首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Summary The investigated mantle section of the Leka ophiolite complex extends 1.4 km from and 1.1 km along the exposed Moho. The foliated peridotite contains numerous tabular and elongated dunite bodies, orthopyroxenite dikes, websterite veins, and dikes. The foliation of the peridotite is inclined by about 45° to the Moho. The dunite bodies and the dikes cut the foliation at low angles. The dunite bodies vary in width from 0.1 to 50 m and in length from 10 m to more than 1 km. Wider dunite bodies are commonly surrounded by 0 to 1.0 m wide margins of dunitized peridotite. Websterite veins may be present outside these margins. Apart from sporadic chromite layers the dunite is very homogenous. The dunite bodies are considered to have formed by deposition of olivine along the walls of dikes originally containing tholeiitic melt. The tholeiitic melt at first heated the peridotitic sidewalls so that they became partially molten and dunitized. The ascending magma then eroded the sidewalls and removed olivine as xenocrysts. When the ascent rate decreased, the temperature of the sidewalls decreased, so that olivine (Fo89–92) began to crystallize along the dike walls. There is also evidence for percolative melt migration along foliation planes, however, the largest proportion of the melts intruded along dikes. The websterite dikes are mostly 1 to 4 cm wide and 3 to 20 m long and dispersed with mutual distances of 20–50 m. The websterite veins and dikes probably originated from melts that were generated along the heated sidewalls of the dunite bodies. The 0.02 to 10 m wide orthopyroxenite dikes have exceptionally high MgO contents for their SiO2 contents; about 36 wt.% MgO and 50 wt.% SiO2. They may have formed as segregates from a SiO2-rich magma, although the parent magma does not appear to have been boninitic. The parent magma may instead have formed by second stage partial melting of depleted lherzolite.  相似文献   

2.
Processing of gravity and magnetic maps shows that the basement of the Upper Rhine Graben area is characterized by a series of NE–SW trending discontinuities and elongated structures, identified in outcrops in the Vosges, Black Forest, and the Odenwald Mountains. They form a 40 km wide, N30–40° striking, sinistral wrench-zone that, in the Visean, shifted the Variscan and pre-Variscan structures by at least 43 km to the NE. Wrenching was associated with emplacement of several generations of plutonic bodies emplaced in the time range 340–325 Ma. The sub-vertical, NE–SW trending discontinuities in the basement acted as zones of weakness, susceptible to reactivation by subsequent tectonism. The first reactivation, marked by mineralizations and palaeomagnetic overprinting along NE–SW faults of the Vosges Mountains, results from the Liassic NW–SE extension contemporaneous with the break-up of Pangea. The major reactivation occurred during the Late Eocene N–S compression and the Early-Middle Oligocene E–W extension. The NE–SW striking basement discontinuities were successively reactivated as sinistral strike-slip faults, and as oblique normal faults. Elongated depocenters appear to form in association with reactivated Variscan wrench faults. Some of the recent earthquakes are located on NE–SW striking Variscan fault zones, and show sinistral strike-slip focal mechanisms with the same direction, suggesting also present reactivation.  相似文献   

3.
《Journal of Structural Geology》2001,23(6-7):1151-1165
Problems associated with syncompressional pluton emplacement center on the need to make room for magma in environments where crustal shortening, not extension, occurs on a regional scale. New structural data from the Pioneer and Boulder batholiths of southwest Montana, USA, suggest emplacement at the top of frontal thrust ramps as composite tabular bodies at crustal depths between 1 and 10 km. Frontal thrust facilitated pluton emplacement was accommodated by: (1) a magma feeder zone created along the ramp interface; (2) providing ‘releasing steps’ at ramp tops that serve as initial points of emplacement and subsequent pluton growth; and (3) localizing antithetic back-thrusts that assist in pluton ascent. A model of magma emplacement is proposed that involves these elements. This model for syntectonic ramp-top emplacement of plutons helps explain how space is made for plutons within fold-and-thrust belts.  相似文献   

