首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Abstract— Physical properties were determined in a first step on post‐impact tertiary limestones from the depth interval of 404–666 m of the Yaxcopoil‐1 (Yax‐1) scientific well, drilled in the Chicxulub impact crater (Mexico). Thermal conductivity, thermal diffusivity, density, and porosity were measured on 120 dry and water‐saturated rocks with a core sampling interval of 2–2.5 m. Nondestructive, non‐contact optical scanning technology was used for thermal property measurements including thermal anisotropy and inhomogeneity. Supplementary petrophysical properties (acoustic velocities, formation resisitivity factor, internal surface, and hydraulic permeability) were determined on a selected subgroup of representative samples to derive correlations with the densely measured parameters, establishing estimated depth logs to provide calibration values for the interpretation of geophysical data. Significant short‐ and long‐scale variations of porosity (1–37%) turned out to be the dominant factor influencing thermal, acoustic, and hydraulic properties of this post impact limestone formation. Correspondingly, large variations of thermal conductivity, thermal diffusivity, acoustic velocities, and hydraulic permeability were found. These variations of physical properties allow us to subdivide the formation into several zones. A combination of experimental data on thermal conductivity for dry and water‐saturated rocks and a theoretical model of effective thermal conductivity for heterogeneous media have been used to calculate thermal conductivity of mineral skeleton and pore aspect ratio for every core under study. The results on thermal parameters are the necessary basis for the determination of heat flow density, demonstrating the necessity of dense sampling in the case of inhomogeneous rock formations.  相似文献   

2.
Abstract— The 4 km wide and 500 m deep circular Kärdla impact structure in Hiiumaa Island, Estonia, of middle Ordovician age (~455 Ma), is buried under Upper Ordovician and Quaternary sediments. To constrain the geophysical models of the structure, petrophysical properties such as magnetic susceptibility, natural remanent magnetization (NRM), density, electrical conductivity, porosity and P-wave velocity were measured on samples of crystalline and sedimentary rocks collected from drill cores in different parts of the structure and the surrounding area. The results were used to interpret the central gravity anomaly of ?3 mGal and the magnetic anomaly of ?100 nT and also the surrounding weak positive anomalies revealed by high precision survey data. The unshocked granitic rocks outside the structure have a mean density of ~2630 kgm?3. Their shocked counterparts have densities of ~2400 kgm?3 at a depth of ~500 m, increasing up to 2550 kgm?3 at a depth of 850 m. Porosity and electrical conductivity decrease, but P-wave velocity increases as density increases away from the impact point. Thus, the gradual changes in the physical properties of the rocks as a function of radial distance from the crater centre are consistent with an impact origin for Kärdla. As in many other impact structures, the magnetization of the shocked rocks are also clearly lower than those of unshocked target rocks. A new geophysical and geological model of the Kärdla structure is presented based on geophysical field measurements and data on gradual changes in petrophysical parameters of the shocked target and overlying rocks, together with structural data from numerous boreholes. An important feature of this model is the lack of an observable geophysical signature of the central uplift observed in drillcores.  相似文献   

