首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
基于Google Earth Engine(GEE)遥感云平台,利用2000—2019年MODIS积雪产品资料提取和计算新疆积雪终日信息,利用趋势分析,变异系数等方法分析了新疆积雪终日时空变化特征和变化趋势。结果表明:(1) 新疆积雪终日以天山为界,天山以北长于南部,山区为积雪终日的高值区,盆地为积雪终日的低值区。北疆准噶尔盆地和伊犁河谷积雪终日在75~114 d之间,南疆塔里木盆地在0~31 d之间属于低值区。阿尔泰山脉、天山山脉和昆仑山脉区域在224~365 d之间属于高值区。(2) 南疆和北疆积雪终日有明显的时空差异,2000—2019年北疆准噶尔盆地和高海拔山脉地区积雪终日有明显的推迟趋势,推迟幅度达到14 d,占新疆总面积的8%。南疆塔里木盆地和东疆区域有明显的提前趋势,提前幅度达到16 d约占新疆总面积的44%。塔里木盆地和准噶尔盆地具有相反的变化趋势。(3) 新疆积雪终日年际变化差异显著,天山中段和北疆积雪终日出现不稳定状况,天山中段2002—2009年总体上呈现“M”型的特点,即多年积雪消融日年均值中出现明显的波峰和波谷,北疆2009—2019年积雪终日有较大的年际变化呈现出不稳定状况,出现明显的波峰和波谷,年际变化较大。  相似文献   

2.
利用EOS-MODIS卫星的积雪反照率数据和一元线性回归法分析2001~2010年长江源区积雪反照率的分布及变化趋势。结果表明:①长江源区积雪季积雪反照率空间分布差异大。冰川区是积雪反照率高值中心(0.67~0.91),长江源东部地区是低值中心(0.15~0.48)。②积雪反照率空间分布四季变化明显,峰值出现在次年1月份。③长江源区近10 a积雪季平均积雪反照率在高海拔区和冰川区增大比较显著(0.001 2/a)。与积雪面积和积雪季降雪量变化呈显著正相关;而源区夏季各月积雪反照率有明显降低趋势,与夏季温度的变暖趋势呈正反馈关系。  相似文献   

3.
天山积雪初步研究   总被引:13,自引:3,他引:13  
本文依据气象、野外调查和部分文献资料写成,着重分析了天山最大积雪深度、积雪初、终期及其积雪期特征。研究表明,天山积雪存在明显地域差异:中天山和南天山南坡部分山区最大雪深超过100cm,甚至达到200或300cm,而东天山南坡盆地雪深仅15cm。中山带及其以下地区最大雪深出现在冬季始末,而高山带在暖季。林区雪深随海拔而增加,并在林线附近达到最大,然后急剧减小。天山中段北坡海拔440—3500m之间,每上升100m,积雪期延长80天;南坡小于此值。  相似文献   

4.
隆冬异常升温北疆积雪提前融化   总被引:1,自引:0,他引:1  
2007年1月下旬中期开始,新疆北部地区出现了一次异常的升温天气过程,1月27日~2月4日的9d中,北疆各地的43个气象站中,有14站的日最高气温突破同期历史极值,其中伊犁河谷的新源的日最高气温上升到13.3℃,突破同期历史极值3.0℃;有19站的9天平均气温突破同期历史极值,占总站数的44.2%。1月下旬本是新疆北部的积雪稳定积累期,但是2007年元月下旬异常升温天气的出现和持续,使北疆地区积雪提前融化,到2月初,北疆的博尔塔拉蒙古自治州、伊犁地区、乌鲁木齐市等地的积雪面积明显减少,乌鲁木齐地区的积雪覆盖度仅为25.84%,比15年同期平均值偏少5成。冬季是新疆增温幅度最大的季节,在气候变暖背景下,冬季极端天气气候事件的出现也越来越频繁,隆冬季节的异常升温造成气温偏高,使北疆地区的积雪提前融化。这些变化将对新疆水资源的时空分布产生重大影响,对当地生态环境将带来难以估测的影响。在全球气候变化背景下,更加需要加强对新疆等干旱地区极端天气气候事件的监测分析及其对生态环境、经济社会发展的影响等诸多领域的研究,使社会各界以积极的态度来科学客观地认识气候变化带来的后果,及早提出应对区域气候变化的对策,采取切实可行的措施减缓气候变化带来的负面影响。  相似文献   