4.
The Aguablanca Ni–(Cu) sulfide deposit is hosted by a breccia pipe within a gabbro–diorite pluton. The deposit probably formed due to the disruption of a partially crystallized layered mafic complex at about 12–19 km depth and the subsequent emplacement of melts and breccias at shallow levels (<2 km). The ore-hosting breccias are interpreted as fragments of an ultramafic cumulate, which were transported to the near surface along with a molten sulfide melt. Phlogopite Ar–Ar ages are 341–332 Ma in the breccia pipe, and 338–334 Ma in the layered mafic complex, and are similar to recently reported U–Pb ages of the host Aguablanca Stock and other nearby calc-alkaline metaluminous intrusions (ca. 350–330 Ma). Ore deposition resulted from the combination of two critical factors, the emplacement of a layered mafic complex deep in the continental crust and the development of small dilational structures along transcrustal strike-slip faults that triggered the forceful intrusion of magmas to shallow levels. The emplacement of basaltic magmas in the lower middle crust was accompanied by major interaction with the host rocks, immiscibility of a sulfide melt, and the formation of a magma chamber with ultramafic cumulates and sulfide melt at the bottom and a vertically zoned mafic to intermediate magmas above. Dismembered bodies of mafic/ultramafic rocks thought to be parts of the complex crop out about 50 km southwest of the deposit in a tectonically uplifted block (Cortegana Igneous Complex, Aracena Massif). Reactivation of Variscan structures that merged at the depth of the mafic complex led to sequential extraction of melts, cumulates, and sulfide magma. Lithogeochemistry and Sr and Nd isotope data of the Aguablanca Stock reflect the mixing from two distinct reservoirs, i.e., an evolved siliciclastic middle-upper continental crust and a primitive tholeiitic melt. Crustal contamination in the deep magma chamber was so intense that orthopyroxene replaced olivine as the main mineral phase controlling the early fractional crystallization of the melt. Geochemical evidence includes enrichment in SiO2 and incompatible elements, and Sr and Nd isotope compositions (87Sr/86Sri 0.708–0.710; 143Nd/144Ndi 0.512–0.513). However, rocks of the Cortegana Igneous Complex have low initial 87Sr/86Sr and high initial 143Nd/144Nd values suggesting contamination by lower crustal rocks. Comparison of the geochemical and geological features of igneous rocks in the Aguablanca deposit and the Cortegana Igneous Complex indicates that, although probably part of the same magmatic system, they are rather different and the rocks of the Cortegana Igneous Complex were not the direct source of the Aguablanca deposit. Crust–magma interaction was a complex process, and the generation of orebodies was controlled by local but highly variable factors. The model for the formation of the Aguablanca deposit presented in this study implies that dense sulfide melts can effectively travel long distances through the continental crust and that dilational zones within compressional belts can effectively focus such melt transport into shallow environments.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

5.
Physicochemical processes involved in Cenozoic volcanism in eastern China   总被引:1,自引:0,他引:1  
Eastern China is a Cenozoic composite volcanic rock province, where volcanic rocks of the tholeiite series, calc-alkali series, Hy-norm-bearing olivine basalt series, Na-alkali series and K-alkali series coexist. Eastern China is separated into the northern and southern volcanic rock regions by the Changzhou-Yueyang old deep fault. Magma generation and magmatic activities in the northern region were controlled by the mantle uplift and old deep faults. These old deep faults were revived and some of them were changed into a multiple rift system due to back-arc expansion. The Bohai Sea depression is situated at the intersection of the Lujiang-Tancheng-Shenyang-Mishan and Zhangjiakou-Tianjin uplift belts of the upper mantle. Eogene (71.5-28.5 Ma) tholeiites largely occur in the central part of the mantle uplift; the well developed Neogene (23.8-2.6 Ma) alkali olivine basalts are distributed in the outer lane of the former and the Quaternary (1.48 Ma-recent) peralkali volcanic rocks are far away from them. In the southern region magma generation and magmatic activities were controlled mainly by plate subduction and three sets of old deep faults. Studies of incompatible elements and REE show that the degree of enrichment of incompatible elements and LREE increases with decreasing age, increasing source depth and decreasing degree of partial melting of the upper mantle. This presumably is an indication of a rapid uplifting and then waning magmatic hearth with gradually decreasing temperature, accompanied with down-cutting of the lithospheric faults. We call such a process “a reverse process of magma generation”. And the opposite process of the magmatic evolution of the East African rift in Kenya can be called “a positive process of magma generation”.  相似文献   