3.
Gases locked in hydrates or trapped beneath a gas hydrate cap within the earth are potential contributors to the greenhouse effect, and therefore both thermal conditions of and occurrences of the methane hydrates should be considered in the study of past climate change and of future global warming. The decomposition of methane hydrates triggered by an increase in near surface temperatures and the subsequent upward migration of released gases is occurring at present in the Beauffort-Mackenzie area of northern Canada. In addition to surface warming, the warming effect of the upward flow of the deep fluids, recharged in high elevation areas bordering the Alaska and Yukon coastal plain, may also be a factor in the release of methane directly from deeper buried hydrates in the fluid discharge zones. Any assessment of the total methane contribution to the atmosphere and the rate of the release requires a knowledge of the distribution, spatially and with depth, the temperature and composition of the gas hydrates. In this study the zones of methane hydrate stability are predicted by a thermal method and compared with the distribution of hydrates detected on well logs. An extensive hydrate prone layer extending to as deep as 1400±200 m over an area of 50,000 km2 is predicted by the thermal data and hydrate stability field. Comparison of the predicted maximum depths of methane hydrate stability with the maximum depths of hydrate occurrences in 52 wells shows general agreement in the areas of thick offshore and onshore permafrost. Differences in several areas of up to 400 m between the thermally predicted hydrate base and the deepest detected hydrates (detected hydrates are deeper than the predicted ones) can be explained by changes in gas composition. Otherwise low near-surface thermal gradients of approximately 15 mK/m to 20 mK/m (in comparison with observed deep thermal gradients of 25–40 mK/m) would be needed to explain the existence of deep hydrates in the area of the southern Mackenzie Delta trough and offshore north of 71° N latitude. Unfortunately there is no reliable industrial temperature observation from wells to support the latter. Such regional studies of the distribution of gas hydrates, including the stability of those deposits, form a crucial component of an assessment of the influence of gas hydrate formation and decomposition on the proportion of methane present in the earth's atmosphere. Current estimates suggest that between 10.E18 and 10.E21 tonnes of methane may be presently locked in gas hydrate deposits. To fully assess the total amount and the potential contribution to global warming, similar regional assessments are needed for each of the major areas of occurrence, especially in the circumpolar regions which are subject to the greatest increase in temperature conditions.  相似文献   

4.
Seasonal snow covers the tundra surface for up to nine months of each year on the Alaskan North Slope. Variations in the snow thickness could strongly influence the thermal regime of the underlying soil and permafrost, and the surface energy balance. The impacts of increases and decreases in the tundra snow thickness on the thermal regime of snow surface, active layer, and permafrost, and on the conductive heat flow to the atmosphere were investigated numerically, by using an improved surface energy balance approach based one-dimensional heat transfer model. The baseline inputs for the numerical model are mean daily meteorological data and surface albedos collected at Barrow, Alaska from 1995 through 1999. Based on a study for the long-term mean daily maximum and minimum snow thickness distributions at Barrow in the snow season of 1948 through 1997, a snow thickness factor was defined and five simulation cases were run for the snow season of 1997–1998 by changing the snow thickness factor. The modeled results indicate that changes in snow thickness have significant impacts on ground thermal regimes and conductive heat flow to the atmosphere. Decreasing the snow thickness by 50% led to the maximum ground temperature decrease of 1.48 °C at 0.29 m depth, and 0.72 °C at 3.0 m depth; the magnitude of the mean conductive heat flow to the atmosphere for December increase of 4.3 Wm− 2. Increasing the snow thickness by 50% resulted in the maximum ground temperature increase of 1.44 °C at 0.29 m depth, and 0.66 °C at 3.0 m depth; the magnitude of the mean conductive heat flow to the atmosphere for December decrease of 1.57 W m− 2. On an annual basis, variation in the snow thickness by 50%, the ground temperature variations of more than 0.25 °C occurred as deep as 8.0 m below the ground surface. The modeled results also show that changes in snow thickness have a relatively small influence on the snow surface temperature.  相似文献   

5.
Recent observations and geophysical studies at the Vredefort impact structure have indicated that the impact melt dikes in the central uplift of the structure have small depth extents. In this study, we performed magnetic and electrical resistivity tomography (ERT) surveys of the Lesutoskraal granophyre dike (LGD) and trenched to confirm its depth extent. The ERT survey showed that outcrops of the LGD are associated with shallow resistive zones with <3 m depth extent, but such zones do not occur where outcrops are absent. Visual observations in the trench confirmed that the dike has a small depth extent (~0.75 m) at this location. However, the magnetic survey revealed anomalies along the entire strike of the dike, even where no outcrops occur. We suggest that remagnetization of the host rock within a metamorphic contact aureole could explain the presence of magnetic anomalies in the absence of outcrops. Considering the results of the ERT survey, the observations made in the trench, and the surface distribution of outcrops of the LGD, we confirm that this dike has a small depth extent (<3 m) along its entire length and propose that outcrops represent the intersection of the dike terminus with the current erosional surface.  相似文献   

