首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
 The variability of near surface temperature on global and regional spatial scales and interannual time scales from a 1000 year control integration of the Hadley Centre coupled model (HADCM2-CTL) are compared with the observational record of surface temperature. The model succeeds in reproducing the observed patterns of natural variability, with high variability over the northern continents and low variability over much of the tropics. The model global mean variability has similar strength to observed global mean variability on time scales less than 20 years. The warming seen in the historical record is outside the range of natural variability as simulated in HADCM2-CTL. The model has El-Ni?o/Southern Oscillation (ENSO)-like behaviour with a central Pacific, peak to peak, strength of approximately 3 K. Changes in near surface temperature in the central Pacific are strongly correlated with changes in near surface temperature over most of the tropics, large regions of the extra-tropics and changes in tropical ocean upper 250 m heat content. Tropospheric temperature changes and tropical surface pressure changes are also strongly correlated with changes in the central Pacific surface temperature. Oceanic regions show significant departures from an AR1 or first order Markov behaviour in the Northwest Atlantic, Northwest Pacific and Arctic oceans. The Northwest Atlantic region has large amounts of variability over periods greater than 50 years. This variability is associated with a jump in the strength of North Atlantic meridional stream function. The spectra of the Western European and Continental US land regions are not significantly different from an AR1 process. The flow through the Drake Passage has an interannual standard deviation of approximately 2.5 Sv with significant departures from an AR1 process at time scales greater than 40 years. Winter northern hemispheric 500 hPa geopotential height shows some evidence of multiple regimes but no year to year persistence of these regimes. Received: 31 January 1996/Accepted: 22 July 1996  相似文献   

2.
We analyse the differences in the properties of the El Niño Southern Oscillation (ENSO) in a set of 17 coupled integrations with the flux-adjusted, 19-level HadCM3 model with perturbed atmospheric parameters. Within this ensemble, the standard deviation of the NINO3.4 deseasonalised SSTs ranges from 0.6 to 1.3 K. The systematic changes in the properties of the ENSO with increasing amplitude confirm that ENSO in HadCM3 is prevalently a surface (or SST) mode. The tropical-Pacific SST variability in the ensemble of coupled integrations correlates positively with the SST variability in the corresponding ensemble of atmosphere models coupled with a static mixed-layer ocean (“slab” models) perturbed with the same changes in atmospheric parameters. Comparison with the respective coupled ENSO-neutral climatologies and with the slab-model climatologies indicates low-cloud cover to be an important controlling factor of the strength of the ENSO within the ensemble. Our analysis suggests that, in the HadCM3 model, increased SST variability localised in the south-east tropical Pacific, not originating from ENSO and associated with increased amounts of tropical stratocumulus cloud, causes increased ENSO variability via an atmospheric bridge mechanism. The relationship with cloud cover also results in a negative correlation between the ENSO activity and the model’s climate sensitivity to doubling CO2.  相似文献   

3.
Coupled variability of the greenhouse effect (GH) and latent heat flux (LHF) over the tropical – subtropical oceans is described, summarized and compared in observations and a coupled ocean-atmosphere general circulation model (CGCM). Coupled seasonal and interannual modes account for much of the total variability in both GH and LHF. In both observations and model, seasonal coupled variability is locally 180° out-of-phase throughout the tropics. Moisture is brought into convergent/convective regions from remote source areas located partly in the opposite, non-convective hemisphere. On interannual time scales, the tropical Pacific GH in the ENSO region of largest interannual variance is 180° out of phase with local LHF in observations but in phase in the model. A local source of moisture is thus present in the model on interannual time scales while in observations, moisture is mostly advected from remote source regions. The latent cooling and radiative heating of the surface as manifested in the interplay of LHF and GH is an important determinant of the current climate. Moreover, the hydrodynamic processes involved in the GH–LHF interplay determine in large part the climate response to external perturbations mainly through influencing the water vapor feedback but also through their intimate connection to the hydrological cycle. The diagnostic process proposed here can be performed on other CGCMs. Similarly, it should be repeated using a number of observational latent heat flux datasets to account for the variability in the different satellite retrievals. A realistic CGCM could be used to further study these coupled dynamics in natural and anthropogenically altered climate conditions.  相似文献   