6.
The Mammoth Peak sheeted intrusive complex formed in the interior of a ~7–10 km deep magma chamber, specifically in the Half Dome granodiorite of the Tuolumne batholith, central Sierra Nevada, CA (USA). The sheets consist of fractionated melts with accumulated hornblende, biotite, magnetite, titanite, apatite, and zircon. The accumulation, especially of titanite, had a profound effect on minor and trace elements (Nb, Ta, Ti, REE, U, Th, P, Zr, Hf, etc.), increasing their contents up to five to six times. Our thermal–mechanical modeling using the finite element method shows that cooling-generated tensile stresses resulted in the inward propagation of two perpendicular sets of dilational cracks in the host granodiorite. We interpret the sheeted complex to have formed by a crack-seal mechanism in a high strength, crystal-rich mush, whereby outward younging pulses of fractionated magma were injected into these syn-magmatic cracks at the margin of an active magma chamber. Thermal–mechanical instabilities developed after the assembly of the sheeted complex, which was then overprinted by late ~NW–SE magmatic foliation. This case example provides a cautionary note regarding the interpretation that sheeted zones in large granitoid plutons imply a diking mechanism of growth because the sheeted/dike complexes in plutons (1) may display inverse growth directions from the growth of the overall intrusive sequence; (2) need not record initial chamber construction and instead may reflect late pulsing of magma within an already constructed magma chamber; (3) have an overprinting magmatic fabric indicating the continued presence of melt after construction of sheeted complexes and thus a prolonged thermal history as compared to dikes; and (4) because the scale of the observed sheeted complexes may be small (<1%) in comparison to large homogenous parts of plutons, in which there is no evidence for sheeting or diking. Thus, where extensive dike complexes in plutons are absent, such as in much of the Tuolumne batholith, the application of an incremental diking model to explain chamber construction is at best speculative.  相似文献   

7.
The left-lateral Dead Sea Transform (DST) in the Middle East is one of the largest continental strike-slip faults of the world. The southern segment of the DST in the Arava/Araba Valley between the Dead Sea and the Red Sea, called Arava/Araba Fault (AF), has been studied in detail in the multidisciplinary DESERT (DEad SEa Rift Transect) project. Based on these results, here, the interpretations of multi-spectral (ASTER) satellite images and seismic reflection studies have been combined to analyse geologic structures. Whereas satellite images reveal neotectonic activity in shallow young sediments, reflection seismic image deep faults that are possibly inactive at present. The combination of the two methods allows putting some age constraint on the activity of individual fault strands. Although the AF is clearly the main active fault segment of the southern DST, we propose that it has accommodated only a limited (up to 60 km) part of the overall 105 km of sinistral plate motion since Miocene times. There is evidence for sinistral displacement along other faults, based on geological studies, including satellite image interpretation. Furthermore, a subsurface fault is revealed ≈4 km west of the AF on two ≈E–W running seismic reflection profiles. Whereas these seismic data show a flower structure typical for strike-slip faults, on the satellite image this fault is not expressed in the post-Miocene sediments, implying that it has been inactive for the last few million years. About 1 km to the east of the AF another, now buried fault, was detected in seismic, magnetotelluric and gravity studies of DESERT. Taking together various evidences, we suggest that at the beginning of transform motion deformation occurred in a rather wide belt, possibly with the reactivation of older ≈N–S striking structures. Later, deformation became concentrated in the region of today’s Arava Valley. Till ≈5 Ma ago there might have been other, now inactive fault traces in the vicinity of the present day AF that took up lateral motion. Together with a rearrangement of plates ≈5 Ma ago, the main fault trace shifted then to the position of today’s AF.  相似文献   