6.
Abstract— Within the frame of the International Continental Deep Drilling Program (ICDP) and as a part of the Chicxulub Scientific Drilling Project (CSDP), high resolution temperature measurements were performed in the borehole Yaxcopoil‐1 (Yax‐1). The temperature was logged to the depth of 858 m seven times between March 6–19, 2002, starting 10 days after the hole was shut in and mud circulation ceased. Successive logs revealed only small temperature variations in time and space, indicating a fast temperature recovery to almost undisturbed conditions prior to the first log. From these logs, a mean temperature gradient of ~37 mK/m was determined below the uppermost 250 m. Another temperature log was recorded on May 24, 2003 (15 months after the shut in) to a depth of 895 m. The obtained temperature profile is very similar to the 2002 profile, with an insignificantly higher mean gradient below 250 m that may indicate a long‐term return to the pre‐drilling temperature. The temperature in the uppermost part of the hole bears signs of considerable influence of a convective contribution to the vertical thermal heat transfer. The depth extent of the convection seems to have deepened from 150 m in March 2002 to 230 m in May 2003. Based on the observed temperature gradient and the rock types encountered in the borehole above 670 m, the conducted heat flow is expected to be in the range 65–80 mW/m2.  相似文献   

7.
We are using observations obtained with Mars Express to explore the structure and dynamics of the martian lower atmosphere. We consider a series of radio occultation experiments conducted in May-August 2004, when the season on Mars was midspring of the northern hemisphere. The measurements are widely distributed in latitude and longitude, but the local time remained within a narrow range, 17.0-17.2 h. Most of the atmospheric profiles retrieved from these data contain a distinct, well-mixed convective boundary layer (CBL). We have accurately determined the depth of the CBL and its spatial variations at fixed local time through analysis of these profiles. The CBL extends to a height of 3-10 km above the surface at the season and locations of these measurements. Its depth at fixed local time is clearly correlated with variations in surface elevation on planetary scales, with a weaker dependence on spatial variations in surface temperature. In general, the CBL is deep (8-10 km) where the surface elevation is high, as in Tharsis Montes and Syrtis Major, and shallow (4-6 km) where the surface elevation is low, as in Amazonis and Utopia. This variability results from the combined effects of conditions near the surface and in the atmosphere above the CBL. Convection arises from solar heating of the ground, and the impact of this heat source on thermal structure is largest where the surface pressure and atmospheric density are smallest, at high surface elevations. The vertical extent of the CBL is in turn constrained by the static stability of the overlying atmosphere. These results greatly reduce the long-standing uncertainty concerning the depth of the CBL.  相似文献   

8.
Continuous temperature logs to depths between 750 and 1400 m in the Transylvanian Basin, Romania, in many cases show temperature gradient variations with depth which cannot be explained by depth variations in thermal conductivity, topography and ground water flow. The only possible responsible agent seems to be past surface temperature variations. The temperature logs from nine boreholes have been interpreted individually and jointly by least squares inverse modelling with the surface temperature history and background heat flux as unknown parameters. All the temperature profiles are consistent with a temperature rise at the end of the last glaciation. The effects of borehole depth, of a wrong choice of thermal conductivity, and the level of uncorrelated random noise were examined using synthetic examples.  相似文献   

9.
Granophyre dykes in the central part of the Vredefort impact structure are believed to be the remnants of the impact melt sheet, which intruded downwards along the fractures in the crater floor. Little is known about their original penetration depth, dip, structural relationships with the host rocks, and their general geophysical characteristics. This information is critical to understand the emplacement history of the granophyre dykes, as it relates to the formation and modification of large impact structures. We conducted magnetic and resistivity surveys across the Daskop granophyre dyke (DGD), one of the impact melt dykes in the structure's core. The magnetic survey revealed that the DGD gives a strong magnetic response at positions where the dyke outcrop exceeds the surface topography, but a very weak response where the outcrop is nearly at the same elevation as the surrounding topography. The magnetic anomaly is thus predominantly due to the outcrop protruding above ground level, suggesting a limited volume of dyke material in the subsurface and a small penetration depth. The resistivity survey performed on two profiles, set perpendicularly across the DGD, indicated a shallow penetration depth (<3 m), consistent with the magnetic interpretation. Thus, our geophysical study demonstrates that the DGD is currently at the very bottom of its original emplacement. This may either be an erosional coincidence, or it may be controlled by a fundamental process of impact cratering. Further studies are warranted to determine if other granophyre dykes at Vredefort are similarly at their lowermost terminations.  相似文献   