4.
A hybrid coupled model(HCM) is constructed for El Nino–Southern Oscillation(ENSO)-related modeling studies over almost the entire Pacific basin. An ocean general circulation model is coupled to a statistical atmospheric model for interannual wind stress anomalies to represent their dominant coupling with sea surface temperatures. In addition, various relevant forcing and feedback processes exist in the region and can affect ENSO in a significant way; their effects are simply represented using historical data and are incorporated into the HCM, including stochastic forcing of atmospheric winds, and feedbacks associated with freshwater flux, ocean biology-induced heating(OBH), and tropical instability waves(TIWs). In addition to its computational efficiency, the advantages of making use of such an HCM enable these related forcing and feedback processes to be represented individually or collectively, allowing their modulating effects on ENSO to be examined in a clean and clear way. In this paper, examples are given to illustrate the ability of the HCM to depict the mean ocean state, the circulation pathways connecting the subtropics and tropics in the western Pacific, and interannual variability associated with ENSO. As satellite data are taken to parameterize processes that are not explicitly represented in the HCM, this work also demonstrates an innovative method of using remotely sensed data for climate modeling. Further model applications related with ENSO modulations by extratropical influences and by various forcings and feedbacks will be presented in Part II of this study.  相似文献   

5.
Interannual variations of spring wheat yields in Canadian agricultural regions are analyzed, together with the associated sea surface temperature (SST) anomalies in the northern hemisphere tropics and extratropics, from 1961 to 2015. The cubic trend is calculated and used to represent the trend related to advances in agricultural technology over this time period. The correlations between Canadian wheat yields at regional scales and the tropical El Niño–Southern Oscillation (ENSO) variability are not robust at any stage of the evolution of ENSO. Based on the power spectrum and cross-spectrum analysis, the most prominent yield variance is found in the Canadian Prairies, with a significant power peak of 4.5 years but does not co-vary significantly with interannual ENSO variability. ENSO weakly affects temperature and precipitation anomalies in the Canadian Prairie Region in summer—two important agroclimatic conditions for crop growth—and hence insignificantly impacts wheat yields. This indicates that there would be little benefit to including tropical ENSO indices in the operational wheat yield forecasting system. For Canadian wheat yield forecasting, attention should be paid to the preceding winter and spring SST anomalies in the northern extratropics. The SST anomalies associated with yields in the Canadian Prairie region and Central Region are generally stronger than those associated with yields in the Canadian Pacific Coast Region and eastern Maritime Region. In association with the Prairie Region and Central Region yields, SST shows pronounced anomalies in the mid-high latitudes of the North Pacific from winter to summer. The non-linearity of the SST anomalies associated with the Canadian yields is also clearly evident. Stronger (weaker) SST anomalies in the extratropical North Pacific correspond to low wheat yields in the Prairie (Central) Region, while weaker (stronger) SST anomalies correspond to high yields in the Prairie (Central) Region.  相似文献   