5.
新疆夜雨和昼雨的空间分布和长期变化   总被引:4,自引:2,他引:2  
崔彩霞  李杨  杨青 《中国沙漠》2008,28(5):903-907
用新疆98个气象站1960—2001年的昼夜降水量资料,分析了冷季(10月到翌年3月)和暖季(4—9月)昼夜降水频率和强度的差异和空间分布。结果表明:新疆暖季分别有两个频率≥55%的夜雨区和昼雨区。夜雨区分别位于西天山北坡和西昆仑山北坡;昼雨区位于阿尔泰山南坡和天山南坡等地。而到了冷季,暖季夜雨和昼雨的条状带相间的格局消失。除了海拔较高的西天山山区和海拔较低的塔里木盆地西部、吐善托盆地分别有小范围的夜雨区和昼雨区外,新疆其他地区的夜雨和昼雨的比例均在45%~55%之间,基本趋于平衡,夜雨和昼雨之差较暖季已明显减弱。对于暖季的大降水事件(一个夜间或白天降水>15 mm),伊犁河谷、中东天山及天山北坡,昆仑山北坡60%以上发生在夜间,阿尔泰山和塔尔巴哈台南坡、天山东南部盆地地区60%以上发生在白天。另外,还对暖季夜雨区夏季降水的长期变化进行了分析,结果显示,这两个以夜间降水为主的区域,其夜间降水的增加率略大于白天,并不是很明显大于白天降水的增加率。  相似文献   

6.
利用Terra卫星和Aqua卫星提供的2002年9月1日~2017年5月31日每日积雪覆盖产品MOD10C1和MYD10C1,提取蒙古高原积雪日数、积雪面积、积雪初日及积雪终日信息,得到蒙古高原积雪特征分布和变化趋势,同时,结合蒙古高原108个地面气象观测站的气温资料,分析研究区积雪变化特征和气温的关系。结果表明:(1)蒙古高原平均积雪日数在60~90 d之间,积雪初日主要分布在315~335 d之间,积雪终日大多集中在31~61 d之间,蒙古高原东部地区积雪初日有明显的提前趋势,西南地区积雪终日有明显的提前趋势。(2)积雪面积在积雪季内呈 “单峰型”,1月份为积雪面积最大月,年均积雪面积呈微弱的下降趋势。(3)最大积雪覆盖面积与温度具有明显的相关性,稳定积雪覆盖区的临界温度大概介于-11~-8 ℃之间。(4)温度是影响积雪特征变化的重要因素。  相似文献   

7.
MODIS雪深反演数学模型验证及分析   总被引:4,自引:1,他引:3  
在MODIS卫星遥感积雪监测的基础上,利用雪深反演数学模型、积雪指数NDSI和多光谱阈值等相结合的方法,对2004年以来新疆北疆地区的积雪分布状况进行了反演和计算,并利用2004年11月~2005年3月冬季北疆地区气象台站雪深数据和2004年12月~2006年1月加密野外实测雪深数据,对反演雪深数据进行了验证及分析,北疆各地除塔城地区反演精度为83.2%以外,其它地区反演精度达85.2%以上,平均反演精度达86.2%;野外实测数据验证反演精度达92%以上。  相似文献   