10.
The depth variations of the fossil cosmic ray tracks and agglutinates have been examined in the (0.6–0.7)m deep Apollo 12 and 16 drive cores, in the 2.4 m Apollo 15 deep drill core and in a 0.6 m long section of the Apollo 17 deep drill core. These data indicate Moon-wide short duration episodes of impacts of meteorites of size 10 cm–1m on the lunar surface. Based on the longest continuous Apollo 15 deep drill core record, these impact episodes occurred about 150, 400 and 700 m.y. ago. The enhancements in the meteorite flux may be due to solar dynamical processes or they may be related to excursions of the solar system, once in each orbit, through a certain dusty region of the galaxy.Paper dedicated to Professor Hannes Alfvén on the occasion of his 70th birthday, 30 May 1978.  相似文献   

11.
Purpose of this article is to demonstrate the effect of background geophysical corrections on a follow-on gravity mission. We investigate the quality of two effects, tides and atmospheric pressure variations, which both act as a surface load on the lithosphere. In both cases direct gravitational attraction of the mass variations and the secondary potential caused by the deformation of the lithosphere are sensed by a gravity mission. In order to assess the current situation we have simulated GRACE range-rate errors which are caused by differences in present day tide and atmospheric pressure correction models. Both geophysical correction models are capable of generating range-rate errors up to 10 μm/s and affect the quality of the recovered temporal and static gravity fields. Unlike missions such as TOPEX/Poseidon where tides can be estimated with the altimeter, current gravity missions are only to some degree capable of resolving these (geo)physical limitations. One of the reasons is the use of high inclination low earth orbits without a repeating ground track strategy. The consequence is that we will face a contamination of the gravity solution, both in the static and the time variable part. In the conclusions of this paper we provide suggestions for improving this situation, in particular in view of follow-on gravity missions after GRACE and GOCE, which claim an improved capability of estimating temporal variations in the Earth’s gravity field.  相似文献   

12.
13.
Climatic temperature changes at the ground surface propagate downward to the subsurface creating transient disturbances to the temperature—depth (T(z)) profile. Due to the poor thermal diffusivity of rocks the disturbances are preserved long times in the bedrock, and in a conductive regime it is possible to reveal the ground surface temperature (GST) history from borehole temperature data with inversion techniques. Geothermal temperature measurements thus provide a source of palaeoclimatic information which so far has not been utilized extensively. Inversion of GST history is, however, not straightforward and any disturbing effects should be excluded before the data can be utilized in inversion. Groundwater flow is of special importance in this respect because it is a common phenomenon in bedrock and convection often produces temperature—depth profiles resembling those affected by palaeoclimatic GST changes. In interpreting temperature—depth (T(z)) logs it is therefore not always clear whether the recorded vertical gradient variations should be attributed to the effects of palaeoclimatic ground surface temperature (GST) changes or to groundwater circulation. Using several synthetic T(z) profiles and applying general least squares inversion techniques we simulate a situation of “misinterpreting” the curvature of the T(z) profile in terms of palaeoclimatic GST changes, although it is actually produced by convective heat transfer due to groundwater flow. For comparison the opposite case is also studied, namely, genuine palaeoclimatic effects are misinterpreted as being due to disturbances caused by groundwater flow. A homogeneous half-space model is used to model T(z) profiles disturbed conductively by GST changes during the time interval 10–10000 yr B.P. and a one-dimensional porous layer model is applied for convective heat transfer calculations. The results indicate that a given T(z) profile can be attributed to either of these effects with reasonable parameter values. In addition to the synthetic T(z) profiles, a case history from a 958 m deep drill hole at Lavia, southwestern Finland, is presented. Special care is needed in analyzing T(z) data. A knowledge of geothermal data, such as temperature, thermal conductivity and diffusivity is not necessarily adequate for determining which of the phenomena (or whether a combination of them) provides the most probable interpretation of a T(z) profile. Additional information on the hydrogeological properties of the drilled strata is essential.  相似文献   

