positive-polarity sunspot with highly twisted penumbral filaments before the flare event, which were oriented in a counterclockwise direction. It shows the change in orientation, and also the remarkable disappearance of twisted penumbral filaments (≈35?–?40%) and enhancement in umbral area (≈45?–?50%) during the decay phase of the flare. TRACE and SECCHI observations reveal the successive activation of two helically-twisted structures associated with this sunspot, and the corresponding brightening in the chromosphere as observed by the time-sequence of SOT/Ca?ii H line (3968 Å) images. The secondary, helically-twisted structure is found to be associated with the M8.9 flare event. The brightening starts six?–?seven minutes prior to the flare maximum with the appearance of a secondary, helically-twisted structure. The flare intensity maximizes as the secondary, helically-twisted structure moves away from the active region. This twisted flux tube, associated with the flare triggering, did not launch a CME. The location of the flare activity is found to coincide with the activation site of the helically-twisted structures. We conclude that the activation of successive helical twists (especially the second one) in the magnetic-flux tubes/ropes plays a crucial role in the energy build-up process and the triggering of the M-class solar flare without a coronal mass ejection (CME).  相似文献   

18.
Kosovichev  A.G.  Duvall  T.L.  Scherrer  P.H. 《Solar physics》2000,192(1-2):159-176
The current interpretations of the travel-time measurements in quiet and active regions on the Sun are discussed. These interpretations are based on various approximations to the 3-D wave equation such as the Fermat principle for acoustic rays and the Born approximation. The ray approximation and its modifications have provided the first view of the 3-D structures and flows in the solar interior. However, more accurate and computationally efficient approximations describing the relation between the wave travel times and the internal properties are required to study the structures and flows in detail. Inversion of the large three-dimensional datasets is efficiently carried out by regularized iterative methods. Some results of time-distance inversions for emerging active regions, sunspots, meridional flows and supergranulation are presented. An active region which emerged on the solar disk in January 1998, was studied from SOHO/MDI for eight days, both before and after its emergence at the surface. The results show a complicated structure of the emerging region in the interior, and suggest that the emerging flux ropes travel very quickly through the depth range of our observations. The estimated speed of emergence is about 1.3 km s–1. Tomographic images of a large sunspot reveal sunspot `fingers' - long narrow structures at a depth of about 4 Mm, which connect the sunspot with surrounding pores of the same polarity.  相似文献   

19.
The temporal variation of the horizontal velocity in sub-surface layers beneath three different types of active region is studied using the technique of ring diagrams. In this study, we select active regions (ARs) 10923, 10930, 10935 from three consecutive Carrington rotations: AR 10930 contains a fast-rotating sunspot in a strong emerging active region while other two have non-rotating sunspots with emerging flux in AR 10923 and decaying flux in AR 10935. The depth range covered is from the surface to about 12 Mm. In order to minimize the influence of systematic effects, the selection of active and quiet regions is made so that these were observed at the same heliographic locations on the solar disk. We find a significant variation in both components of the horizontal velocity in active regions as compared to quiet regions. The magnitude is higher in emerging-flux regions than in the decaying-flux region, in agreement with earlier findings. Further, we clearly see a significant temporal variation in depth profiles of both zonal and meridional flow components in AR 10930, with the variation in the zonal component being more pronounced. We also notice a significant influence of the plasma motion in areas closest to the rotating sunspot in AR 10930, while areas surrounding the non-rotating sunspots in all three cases are least affected by the presence of the active region in their neighborhood.  相似文献   

20.
We analyze the multiwavelength observations of an M2.9/1N flare that occurred in the active region (AR) NOAA 11112 in the vicinity of a huge filament system on 16 October 2010. SDO/HMI magnetograms reveal the emergence of a bipole (within the existing AR) 50 hours prior to the flare event. During the emergence, both the positive and negative sunspots in the bipole show translational as well as rotational motion. The positive-polarity sunspot shows significant motion/rotation in the south-westward/clockwise direction, and we see continuously pushing/sliding of the surrounding opposite-polarity field region. On the other hand, the negative-polarity sunspot moves/rotates in the westward/anticlockwise direction. The positive-polarity sunspot rotates ≈?70° within 30 hours, whereas the one with negative polarity rotates ≈?20° within 10 hours. SDO/AIA 94 Å EUV images show the emergence of a flux tube in the corona, consistent with the emergence of the bipole in HMI. The footpoints of the flux tube were anchored in the emerging bipole. The initial brightening starts at one of the footpoints (western) of the emerging loop system, where the positive-polarity sunspot pushes/slides towards a nearby negative-polarity field region. A high speed plasmoid ejection (speed ≈?1197 km?s?1) was observed during the impulsive phase of the flare, which suggests magnetic reconnection of the emerging positive-polarity sunspot with the surrounding opposite-polarity field region. The entire AR shows positive-helicity injection before the flare event. Moreover, the newly emerging bipole reveals the signature of a negative (left-handed) helicity. These observations provide unique evidence of the emergence of twisted flux tubes from below the photosphere to coronal heights, triggering a flare mainly due to the interaction between the emerging positive-polarity sunspot and a nearby negative-polarity sunspot by the shearing motion of the emerging positive sunspot towards the negative one. Our observations also strongly support the idea that the rotation can most likely be attributed to the emergence of twisted magnetic fields, as proposed by recent models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号