8.
气候变化背景下天山区域地表反照率特征分析   总被引:1,自引:0,他引:1  
气候变化背景下地表反照率的变化能够深刻影响整个陆-气系统的能量收支平衡,引起区域以至全球的生态环境发生变化。基于2001-2013年16 d合成的MODIS/MCD43A3等数据,结合均值分析、斜率分析以及相关分析等研究方法,对气候变化背景下天山区域地表反照率时空变化特征进行分析。在空间分布上,近13 a来天山区域年均地表反照率达到0.217,伊犁河谷地区及天山北麓地表反照率较高,山区地表反照率较低,空间上呈交叉分布的特点;在时间分布上,研究区年均地表反照率缓慢增加,季节性差异明显,地表反照率秋季最高、春季最低,冬、春两季地表反照率波动强于其他季节;近13 a来地表反照率与气候因子之间存在较为明显的响应关系。年均地表反照率随着4、12月份气温的增加不断减小,随着7、8月份降水的减少而明显增加,与同期气温、滞后1月降水之间存在显著相关。  相似文献   

9.
基于积雪面积逐日无云遥感产品和气象观测资料,分析了2001—2020年三江源地区积雪日数的水平、垂直分布特征及变化规律,并对积雪日数与气温和降水量进行了相关分析。结果表明:(1) 2001—2020年三江源地区积雪日数呈西高东低,高海拔山脉大于盆地平原的分布格局,高海拔山脉地区积雪日数均值普遍大于200 d,85.48%的区域积雪日数呈波动增加趋势,显著增加区域占比为16.59%,平均增加速率为0.98 d·a-1。(2) 积雪日数及其变化趋势存在明显的海拔和坡向分异,积雪日数随海拔上升呈指数型增加,较低海拔(<3.0 km)区域积雪日数少、呈减少趋势且减少速率随海拔高度上升而加快;高海拔区域积雪日数较多且呈增多趋势,但海拔大于4.4 km后积雪日数增多速率随海拔上升而减缓,且5.5~6.0 km地区积雪日数呈减少趋势,高海拔地区积雪日数存在一定程度的“海拔依赖性”。积雪日数北坡大于南坡、西坡大于东坡,西北坡积雪日数最多,为78.30 d,不同坡向的积雪日数均呈增多趋势,其中西坡的增多速率最快,达1.04 d·a-1。(3) 近20 a三江源地区明显的“暖湿化”气候特征是影响积雪日数变化的主要原因,其中降水量是主要驱动因素,积雪日数增多与降水量增加密切相关,且高海拔地区积雪日数对降水量的依赖性更强。  相似文献   

10.
基于MODIS数据中国天山积雪面积时空变化特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
基于2011-2015年MOD10A2积雪产品和气象数据,通过几何校正、去云预处理,应用归一化差分积雪指数算法等获取中国境内天山山区积雪覆盖面积数据,分析了积雪面积的时空变化特征及与气温降水的关系。结果表明:(1)年内积雪面积呈单峰变化,9月开始积累,次年1月达峰值,3月气温回暖消融加速,至7月最小。春秋季波动较大但没有明显的增减趋势,夏季积雪面积最小,冬季最大且呈减小趋势。(2)2001-2015年积雪覆盖面积整体上呈减少趋势,积雪覆盖率最大值的波动比最小值的波动更加剧烈。(3)积雪覆盖率随着海拔升高而增大,海拔<1 500 m区域积雪覆盖率低于10%,海拔>4 500 m以上区域平均可达70%,为常年稳定积雪区。积雪覆盖率在西北坡最高,南坡最低。(4)年均气温升高是积雪覆盖面积减小的主因,年积雪覆盖面积变化与年降水量变化保持一致的下降趋势。  相似文献   