8.
The Miocene Kaikomagatake pluton is one of the Neogene granitoid plutons exposed in the Izu Collision Zone, which is where the juvenile Izu-Bonin oceanic arc is colliding against the mature Honshu arc. The pluton intrudes into the Cretaceous to Paleogene Shimanto accretionary complex of the Honshu arc along the Itoigawa-Shizuoka Tectonic Line, which is the collisional boundary between the two arcs. The pluton consists of hornblende–biotite granodiorite and biotite monzogranite, and has SiO2 contents of 68–75 wt%. It has high-K series compositions, and its incompatible element abundances are comparable to the average upper continental crust. Major and trace element compositions of the pluton show well-defined chemical trends. The trends can be interpreted with a crystal fractionation model involving the removal of plagioclase, biotite, hornblende, quartz, apatite, and zircon from a potential parent magma with a composition of ~68 wt% SiO2. The Sr isotopic compositions, together with the partial melting modeling results, suggest that the parent magma is derived by ~53% melting of a hybrid lower crustal source comprising ~30% Shimanto metasedimentary rocks of the Honshu arc and ~70% K-enriched basaltic rocks of the Izu-Bonin rear-arc region. Together with previous studies on the Izu Collision Zone granitoid plutons, the results of this study suggest that the chemical diversity within the parental magmas of the granitoid plutons reflects the chemical variation of basaltic sources (i.e., across-arc chemical variation in the Izu-Bonin arc), as well as a variable contribution of the metasedimentary component in the lower crustal source regions. In addition, the petrogenetic models of the Izu Collision Zone granitoid plutons collectively suggest that the contribution of the metasedimentary component is required to produce granitoid magma with compositions comparable to the average upper continental crust. The Izu Collision Zone plutons provide an exceptional example of the transformation of a juvenile oceanic arc into mature continental crust.  相似文献   

9.
《Journal of Structural Geology》1999,21(8-9):1131-1142
Using spatial relationships between individual plutons and faults to support genetic correlations between faulting and magmatism is meaningless since even random magmatic or tectonic processes will result in some plutons adjacent to faults. Our initial analyses of populations of faults and Carboniferous plutons in the Armorican Massif, France and faults and Alleghanian plutons in the southern Appalachians, USA indicate that plutons have broad distributions with respect to faults but with a tendency for plutons to occur away from faults. Maxima of integrated pluton areas occur at 1/4 (Appalachians) and 1/2 (Armorican) of the distance between the average fault spacing in these orogens. Although there is a great need for statistical evaluations of relationships between populations of igneous bodies and structures in a wide variety of settings and crustal depths, our initial studies suggest that faults do not preferentially channel magma during ascent or emplacement and that these are relatively unfocused processes within orogenic belts.  相似文献   

10.
First arrival times from P-wave refraction and reflection seismic surveys along Bear Creek Valley on the Oak Ridge Reservation, Tennessee, were inverted to produce refraction tomographic velocity images showing seismic velocity variations within thinly mantled karstic bedrock to a depth of approximately 20 m. Inverted velocities are consistent with two distinct bedrock groups: the Nolichucky Shale (2,730–5,150 m/s) and Maynardville Limestone (3,940–7,575 m/s). Low-velocity zones (2,700–4,000 m/s) in the tomographic images correspond to previously inferred cross-valley strike-slip faults; in places, these faults create permeability barriers that offset or block groundwater flowing along Bear Creek Valley. These faults may also force groundwater contaminants, such as dense non-aqueous phase liquids, to migrate laterally or downward, spreading contamination throughout the groundwater system. Other, previously unmapped cross-valley faults may also be visible in the tomographic images. Borehole logs suggest the low-velocity values are caused by low rigidity fractured and vuggy rock, water zones, cavities and collapse features. Surface streams, including Bear Creek, tend to lie directly above these low-velocity zones, suggesting fault and fracture control of surface drainage, in addition to the subsurface flow system. In some cases, fault zones are also associated with bedrock depressions and thicker accumulations of unconsolidated sediment.  相似文献   