6.
This paper uses recent gridded climatological data and a coupled general circulation model (GCM) simulation in order to assess the relationships between the interannual variability of the Indian summer monsoon (ISM) and the El Niño-Southern Oscillation (ENSO). The focus is on the dynamics of the ISM-ENSO relationships and the ability of the state-of-the-art coupled GCM to reproduce the complex lead-lag relationships between the ISM and the ENSO. The coupled GCM is successful in reproducing the ISM circulation and rainfall climatology in the Indian areas even though the entire ISM circulation is weaker relative to that observed. In both observations and in the simulation, the ISM rainfall anomalies are significantly associated with fluctuations of the Hadley circulation and the 200 hPa zonal wind anomalies over the Indian Ocean. A quasi-biennial time scale is found to structure the ISM dynamical and rainfall indices in both cases. Moreover, ISM indices have a similar interannual variability in the simulation and observations. The coupled model is less successful in simulating the annual cycle in the tropical Pacific. A major model bias is the eastward displacement of the western North Pacific inter-tropical convergence zone (ITCZ), near the dateline, during northern summer. This introduces a strong semiannual component in Pacific Walker circulation indices and central equatorial Pacific sea surface temperatures. Another weakness of the coupled model is a less-than-adequate simulation of the Southern Oscillation due to an erroneous eastward extension of the Southern Pacific convergence zone (SPCZ) year round. Despite these problems, the coupled model captures some aspects of the interannual variability in the tropical Pacific. ENSO events are phase-locked with the annual cycle as observed, but are of reduced amplitude relative to the observations. Wavelet analysis of the model Niño34 time series shows enhanced power in the 2–4 year band, as compared to the 2–8 year range for observations during the 1950–2000 period. The ISM circulation is weakened during ENSO years in both the simulation and the observations. However, the model fails to reproduce the lead-lag relationship between the ISM and Niño34 sea surface temperatures (SSTs). Furthermore, lag correlations show that the delayed response of the wind stress over the central Pacific to ISM variability is insignificant in the simulation. These features are mainly due to the unrealistic interannual variability simulated by the model in the western North Pacific. The amplitude and even the sign of the simulated surface and upper level wind anomalies in these areas are not consistent with observed patterns during weak/strong ISM years. The ISM and western North Pacific ITCZ fluctuate independently in the observations, while they are negatively and significantly correlated in the simulation. This isolates the Pacific Walker circulation from the ISM forcing. These systematic errors may also contribute to the reduced amplitude of ENSO variability in the coupled simulation. Most of the unrealistic features in simulating the Indo-Pacific interannual variability may be traced back to systematic errors in the base state of the coupled model.  相似文献   

7.
This study investigates how accurately the interannual variability over the Indian Ocean basin and the relationship between the Indian summer monsoon and the El Niño Southern Oscillation (ENSO) can be simulated by different modelling strategies. With a hierarchy of models, from an atmospherical general circulation model (AGCM) forced by observed SST, to a coupled model with the ocean component limited to the tropical Pacific and Indian Oceans, the role of heat fluxes and of interactive coupling is analyzed. Whenever sea surface temperature anomalies in the Indian basin are created by the coupled model, the inverse relationship between the ENSO index and the Indian summer monsoon rainfall is recovered, and it is preserved if the atmospherical model is forced by the SSTs created by the coupled model. If the ocean model domain is limited to the Indian Ocean, changes in the Walker circulation over the Pacific during El-Niño years induce a decrease of rainfall over the Indian subcontinent. However, the observed correlation between ENSO and the Indian Ocean zonal mode (IOZM) is not properly modelled and the two indices are not significantly correlated, independently on season. Whenever the ocean domain extends to the Pacific, and ENSO can impact both the atmospheric circulation and the ocean subsurface in the equatorial Eastern Indian Ocean, modelled precipitation patterns associated both to ENSO and to the IOZM closely resemble the observations.  相似文献   

8.
Heat content anomalies are analyzed to understand subsurface variability on both aparticular focus on the evolving basinwide patterns and oceanic connections between the extratropics and tropics. Various analyses indicate two distinct modes, one interannual and the other decadal, that involve the tropics and the North Pacific subtropical gyre, respectively. Interannual variability is associated with El Niño in the tropics, with a prominent “see-saw” pattern alternately on and off the equator, and in the east and west, respectively. The interannual cycle features a coherent propagation of subsurface signals around the tropical Pacific, eastward along the equator but westward off the equator at 10–15?°N. Decadal signals are dominant in the subtropics and midlatitudes but also have a tropical component that appears to be independent of interannual variations. An oceanic connection can be seen between subsurface anomalies in the midlatitudes, in the subtropics and tropics on decadal time scales. Subsurface thermal anomalies associated with midlatitude decadal variability can propagate through the subtropics into the tropics, which may modulate the intensity of interannual variability in the tropics. For example, in the middle and late 1970s, a significant warm temperature anomaly appeared to penetrate into the western and central tropics at depth, warming the tropical upper ocean and depressing the thermocline. During the development of El Niño, therefore, an extratropically preconditioned subsurface state (e.g., an enhanced positive heat content anomaly) in the western and central tropical Pacific would favor a warmer sea surface temperature anomaly in the eastern equatorial Pacific, potentially increasing the intensity of ocean-atmosphere coupling. These changes in the thermocline structure and possibly in the coupling strength can further alter the very character of tropical air-sea interactions. This may help to explain decadal variability of El Niño evolution in the tropical Pacific as observed in the 1980s. Our subsurface variability analysis presents observational evidence for the detailed space-time structure of decadal oceanic links between the extratropics and the tropics.  相似文献   