11.
以木孜塔格峰地区为研究区,从不同坡度、坡向的样方内测量雪深和采集光谱,通过分析归一化差分雪盖指数(Normalized Difference Snow Index,NDSI)、反照率、HJ-1卫星的红外波段反射率与雪深的相关关系,建立了适用于HJ-1星的积雪深度反演模型,估算出2012年4月14日-25日木孜塔格峰地区的雪深时空变化,并结合实测数据进行验证。结果表明:反照率反演模型的复相关系数为0.992;通过NDSI阈值区分混合雪盖像元和积雪像元,雪深估测精度可达92.78%。冰川区的反照率、NDSI与海拔的相关系数分别为0.626和0.733,且高海拔带反照率值明显高于低海拔带的反照率值。受西风带降雪的影响,非冰川区的北坡雪深值较大;西坡、南坡次之;东坡最小,且雪深最大值出现在坡度约等于10°处。雪深估测的相对误差随着样地的坡度增大而增加,坡度为15°时相对误差较大。  相似文献   

12.
青藏高原东南部海拔高,地形复杂,云量大,准确掌握该地区的积雪分布特征对于积雪灾害防治非常重要。论文以2013—2019年冬季积雪积累期云量符合要求的35景高分一号(GF-1)影像为基础,将全色影像和多光谱影像融合为2 m分辨率影像,通过目视解译获取了研究区积雪的空间分布特征,结合改进后的30 m分辨率SRTM DEM,探讨了地形对积雪分布的影响。结果表明:积雪像元在研究区范围内占比为33.1%。积雪的垂直分布特征明显:积雪在高程带4000~5000 m(高海拔)处分布较集中,积雪面积占比为18.1%;在高程带0~2000 m、2000~3000 m和6000~7000 m处积雪面积占比均不到0.1%。积雪在北坡、东北坡的分布比例较高,均为15%以上;在南坡、西坡、西南坡、东南坡分布比例较低,均为10%左右。将基于GF-1影像获取的积雪分布分别与同日获取的根据MODIS V6积雪产品计算的积雪比例(MODIS FSC)和积雪分布的对比表明,64.4%的MODIS FSC像元绝对误差不超过10%,MODIS积雪分布产品对含雪像元的漏分率和误分率平均为33.8%和32.7%,说明MODIS积雪产品在研究区的精度还具有较高的不确定性,其对低覆盖积雪反演的精度较差。这表明利用MODIS积雪产品研究青藏高原东南部积雪的时空变化特征时还需要对其积雪反演算法进行改进,同时亟需加强地面观测和基于多源遥感数据的积雪研究。研究结果可为青藏高原东南部雪冰灾害防治提供支撑。  相似文献   

13.
利用1971-2015年锡林郭勒地区15个气象观测站近45 a的逐日积雪日数资料,采用滑动T检验、Mann-Kendall检验、小波分析和EOF方法对研究区的积雪日数时空变化特征进行分析。结果表明:研究期内积雪日数在1996年发生了一次由多到少的突变,且日数变化存在7 a的主周期和11 a、22 a的副周期。积雪月际变化呈单峰型的分布特征,多雪期主要集中在12~2月,少雪期分布在10月份和4月份;研究区空间分布差异性显著,总体呈东多西少、南多北少的分布格局,区内大部地区属于稳定积雪区。对积雪日数及其影响因子进行聚类分析,将研究区划分为4种类型,分别为降雪量偏少-积雪日数偏高区、降雪量-积雪日数一致偏高区、降雪量-积雪日数中值区、降雪量-积雪日数一致偏少区。该区有3种异常分布型:第一模态为全区一致偏多(少)型;第二模态为北多(少)南少(多)型;第三模态为中西部多(少),东南部少(多)型。  相似文献   

14.
西大滩地区积雪对地表反照率及浅层地温的影响   总被引:2,自引:0,他引:2  
利用西大滩2007年气象和辐射观测数据研究了积雪对地表反照率和浅层地温的影响.结果显示:相对积雪日数和气温与反照率相关性显著,反照率随相对积雪日数的增大而增大,随气温的增大而减小.冷暖季降雪对地温的变化具有阻隔作用,冷季地温和气温都在-10℃左右时,<10 cm厚的积雪对地温变化的影响不明显,地温和气温的变化趋势一致,地温的变幅不是很大;在暖季积雪厚度>10 cm而且积雪持续时间达10 d时,与气温相比积雪对地温变化的隔热绝缘作用较明显;雪深与积雪持续的时间均与地温呈反向变化.  相似文献   