11.
The Kabanga Ni sulfide deposit represents one of the most significant Ni sulfide discoveries of the last two decades, with current indicated mineral resources of 23.23 Mt at 2.64% Ni and inferred mineral resources of 28.5 Mt at 2.7% Ni (Nov. 2008). The sulfides are hosted by a suite of ∼1.4 Ga ultramafic–mafic, sill-like, and chonolithic intrusions that form part of the approximately 500 km long Kabanga–Musongati–Kapalagulu igneous belt in Tanzania and Burundi. The igneous bodies are up to about 1 km thick and 4 km long. They crystallized from several compositionally distinct magma pulses emplaced into sulfide-bearing pelitic schists. The first magma was a siliceous high-magnesium basalt (approximately 13.3% MgO) that formed a network of fine-grained acicular-textured gabbronoritic and orthopyroxenitic sills (Mg# opx 78–88, An plag 45–88). The magma was highly enriched in incompatible trace elements (LILE, LREE) and had pronounced negative Nb and Ta anomalies and heavy O isotopic signatures (δ18O +6 to +8). These compositional features are consistent with about 20% contamination of primitive picrite with the sulfidic pelitic schists. Subsequent magma pulses were more magnesian (approximately 14–15% MgO) and less contaminated (e.g., δ18O +5.1 to +6.6). They injected into the earlier sills, resulting in the formation of medium-grained harzburgites, olivine orthopyroxenites and orthopyroxenites (Fo 83–89, Mg# opx 86–89), and magmatic breccias consisting of gabbronorite–orthopyroxenite fragments within an olivine-rich matrix. All intrusions in the Kabanga area contain abundant sulfides (pyrrhotite, pentlandite, and minor chalcopyrite and pyrite). In the lower portions and the immediate footwall of two of the intrusions, namely Kabanga North and Kabanga Main, there occur numerous layers, lenses, and veins of massive Ni sulfides reaching a thickness of several meters. The largest amount of high grade, massive sulfide occurs in the smallest intrusion (Kabanga North). The sulfides have heavy S isotopic signatures (δ34S wr = +10 to +24) that broadly overlap with those of the country rock sulfides, consistent with significant assimilation of external sulfur from the Karagwe–Ankolean sedimentary sequence. However, based partly on the relatively homogenous distribution of disseminated sulfides in many of the intrusive rocks, we propose that the Kabanga magmas reached sulfide saturation prior to final emplacement, in staging chambers or feeder conduits, followed by entrainment of the sulfides during continued magma ascent. Oxygen isotope data indicate that the mode of sulfide assimilation changed with time. The heavy δ18O ratios of the early magmas are consistent with ingestion of the sedimentary country rocks in bulk. The relatively light δ18O ratios of the later magmas indicate less bulk assimilation of the country rocks, but in addition the magmas selectively assimilated additional S, possibly through devolatization of the country rocks or through cannibalization of magmatic sulfides deposited in the conduits by preceding magma surges. The intrusions were tilted at ca. 1.37 Ga, during the Kibaran orogeny and associated synkinematic granite plutonism. This caused solid-state mobilization of ductile sulfides into shear zones, notably along the base of the intrusions where sulfide-hornfels breccias and lenses and layers of massive sulfides may reach a thickness of >10 m and can extend for several 10 s to >100 m away from the intrusions. These horizons represent an important exploration target for additional nickel sulfide deposits.  相似文献   