9.
Interannual variations of subsurface influence on SST in the Indian Ocean show strong seasonality. The subsurface influence on SST confines to the southern Indian Ocean (SIO) in boreal winter and spring; it is observed on both sides of the equator in boreal summer and fall. Interannual long Rossby waves are at the heart of this influence, and contribute significantly to the coupled climate variability in the tropical Indian Ocean (TIO). Principal forcing mechanism for the generation of these interannual waves in the Indian Ocean and the relative influence of two dominant interannual signals in the tropics, namely El Niño and Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD), are also discussed. Two distinct regions dominated by either of the above climate signals are identified. IOD dominates the forcing of the off-equatorial Rossby waves, north of 10°S, and the forcing comes mainly from the anomalous Ekman pumping associated with the IOD. However, after the demise of IOD activity by December, Rossby waves are dominantly forced by ENSO, particularly south of 10°S.It is found that the subsurface feedback in the northern flank of the southern Indian Ocean ridge region (north of 10°S) significantly influences the central east African rainfall in boreal fall. The Indian Ocean coupled process further holds considerable capability of predicting the east African rainfall by one season ahead. Decadal modulation of the subsurface influence is also noticed during the study period. The subsurface influence north of 10°S coherently varies with the IOD, while it varies coherently with the ENSO south of this latitude.  相似文献   

10.
The El Nin o-Southern Oscillation (ENSO) is modulated by many factors; most previous studies have emphasized the roles of wind stress and heat flux in the tropical Pacific. Freshwater flux (FWF) is another environmental forcing to the ocean; its effect and the related ocean salinity variability in the ENSO region have been of increased interest recently. Currently, accurate quantifications of the FWF roles in the climate remain challenging; the related observations and coupled ocean-atmosphere modeling involve large elements of uncertainty. In this study, we utilized satellite-based data to represent FWF-induced feedback in the tropical Pacific climate system; we then incorporated these data into a hybrid coupled ocean-atmosphere model (HCM) to quantify its effects on ENSO. A new mechanism was revealed by which interannual FWF forcing modulates ENSO in a significant way. As a direct forcing, FWF exerts a significant influence on the ocean through sea surface salinity (SSS) and buoyancy flux (Q B ) in the western-central tropical Pacific. The SSS perturbations directly induced by ENSO-related interannual FWF variability affect the stability and mixing in the upper ocean. At the same time, the ENSO-induced FWF has a compensating effect on heat flux, acting to reduce interannual Q B variability during ENSO cycles. These FWF-induced processes in the ocean tend to modulate the vertical mixing and entrainment in the upper ocean, enhancing cooling during La Nin a and enhancing warming during El Nin o, respectively. The interannual FWF forcing-induced positive feedback acts to enhance ENSO amplitude and lengthen its time scales in the tropical Pacific coupled climate system.  相似文献   

11.
The variability of the Indian Ocean on interannual and decadal timescales is investigated in observations, coupled model simulation and model experiment. The Indian Ocean Dipole (IOD) mode was specifically analyzed using a data-adaptive method. This study reveals one decadal mode and two interannual modes in the sea surface temperature (SST) of the IOD. The decadal mode in the IOD is associated with the Pacific Decadal Oscillation (PDO) of the North Pacific SST. The two interannual modes are related to the biennial and canonical components of El Niño-Southern Oscillation (ENSO), consistent with previous studies. This study hypothesizes that the relation between the Indian Ocean and the North Pacific on decadal scale may be through the northerly winds from the western North Pacific. The long simulation of Community Climate System Model version 4 also indicates the presence of IOD modes associated with the decadal PDO and canonical ENSO modes. However, the model fails to simulate the biennial ENSO mode in the Indian Ocean. The relation between the Indian Ocean and North Pacific Ocean is further supported by the regionally de-coupled model experiment.  相似文献   