14.
The impact threat of some near-Earth Asteroids (NEAs) drives our need to understand their mineral compositions. Quantitative mineral abundances based on reflectance spectroscopy are of great significance for studying the compositions of NEAs. In this study, we constrained the surface mineralogy of (99942) Apophis based on multiple diagnostic spectral parameters. The influence of non-mineral component factors (e.g., space weathering, phase angle, and surface temperature) on diagnostic spectral parameters was evaluated. We established the connection between Apophis and corresponding meteorite analog. Our results show that the abundances of olivine and pyroxene on the surface of Apophis are 53.4 ± 6 wt% and 35.6 ± 2 wt%, respectively. The 1 μm band width is basically unaffected by phase-angle changes and is less affected by temperature variations. Low temperature has more obvious effects on the 1.25/1 μm band depth ratio (BDR 1.25) based on the present data. When the phase angle ranges from 60° to 120°, the BDR 1.25 changes significantly with the increase or decrease of phase angle. In terms of spectral characteristics, the best meteorite analog of Apophis is LL chondrite, confirming earlier interpretations. Mineral analyses based on multiple diagnostic spectral parameters provide more consistent results. Knowledge of the surface compositions of Apophis can also inform optimum or possible defense strategies for it and other NEAs.  相似文献   

15.
Knowledge of the earliest evolution of Earth and Venus is extremely limited, but it is obvious from their dramatic contrasts today that at some point in their evolution conditions on the two planets diverged. In this paper we develop a geophysical systems box model that simulates the flux of carbon through the mantle, atmosphere, ocean, and seafloor, and the degassing of water from the mantle. Volatile fluxes, including loss to space, are functions of local volatile concentration, degassing efficiency, tectonic plate speed, and magnetic field intensity. Numerical results are presented that demonstrate the equilibration to a steady state carbon cycle, where carbon and water are distributed among mantle, atmosphere, ocean, and crustal reservoirs, similar to present-day Earth. These stable models reach steady state after several hundred million years by maintaining a negative feedback between atmospheric temperature, carbon dioxide weathering, and surface tectonics. At the orbit of Venus, an otherwise similar model evolves to a runaway greenhouse with all volatiles in the atmosphere. The influence of magnetic field intensity on atmospheric escape is demonstrated in Venus models where either a strong magnetic field helps the atmosphere to retain about 60 bars of water vapor after 4.5 Gyr, or the lack of a magnetic field allows for the loss of all atmospheric water to space in about 1 Gyr. The relative influences of plate speed and degassing rate on the weathering rate and greenhouse stability are demonstrated, and a stable to runaway regime diagram is presented. In conclusion, we propose that a stable climate-tectonic-carbon cycle is part of a larger coupled geophysical system where a moderate surface climate provides a stabilizing feedback for maintaining surface tectonics, the thermal cooling of the deep interior, magnetic field generation, and the shielding of the atmosphere over billion year time scales.  相似文献   

16.
The combination of fluid inclusion analyses and microfossil analyses is an excellent method to study the preservation process of deep sub-seafloor microorganisms. By studying fluid inclusions in the same mineral phases as microfossils, it is possible to reconstruct the conditions that prevailed when the microorganisms where entombed and to put them in a geological and environmental context.This study has been performed on carbonate and gypsum veins in drilled basalt samples from three seamounts belonging to the Emperor Seamounts in the Pacific Ocean: Detroit, Nintoku and Koko Seamounts. The study show that variations in salt composition (MgCl2, NaCl, KCl and CaCl2) and salinity (2.1 and 10.5 eq. wt% NaCl) of the hydrothermal fluids do not have an influence on the occurrence of microfossils throughout the samples. The microorganisms were trapped and entombed at minimum temperatures of ∼130 °C which implies that the microorganisms could have existed at temperatures of ∼130 °C for shorter periods of time. The microorganisms were entrapped at shallow-marine to submarine conditions and the entrapment of the microorganisms occurred relatively late compared to the volcanic activity.  相似文献   