12.
The Mesoarchean Nuasahi chromite deposits of the Singhbhum Craton in eastern India consist of a lower chromite-bearing ultramafic unit and an upper magnetite-bearing gabbroic unit. The ultramafic unit is a ∼5 km long and ∼400 m wide linear belt trending NNW-SSE with a general north-easterly dip. The chromitite ore bodies are hosted in the dunite that is flanked by the orthopyroxenite. The rocks of the ultramafic unit including the chromitite crystallized from a primitive boninitic magma, whereas the gabbro unit formed from an evolved boninitic magma. A shear zone (10–75 m wide) is present at the upper contact of the ultramafic unit. This shear zone consists of a breccia comprising millimeter- to meter-sized fragments of chromitite and serpentinized rocks of the ultramafic unit enclosed in a pegmatitic and hybridized gabbroic matrix. The shear zone was formed late synkinematically with respect to the main gabbroic intrusion and intruded by a hydrous mafic magma comagmatic with the evolved boninitic magma that formed the gabbro unit. Both sulfide-free and sulfide-bearing zones with platinum group element (PGE) enrichment are present in the breccia zone. The PGE mineralogy in sulfide-rich assemblages is dominated by minerals containing Pd, Pt, Sb, Bi, Te, S, and/or As. Samples from the gabbro unit and the breccia zone have total PGE concentrations ranging from 3 to 116 ppb and 258 to 24,100 ppb, respectively. The sulfide-rich assemblages of the breccia zone are Pd-rich and have Pd/Ir ratios of 13–1,750 and Pd/Pt ratios of 1–73. The PGE-enriched sulfide-bearing assemblages of the breccia zone are characterized by (1) extensive development of secondary hydrous minerals in the altered parts of fragments and in the matrix of the breccia, (2) coarsening of grain size in the altered parts of the chromitite fragments, and (3) extensive alteration of primary chromite to more Fe-rich chromite with inclusions of chlorite, rutile, ilmenite, magnetite, chalcopyrite, and PGE-bearing chalcogenides. Unaltered parts of the massive chromitite fragments from the breccia zone show PGE ratios (Pd/Ir = 2.5) similar to massive chromitite (Pd/Ir = 0.4–6.6) of the ultramafic unit. The Ir-group PGE (IPGE: Ir, Os, Ru) of the sulfide-rich breccia assemblages were contributed from the ultramafic–chromitite breccia. Samples of the gabbro unit have fractionated primitive mantle-normalized patterns, IPGE depletion (Pd/Ir = 24–1,227) and Ni-depletion due to early removal of olivine and chromite from the primitive boninitic magma that formed the ultramafic unit. Samples of the gabbro and the breccia zone have negative Nb, Th, Zr, and Hf anomalies, indicating derivation from a depleted mantle source. The Cu/Pd ratios of the PGE-mineralized samples of the breccia zone (2.0 × 103–3.2 × 103) are lower than mantle (6.2 × 103) suggesting that the parental boninitic magma (Archean high-Mg lava: Cu/Pd ratio ∼1.3 × 103; komatiite: Cu/Pd ratio ∼8 × 103) was sulfur-undersaturated. Samples of the ultramafic unit, gabbro and the mineralized breccia zone, have a narrow range of incompatible trace element ratios indicating a cogenetic relationship. The ultramafic rocks and the gabbros have relatively constant subchondritic Nb/Ta ratios (ultramafic rocks: Nb/Ta = 4.1–8.8; gabbro unit: Nb/Ta = 11.5–13.2), whereas samples of the breccia zone are characterized by highly variable Nb/Ta ratios (Nb/Ta = 2.5–16.6) and show evidence of metasomatism. The enrichment of light rare earth element and mobile incompatible elements in the mineralized samples provides supporting evidence for metasomatism. The interaction of the ultramafic fragments with the evolved fluid-rich mafic magma was key to the formation of the PGE mineralization in the Nuasahi massif.  相似文献   

13.
Geological studies on saturated to oversaturated and subsolvus aegirine-riebeckite syenite bodies of the Pulikonda alkaline complex and Dancherla alkaline complex were carried out. The REE distribution of the Dancherla syenite shows a high fractionation between LREE and HREE. The absence of Eu anomaly suggests source from garnet peridotite. The Pulikonda syenite shows moderate fractionation between LREE and HREE as reflected by enrichment of HREE and moderate enrichment of LREE. The negative Eu anomaly indicates role of plagioclase fractionation.Three distinct co-eval primary magmas i.e. mafic syenite-, felsic syenite- and alkali basalt magmas — all derived from low-degrees of partial melting of mantle differentiates and enriched metasomatised lower crust played a major role in the genesis and emplacement of the syenites into overlying crust along deep seated regional scale trans-lithospheric strike-slip faults and shear zones following immediately after late-Archaean calc-alkaline arc magmatism at different time-space episodes i.e. initially at craton margin and later on into the thickened interior of the Eastern Dharwar craton. The ductile sheared and folded Pulikonda alkaline complex was evolved dominantly from the magmas derived from partial melting of lower crust and minor juvenile magmas from mantle. Differentiation and fractionation by liquid immiscibility of mafic magma and commingling-mixing of intermediate and felsic magmas followed by fractionational crystallisation under extensional tectonics during waning stages of calc-alkaline arc magmatism nearer to the craton margin were attributed as the main processes for the genesis of Pulikonda syenite complex. Commingling and limited mixing of independent mantle derived mafic and felsic syenitic magmas and accompanying fractionation resulting into soda rich and potash rich syenite variants was tentatively deduced mechanism for the origin of Dancherla, Danduvaripalle, Reddypalle syenites and other bodies belonging to Dancherla alkaline complex at the craton interior. The Peddavaduguru syenite was formed by differentiation of alkali mafic magma (gabbro to diorite) and it’s simultaneous mingling with fractionated felsic syenitic magma under incipient rift. Vannedoddi and Yeguvapalli syenites were derived due to desilicification and accompanying alkali feldspar mestasomatism of younger potash rich granites along Guntakal-Gooty fault and along Singanamala shear zone respectively.  相似文献   