12.
气候系统模式FGOALS_gl模拟的赤道太平洋年际变率   总被引:4,自引:1,他引:3  
满文敏  周天军  张丽霞 《大气科学》2010,34(6):1141-1154
本文分析了中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室 (LASG/IAP) 发展的气候系统模式FGOALS_gl对赤道太平洋年际变率的模拟能力。结果表明, FGOALS_gl可以较好地模拟出赤道太平洋SST异常年际变率的主要特征, 但模拟的ENSO事件振幅偏大, 且变率周期过于规则。耦合模式模拟的气候平均风应力在热带地区比ERA40再分析资料的风应力强度偏弱30%左右, 由此引起的海洋平均态的变化, 是造成模拟的ENSO振幅偏强的主要原因。FGOALS_gl模拟的ENSO峰值多出现在春季或夏季, 原因可归之于模式模拟的SST季节循环偏差。耦合模式可以合理再现ENSO演变过程, 但观测中SST异常的东传特征在模式中没有得到再现, 这与模拟的ENSO发展模态表现为单一的 “SST模态” 有关。模拟的ENSO位相转换机制与 “充电—放电” 概念模型相符合, 赤道太平洋热含量的变化是维持ENSO振荡的机制。在ENSO暖位相时期, 赤道中东太平洋与印度洋—西太平洋暖池区的海平面气压距平型表现为南方涛动型 (SO型), 200 hPa位势高度分布表现为太平洋—北美遥相关型 (PNA型)。  相似文献   

13.
The extratropical response to tropical remote forcing has been examined with so-called tropical ocean-global atmosphere experiments, which use prescribed sea surface temperature (SST) in the tropical Pacific and a slab mixed-layer ocean model elsewhere. In this study we have revisited this experimental design and found that the extratropical response is quite sensitive to the meridional extent of tropical prescribed SST domain. Even in the case of a prescribed annual cycle only (i.e., no ENSO), the differences in the prescribed SST regions lead to different atmospheric motions in the adjacent extratropics. When the tropical forcing includes ENSO, the sensitivity to the meridional domain is more prominent, especially during La Niña events. In La Niña, the prescribed SST is warmer than the simulated SST in the northern subtropics, and the warmer SST differences continue to 30°N. This broad SST differences accompany enhanced atmospheric meridional circulation that directly connects the tropics and extratropics within the Pacific basin. Moreover, the Rossby wave excitation also increases, so the effect of prescribed region difference is felt beyond the Pacific basin. On the other hand, the effect of ENSO sea surface temperature anomalie (i.e., ENSO experiment composite minus control experiment annual cycle, both of which have the same prescribed SST domain) is stronger in the broad tropical forcing experiment. However, the ENSO anomaly composite from own annual cycle is similar regardless of the meridional extent of forcing region, and commonly mimics the Northern Hemisphere El Niño composite of nature in the boreal winter season.  相似文献   

14.
The role of El Niño/Southern Oscillation (ENSO) and the mechanism through which ENSO influences the precipitation variability over northwest India and the adjoining (NWIA) region is well documented. In this study, the relative role of North Atlantic Oscillation (NAO)/Arctic Oscillation (AO) and ENSO in modulating the Asian jet stream in the Northern Hemisphere winter and their relative impact on the precipitation variability over the region have been estimated through analysis of observed data. It is seen that interannual variations of NWIA precipitation are largely influenced by ENSO. An empirical orthogonal function (EOF) analysis has been carried out to understand dominant modes of interannual variability of zonal wind at 200 hPa of the Northern Hemisphere. The EOF-1 pattern in the tropical region is similar to that of an ENSO pattern, and the principal component (PC) time series corresponds to the ENSO time series. The EOF-2 spatial pattern resembles that of NAO/AO with correlation of PC time series with AO and NAO being 0.74 and 0.62, respectively. The precipitation anomaly time series over the region of interest has marginally higher correlation with the PC-2 time series as compared to that of PC-1. Regression analysis of precipitation and circulation parameters indicates a larger contribution of the second mode to variability of winds and precipitation over the NWIA. Moisture transport from the Arabian Sea during the active phase of NAO/AO and the presence of a cyclonic anomaly lead to higher precipitation over the NWIA region.  相似文献   