17.
We discuss observations of the Moon at a wavelength of 49.3 cm made with the Owens Valley Radio Observatory Interferometer. These observations have been fit to models in order to estimate the lunar dielectric constant, the equatorial subsurface temperature, the latitude dependence of the subsurface temperature, and the subsurface temperature gradient. The models are most consistent with a dielectric constant of 2.52 ± 0.01 (formal errors), an equatorial subsurface temperature of 249?5+8K, and a change in the subsurface temperature with latitude (ψ), which is proportional to cos0.38ψ. Since the temperature of the Moon has been measured by the Apollo Lunar Heat Flow Experiment, we have been able to use our determination of the equatorial temperature to estimate the error in the flux density calibration scale at 49.3cm (608 MHz). This results in a correction factor of 1.03 ± 0.04, which must be applied to the flux density scale. This factor is much different from 1.21 ± 0.09 estimated by Muhleman et al. (1973) from the brightness temperature of Venus and apparently indicates that the observed decrease in the brightness temperature of Venus at long wavelengths is a real effect.The estimates of the temperature gradient, which are based on the measurement of limb darkening, are small and negative (temperature decreases with depth) and may be insignificantly different from zero since they are only as large as their formal errors. We estimate that a temperature gradient in excess of 0.6K/m at 10m depth would have been observed. Thus, a temperature gradient like that measured in situ at the Apollo 15 and 17 landing sites in the upper 2m of the regolith is not typical of the entire lunar frontside at the 10m depths where the 49.3 cm wavelength emission originates. This result may indicate that the mean lunar heat flow is lower than that measured at the Apollo landing sites, that the thermal conductivity is greater at 10m depth than it is at 2m depth, or that the radio opacity is greater at 10m depth than at 2m depth. The negative estimates of the temperature gradient indicate that the Moon appeared limb bright and might be explained by scattering of the emission from boulders or an interface with solid rock. The presence of solid rock at 10m depths will probably cause heat flows like those measured by Apollo to be unobservable by our interferometric method at long wavelengths, since it will cause both the thermal conductivity and radio opacity of the regolith to increase. Thus, our data may be most consistent with a change in the physical properties of the regolith to those of solid rock or a mixture of rock and soil at depths of 7 to 16m. Our results show that future radio measurements for heat flow determinations must utilize wavelengths considerably shorter than 50 cm (25 cm or less) to avoid the rock regions below the regolith.  相似文献   

18.
《Icarus》1986,67(1):1-18
A thermal/diffusive model of H2O kinetics and equilibrium was developed to investigate the long-term evolution and depth distribution of subsurface ice on Mars. The model quantitatively takes into account (1) obliquity variations; (2) eccentricity variations; (3) long-term changes in the solar luminosity; (4) variations in the argument of subsolar meridian (in planetocentric equatorial coordinates); (5) albedo changes at higher latitudes due to seasonal phase changes of CO2 and the varying extent of CO2 ice cover; (6) planetary internal heat flow; (7) temperature variations in the regolith as a function of depth, time, and latitude due to the above factors; (8) atmospheric pressure variations over a 104-year time scale; (9) the effects of factors (1) through (5) on seasonal polar cap temperatures; and (10) Knudsen and molecular diffusion of H2O through the regolith. The migration of H2O into or out of the regolith is determined by two boundary conditions, the H2O vapor pressure at the subsurface ice boundary and the annual average H2O concentration at the base of the atmosphere. These are controlled respectively by the annual average regolith temperature at the given depth and seasonal temperatures at the polar cap. Starting from an arbitrary initial uniform depth distribution of subsurface ice, H2O fluxes into or out of the regolith are calculated for 100 selected obliquity cycles, each representing a different epoch in Mars' history. The H2O fluxes are translated into ice thicknesses and extrapolated over time to give the subsurface ice depth as a function of latitude and time. The results show that obliquity variations influence annual average regolith temperatures in varying degrees, depending on latitude, with the greatest effect at the poles and almost no effect at 40° lat. Insolation changes at the pole, due to obliquity, argument of subsolar meridian, and eccentricity variations can produce enormous atmospheric H2O concentration variations of ≈6 orders of magnitude over an obliquity cycle. Superimposed on these cyclic variations is a slow, monotonic change due to the increasing solar luminosity. Albedo changes at the polar cap due to seasonal phase changes of CO2 and the varying thickness of the CO2 ice cover are critically important in determining annual average atmospheric H2O concentrations. Despite the strongly oscillating character of the boundary conditions, only small amounts of H2O are exchanged between the regolith and the atmosphere per obliquity cycle (<10 g/cm2). The net result of H2O migration is that the regolith below 30–40° lat is depleted of subsurface ice, while the regolith above 30–40° lat contains permanent ice due to the depth of penetration of the annual thermal wave. This result is supported by recent morphological studies. The rate of migration of H2O is strongly dependent on average pore/capillary radius for which we have assumed values of 1 and 10 μm. We estimate that the H2O ice removed from the regolith would produce a permanent ice cap with a volume between 2 × 106 and 6 × 106 km3. This generally agrees with estimates deduced from deflationary features at lower latitudes, depositional features at higher latitudes, and the mass of the polar caps.  相似文献   