14.
王亚伟 《地质与勘探》2015,51(2):284-289
南阳山锑矿位于五里川锑成矿亚带,属热液矿床,矿体分布在双槐树断裂带南侧F1、F2断裂带内。本文通过野外观察、薄片分析、微量元素分析等方法,对南阳山矿区地质特征及其矿床成因进行分析。本区矿石可分为三类:角砾状矿石、团块状矿石、充填脉状矿石,其中角砾状矿石为主要矿石类型。矿石矿物有辉锑矿和锑华,其中以辉锑矿为主。南阳山锑矿成矿元素Sb主要来源于秦岭群(赋矿层),S元素随热液来源于深部岩浆。含矿断裂带F1、F2深部与其北侧双槐树大断裂相连,热液沿双槐树断裂带向上运移至断裂分叉部位发生分流,分流热液继续汇集秦岭群内成矿元素,在上升至成矿有利部位便聚集成矿。这对南阳山锑矿盲矿体的寻找具有重要的指导意义,同时对寻找五里川锑成矿亚带内新矿(化)体具有重要的借鉴意义。  相似文献   

15.
Understanding magma plumbing is essential for predicting the behaviour of explosive volcanoes. We investigate magma plumbing at the highly active Anak Krakatau volcano (Indonesia), situated on the rim of the 1883 Krakatau caldera by employing a suite of thermobarometric models. These include clinopyroxene-melt thermobarometry, plagioclase-melt thermobarometry, clinopyroxene composition barometry and olivine-melt thermometry. Petrological studies have previously identified shallow magma storage in the region of 2–8 km beneath Krakatau, while existing seismic evidence points towards mid- to deep-crustal storage zone(s), at 9 and 22 km, respectively. Our results show that clinopyroxene in Anak Krakatau lavas crystallized at a depth of 7–12 km, while plagioclase records both shallow crustal (3–7 km) and sub-Moho (23–28 km) levels of crystallization. These magma storage regions coincide with well-constrained major lithological boundaries in the crust, implying that magma ascent and storage at Anak Krakatau is strongly controlled by crustal properties. A tandem seismic tomography survey independently identified a separate upper crustal (<7 km) and a lower to mid-crustal magma storage region (>7 km). Both petrological and seismic methods are sensitive in detecting magma bodies in the crust, but suffer from various limitations. Combined geophysical and petrological surveys, in turn, offer increased potential for a comprehensive characterization of magma plumbing at active volcanic complexes.  相似文献   

16.
The unlined Bedretto tunnel in the Central Swiss Alps has been used to investigate in detail the fault architecture and late Alpine brittle faulting processes in the Rotondo granite on macroscopic and microscopic scales. Brittle faults in the late Variscan Rotondo granite preferentially are situated within the extent of preexisting ductile shear zones. Only in relatively few cases the damage zone extends into or develops in the previously undeformed granite. Slickensides suggest a predominant (dextral) strike-slip movement along these steeply dipping and NE–SW-striking faults. Microstructures of these fault rocks illustrate a multi-stage retrograde deformation history from ductile to brittle conditions up to the cessation of fault activity. In addition these fabrics allow identifying cataclastic flow, fluid-assisted brecciation and chemical corrosive wear as important deformation mechanisms during this retrogressive deformation path. Based on the analysis of zeolite microfabrics (laumontite and stilbite; hydrated Ca–Al- and Na–Ca–Al–silicate, respectively) in fault breccias, cataclasites and open fractures we conclude, that the main phase of active brittle faulting started below 280°C and ceased ca. 14 Ma ago at temperatures slightly above 200°C. This corresponds to a depth of approx. 7 km.  相似文献   