15.
新疆20世纪80年代末以来耕地与建设用地扩张分析   总被引:2,自引:1,他引:1  
基于20世纪80年代末、2000年、2005年、2010年、2015年5期中国土地利用数据集(NLUD)中的新疆部分,以耕地与建设用地(城乡、工矿、居民用地)为对象,从土地利用动态数据中提取其扩张图斑,分析了近30 a来新疆耕地与建设用地扩张的时空特征。结果表明:(1)南北疆耕地及建设用地扩张具有明显的时空差异。持续增长、南快北缓、重心南移是新疆耕地扩张呈现的总体特征;提速增长、南缓北快、城市扩张为主是建设用地扩张的基本特征。南北疆耕地面积差距逐渐缩小,建设用地面积差异加大。(2)对比近30 a来不同绿洲区内耕地与建设用地的扩张数量及趋势,可将耕地的扩张模式归纳为双峰型、减速型及阶段增长型,将建设用地的扩张模式归纳为指数增长型、双峰型、缓降型及缓降陡增型。(3)各绿洲区耕地及建设用的扩张特征十分显著。北疆耕地除阿勒泰绿洲区依然保持加速扩张外,其余绿洲区耕地扩张规模均出现下降,而北疆各绿洲区建设用地均呈持续加速扩张趋势,其中天山北坡城市扩张尤为突出;南疆各绿洲区耕地扩张均呈加速态势,建设用地扩张规模相对较小。  相似文献   

16.
王继燕  罗格平  鲁蕾 《地理研究》2010,29(10):1899-1908
下垫面状况是影响地表反照率分布的主要因素之一。利用遥感方法获取地表反照率时空特征是研究地表下垫面状况的有效手段。天山北坡具有典型的山地-绿洲-荒漠景观和山盆地貌格局,这一独特且复杂多样的地表下垫面特征形成了特有的垂直分布的地表反照率。通过对三工河流域TM影像进行地形校正,基于6S(Second Simulation of Satellite Signal in the Solar Spectrum)模型分析地表反照率的时空分布。结果表明:基于中空间分辨率遥感数据的地表反照率反演适合于地表起伏明显的天山北坡地表反照率的分析。由于受到地表覆被类型及地表干湿程度的影响,三工河流域地表反照率呈明显的垂直地带性分布。中山森林带和低山干草原带受地形起伏和阴阳坡作用,其地表反照率表现出有规律的上下波动。绿洲区随着地表覆被类型、作物结构和作物物候的变化,地表反照率波动较大。  相似文献   

17.
20世纪以来,随着全球气候变暖加剧,冰川和积雪普遍退缩,严重影响到人类的生存和社会经济的可持续发展,这一问题在我国西北干旱区的博格达峰地区及其周边地区尤为突出。以博格达峰地区为例,利用1990—2016年Landsat 5与Landsat 8遥感影像,对比分析归一化积雪指数(NDSI)、归一化冰雪指数(NDSII)、归一化主成分雪指数(NDPCSI)和缨帽转换湿度指数(WET)在博格达峰地区监测冰川和积雪的能力,同时结合研究区周边气温、降水数据和研究区地形数据,探讨博格达峰地区冰川和积雪面积变化与区域地形、气候间的响应关系。结果表明:(1) WET相对于NDSIINDSINDPCSI精度值更高,可以替代NDSINDSII监测博格达峰地区冰川和积雪面积。(2) 博格达峰地区冰川和积雪面积呈持续退缩的趋势。1990—2016年,冰川和积雪面积减少率约20.07%,且年退缩率不断增加。(3) 高程、坡度和坡向对冰川和积雪面积变化的影响较显著,山地阴影对其影响较弱,气温的升高是冰雪面积减少的主要因素。  相似文献   