15.
This paper explores the impact of intra-daily Sea Surface Temperature (SST) variability on the tropical large-scale climate variability and differentiates it from the response of the system to the forcing of the solar diurnal cycle. Our methodology is based on a set of numerical experiments based on a fully global coupled ocean–atmosphere general circulation in which we alter (1) the frequency at which the atmosphere sees the SST variations and (2) the amplitude of the SST diurnal cycle. Our results highlight the complexity of the scale interactions existing between the intra-daily and inter-annual variability of the tropical climate system. Neglecting the SST intra-daily variability results, in our CGCM, to a systematic decrease of 15% of El Ni?o—Southern Oscillation (ENSO) amplitude. Furthermore, ENSO frequency and skewness are also significantly modified and are in better agreement with observations when SST intra-daily variability is directly taken into account in the coupling interface of our CGCM. These significant modifications of the SST interannual variability are not associated with any remarkable changes in the mean state or the seasonal variability. They can therefore not be explained by a rectification of the mean state as usually advocated in recent studies focusing on the diurnal cycle and its impact. Furthermore, we demonstrate that SST high frequency coupling is systematically associated with a strengthening of the air-sea feedbacks involved in ENSO physics: SST/sea level pressure (or Bjerknes) feedback, zonal wind/heat content (or Wyrtki) feedback, but also negative surface heat flux feedbacks. In our model, nearly all these results (excepted for SST skewness) are independent of the amplitude of the SST diurnal cycle suggesting that the systematic deterioration of the air-sea coupling by a daily exchange of SST information is cascading toward the major mode of tropical variability, i.e. ENSO.  相似文献   

16.
The climate and variability of seasonal ensemble integrations, made with a recent version of ECMWF model (used for ERA-40 production) at relatively high horizontal resolution (TL159), have been studied for the 10-year period, 1980–1989. The model systematic error over the Atlantic-European region has been substantially improved when compared with the earlier model versions (e.g. from the PROVOST and AMIP-2 projects). However, it has worsened over the Pacific-North American region. This systematic error reduces the amplitude of planetary waves and has a negative impact on intraseasonal variability and predictability of the PNA mode. The signal-to-noise analysis yields results similar to earlier model versions: only during relatively strong ENSO events do some parts of the extratropics exhibit potential predictability. For precipitation, there is more disagreement between observed and model climatologies over sea than over land, but interannual variations over many parts of the tropical ocean are reasonably well represented. The south Asian monsoon in the model is severely weakened when compared to observations; this is seen in both poor climatology and interannual variability. Overall, comparing the ERA-40 model with earlier versions, there seems to be a balance between model improvements and deteriorations due to systematic errors. For the seasonal time-scale predictability, it is not clear that this model cycle constitutes an advantage over the earlier versions. Therefore, since it is not always possible to achieve distinct improvements in model climate and variability, a careful and detailed strategy ought to be considered when introducing a new model version for operational seasonal forecasting.  相似文献   

17.
Based on a novel design of coupled model simulations where sea surface temperature (SST) variability in the equatorial tropical Pacific was constrained to follow the observed El Niño—Southern Oscillation (ENSO) variability, while rest of the global oceans were free to evolve, the ENSO response in SSTs over the other ocean basins was analyzed. Conceptually the experimental setup was similar to discerning the contribution of ENSO variability to interannual variations in atmospheric anomalies. A unique feature of the analysis was that it was not constrained by a priori assumptions on the nature of the teleconnected response in SSTs. The analysis demonstrated that the time lag between ENSO SST and SSTs in other ocean basins was about 6 months. A signal-to-noise analysis indicated that between 25 and 50 % of monthly mean SST variance over certain ocean basins can be attributed to SST variability over the equatorial tropical Pacific. The experimental setup provides a basis for (a) attribution of SST variability in global oceans to ENSO variability, (b) a method for separating the ENSO influence in SST variations, and (c) understanding the contribution from other external factors responsible for variations in SSTs, for example, changes in atmospheric composition, volcanic aerosols, etc.  相似文献   