17.
The epicentral tract of the great Assam earthquake of 1897 of magnitude 8·7 was monitored for about 6 months using an array of portable seismographs. The observed seismicity pattern shows several diversely-oriented linear trends, some of which either encompass or parallel known geological faults. A vast majority of the recorded micro-earthquakes had estimated focal depths between 8–14 km. The maximum estimated depth was 45 km. On the basis of a seismic velocity model for the region reported recently and these depth estimates we suggest that the rupture zone of the great 1897 earthquake had a depth of 11–12 km under the western half of the Shillong massif. Four composite fault plane solutions define the nature of dislocation in three of the seismic zones. Three of them show oblique thrusting while one shows pure dip slip reverse faulting. The fault plane solutions fit into a regional pattern of a belt of earthquakes extending in NW-SE direction across the north eastern corner of the Bengal basin. The maximum principle stress axis is approximately NS for all the solutions in conformity with the inferred direction of the Indian-EuroAsian plate convergence in the eastern Himalaya.  相似文献   

18.
Graphite in fault zones has received little attention even though it is a well-known solid lubricant that could affect frictional properties of faults dramatically. This paper reports the presence of abundant graphite in fault zones of the Atotsugawa fault system, central Japan. Mesoscopic and microscopic observations of fault rocks revealed two processes of carbon enrichment in fault zones. One is a pressure solution process or diffusive mass transfer in general which removes water-soluble minerals such as quartz and carbonates from rocks, resulting in the enrichment of insoluble minerals including carbon. The other process is precipitation of graphite from a high-temperature carbon-rich fluid, forming graphite filling fractures within cataclasitic fault zones. The two processes have led to the concentration, up to 12 wt% of graphite, in the Atotsugawa fault zones, compared to 0 to 3 wt% of carbonaceous materials in the host rocks. This concentration is high enough for graphite to affect frictional properties at wide range of slip rates. The presence of graphite may provide an explanation for the low resistivity, the patterns of microearthquakes and fault creep along the western part of the Atotsugawa fault system. Graphite should receive more attention as a weakening and stabilizing agent of faults.  相似文献   

19.
河北省承德县磴西—烟筒山一带银铅锌多金属矿位于温家沟—东山断裂带内,区内已知有姑子沟银铅锌矿、富豪银矿,以及新发现的富含金银的锌多金属矿.矿体多为隐伏矿体,受断裂破碎带的控制;矿体呈单脉、复脉状产出,有分支复合特点,银-铅锌-金等多金属矿共生;同位素地球化学特征和包裹体地球化学特征显示,成矿元素、硫和热液主要为地壳深部...  相似文献   

20.
Spatial-temporal patterns of aftershocks of the 2001 Mw7.7 Bhuj earthquake during 2001–2008 reveal a northward spatial migration of seismic activity in the Kachchh seismic zone, which could be related with the loading stresses caused by the continued occurrences of aftershocks on the north Wagad fault (NWF), the causative fault of the 2001-mainshock. Aiming at explaining the observed northward migration of activity, we modelled the Coulomb failure stress change (DCFS) produced by the 2001-mainshock, the 2006 Mw5.6 Gedi fault (GF) and the 2007 Mw4.5 Allah bund fault (ABF) events on optimally oriented plane. A strong correlation between occurrences of earthquakes and regions of increased DCFS is obtained on the associated three faults i.e. NWF, ABF and GF. Predicted DCFS on the GF increased by 0.9 MPa at 3 km depth, where the 7th March 2006 Mw5.6 event occurred, whereas predicted DCFS on the ABF increased by 0.07 MPa at 30 km depth, where the 15th December 2007 Mw4.5 event occurred. Focal mechanism solutions of three events on the ABF have been estimated using the iterative inversion of broadband data from 5–10 stations, which are also constrained by the first P-motion data from 8–12 stations. These focal mechanism solutions for the ABF events reveal a dominant reverse movement with a strike-slip component along a preferred northwest or northeast dipping plane (∼50–70°). Focal mechanisms of the events on all the three fault zones reveal an N-S oriented P- axis or maximum principal stress in the region, which agrees with the prevailing N-S compression over the Indian plate. It is apparent that the northward migration of the static stress changes from the NWF, resulting from the occurrence 2001 Bhuj mainshock, might have caused the occurrence of the events on the GF and ABF during 2006–08.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号