19.
Abstract The Chicxulub crater in Mexico is a nearly pristine example of a large impact crater. Its slow burial has left the central impact basin intact, within which there is an apparently uneroded topographic peak ring. Its burial, however, means that we must rely on drill holes and geophysical data to interpret the crater form. Interpretations of crater structures using geophysical data are often guided by numerical modeling and observations at other large terrestrial craters. However, such endeavors are hindered by uncertainties in current numerical models and the lack of any obvious progressive change in structure with increasing crater size. For this reason, proposed structural models across Chicxulub remain divergent, particularly within the central crater region, where the deepest well is only ?1.6 km deep. The shape and precise location of the stratigraphic uplift are disputed. The spatial extent and distribution of the allogenic impact breccias and melt rocks remain unknown, as do the lithological nature of the peak ring and the mechanism for its formation. The objective of our research is to provide a well‐constrained 3D structural and lithological model across the central region of the Chicxulub crater that is consistent with combined geophysical data sets and drill core samples. With this in mind, we present initial physical property measurements made on 18 core samples from the Yaxcopoil‐1 (Yax‐1) drill hole between 400 and 1500 m deep and present a new density model that is in agreement with both the 3D velocity and gravity data. Future collation of petrophysical and geochemical data from Yax‐1 core, as well as further seismic surveys and drilling, will allow us to calibrate our geophysical models—assigning a suite of physical properties to each lithology. An accurate 3D model of Chicxulub is critical to our understanding of large craters and to the constraining of the environmental effects of this impact.  相似文献   

20.
The occurrence of permafrost in bedrock in northern Fennoscandia and its dependence on past and presently ongoing climatic variations was investigated with one- (1D) and two-dimensional (2D) numerical models by solving the transient heat conduction equation with latent heat effects included. The study area is characterized by discontinuous permafrost occurrences such as palsa mires and local mountain permafrost. The ground temperature changes during the Holocene were constructed using climatic proxy data. This variation was used as a forcing function at the ground surface in the calculations. Several versions of the present ground temperature were applied, resulting in different subsurface freezing–thawing conditions in the past depending on the assumed porosity and geothermal conditions.Our results suggest that in high altitude areas with a cold climate (present mean annual ground temperature between 0°C and −3°C), there may have been considerable variations in permafrost thickness (ranging from 0 to 150 m), as well as periods of no permafrost at all. The higher is the porosity of bedrock filled with ice, the stronger is the retarding effect of permafrost against climatic variations.Two-dimensional models including topographic effects with altitude-dependent ground temperatures and slope orientation and inclination dependent solar radiation were applied to a case of mountain permafrost in Ylläs, western Finnish Lapland, where bedrock permafrost is known to occur in boreholes to a depth of about 60 m. Modelling suggests complicated changes in permafrost thickness with time as well as contrasting situations on southern and northern slopes of the mountain.Extrapolating the climatic warming of the last 200 years to the end of the next century when the anticipated increase in the annual average air temperature is expected to be about 2 K indicates that the permafrost occurrences in bedrock in northern Fennoscandia would be thawing rapidly in low-porosity formations. However, already a porosity of 5% filled with ice would retard the thawing considerably.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号