18.
Dust variability in the climate system has been studied for several decades, yet there remains an incomplete understanding of the dynamical mechanisms controlling interannual and decadal variations in dust transport. The sparseness of multi-year observational datasets has limited our understanding of the relationship between climate variations and atmospheric dust. We use available in situ and satellite observations of dust and a century-length fully coupled Community Earth System Model (CESM) simulation to show that the El Niño-Southern Oscillation (ENSO) exerts a control on North African dust transport during boreal summer. In CESM, this relationship is stronger over the dusty tropical North Atlantic than near Barbados, one of the few sites having a multi-decadal observed record. During strong La Niña summers in CESM, a statistically significant increase in lower tropospheric easterly wind is associated with an increase in North African dust transport over the Atlantic. Barbados dust and Pacific SST variability are only weakly correlated in both observations and CESM, suggesting that other processes are controlling the cross-basin variability of dust. We also use our CESM simulation to show that the relationship between downstream North African dust transport and ENSO fluctuates on multidecadal timescales and is associated with a phase shift in the North Atlantic Oscillation. Our findings indicate that existing observations of dust over the tropical North Atlantic are not extensive enough to completely describe the variability of dust and dust transport, and demonstrate the importance of global models to supplement and interpret observational records.  相似文献   

19.
A wide range of statistical tools is used to investigate the decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) and associated key variables in a climate model (CHIME, Coupled Hadley-Isopycnic Model Experiment), which features a novel ocean component. CHIME is as similar as possible to the 3rd Hadley Centre Coupled Model (HadCM3) with the important exception that its ocean component is based on a hybrid vertical coordinate. Power spectral analysis reveals enhanced AMOC variability for periods in the range 15–30 years. Strong AMOC conditions are associated with: (1) a Sea Surface Temperature (SST) anomaly pattern reminiscent of the Atlantic Multi-decadal Oscillation (AMO) response, but associated with variations in a northern tropical-subtropical gradient; (2) a Surface Air Temperature anomaly pattern closely linked to SST; (3) a positive North Atlantic Oscillation (NAO)-like pattern; (4) a northward shift of the Intertropical Convergence Zone. The primary mode of AMOC variability is associated with decadal changes in the Labrador Sea and the Greenland Iceland Norwegian (GIN) Seas, in both cases linked to the tropical activity about 15 years earlier. These decadal changes are controlled by the low-frequency NAO that may be associated with a rapid atmospheric teleconnection from the tropics to the extratropics. Poleward advection of salinity anomalies in the mixed layer also leads to AMOC changes that are linked to processes in the Labrador Sea. A secondary mode of AMOC variability is associated with interannual changes in the Labrador and GIN Seas, through the impact of the NAO on local surface density.  相似文献   

20.
A significant interdecadal climate shift of interannual variability and predictability of two types of the El Niño-Southern Oscillation (ENSO), namely the canonical or eastern Pacific (EP)-type and Modoki or central Pacific (CP) type, are investigated. Using the retrospective forecasts of six-state-of-the-art coupled models and their multi-model ensemble (MME) for December–January–February during the period of 1972–2005 along with corresponding observed and reanalyzed data, we examine the climate regime shift that occurred in the winter of 1988/1989 and how the shift affected interannual variability and predictability of two types of ENSO for the two periods of 1972–1988 (hereafter PRE) and 1989–2005 (hereafter POST). The result first shows substantial interdecadal changes of observed sea surface temperature (SST) in mean state and variability over the western and central Pacific attributable to the significant warming trend in the POST period. In the POST period, the SST variability increased (decreased) significantly over the western (eastern) Pacific. The MME realistically reproduces the observed interdecadal changes with 1- and 4-month forecast lead time. It is found that the CP-type ENSO was more prominent and predictable during the POST than the PRE period while there was no apparent difference in the variability and predictability of the EP-type ENSO between two periods. Note that the second empirical orthogonal function mode of the Pacific SST during the POST period represents the CP-type ENSO but that during the PRE period captures the ENSO transition phase. The MME better predicts the former than the latter. We also investigate distinctive regional impacts associated with the two types of ENSO during the two periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号