18.
新疆天山北坡经济带城乡建设用地动态变化的时空特征   总被引:9,自引:2,他引:7  
土地利用变化具有明显的时空特性,是当前国际上开展土地利用/土地覆盖研究的重要内容。通过利用20世纪80年代末和90年代末两个时段的Landsat TM卫星影像,运用GIS空间分析和EXCEL统计分析方法,分析了新疆天山北坡经济带城乡建设用地变化的时空特征及其主要驱动力。结果表明:(1)在这10年的时间里,区域城乡建设用地增长较快,其中特大城市(乌鲁木齐市)和中等城市用地增长迅速。(2)区域城乡建设用地扩张以占用草地和耕地为主。同时,城乡建设用地类型及其结构变化在17市县存在明显的差异。(3)天山北坡经济带城乡建设用地变化是自然和社会经济两大因素共同作用的结果,人口增长、国民经济的增长、工业的发展和政府政策是区域城乡建设用地变化的主要驱动因素。  相似文献   

19.
新疆北部是我国降雪高频区之一,随着全球变暖降雪量呈显著增加趋势,对新疆气候产生重要影响,由于观测资料限制对该区域小时降雪研究还未开展,影响降雪精细化预报和服务能力提升。因此,利用新疆天山山区及其以北(以下称“新疆北部”)2012年11月—2021年2月50个国家气象站小时降雪观测资料,分析了冷季(11月—翌年2月)小时降雪特征,并按日降雪量从高到低挑选30个大暴雪过程分析其小时降雪特征、影响系统及典型环流配置。结果表明:(1) 阿勒泰北部、塔城盆地、伊犁河谷为降雪小时数(SHN)高频区,可达200 h·a-1以上;天山山区SHN高频区为海拔1800~2000 m的中山带,达127.3 h·a-1,2000 m以上降雪很少。(2) 北疆和天山山区小时降雪量(R)≤1.0 mm·h-1量级SHN占比分别为91.7%和91.9%,对降雪量贡献分别为70.7%和68.9%,R>1.0 mm·h-1为小时极端降雪事件,对北疆和天山山区降雪量贡献分别为29.3%和31.1%。(3) 极端暴雪过程平均SHN为25.5 h,平均降雪量为30.7 mm,雪强约为1.2 mm·h-1,大暴雪过程由长时间降雪导致,降雪持续时间是开展大暴雪研究和进行预报服务的关键点,造成大暴雪过程的影响系统主要有中亚长波槽、中亚低涡、乌拉尔山长波槽和西西伯利亚低涡(槽),占比分别为30.0%、6.7%、13.3%和50.0%,中纬度长波槽(涡)和北方西西伯利亚低涡(槽)系统各为50.0%。  相似文献   

20.
西藏高原近40年积雪日数变化特征分析   总被引:7,自引:0,他引:7  
利用近40 年(1971-2010 年) 西藏高原积雪日数资料, 分析了西藏高原积雪的时空分布特征。分析表明:藏东北部、南部边缘地区积雪较多, 年积雪日数在60 d 以上。近40 年来, 西部和东南部积雪日数呈显著减少的趋势, 除东南部各站、聂拉木和昌都积雪日数减少明显, 聂拉木减幅最大, 达到-9.2 d/10a, 其它各站地区积雪的变化趋势并不显著。西藏各区域积雪日数出现了准2 年、准4 年、准8 年、准14 年和准17~18 年的年代际周期, 南部边缘地区、东北部和西部地区积雪日数以10 年以下的周期为主。各区域积雪日数与冬季平均气温有明显的负相关, 但降水与积雪的相关在那曲中西部地区、沿江一线、东北部和南部边缘地区表现为明显的正相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号