共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
从数据量庞大且散乱的车载LiDAR点云中分割出建筑物立面数据是一项繁琐而艰巨的工作。本文提出一种结合机载LiDAR点云的车载LiDAR点云建筑物立面分割方法。该方法在空-地点云严格配准的基础上,从机载LiDAR点云中分割出每栋建筑物的顶部点云,提取建筑物顶部外轮廓线并进行规则矢量化处理,设置轮廓线缓冲区实现立面点云的粗分割;再采用基于稳健特征值的平面拟合法对单栋建筑物的每个立面进行去噪滤波,实现建筑物立面的精细分割。试验结果证明了该算法对城市场景中车载LiDAR点云处理的有效性。 相似文献
6.
7.
8.
针对全自动建筑物3D重建存在需要后续人工检验,且发现重建错误需要花费额外时间修改的问题,提出了一种半自动的面向对象的机载LiDAR点云建筑物3D重建方法。基于建筑物类别点云的联通分析和平面生长分割结果,提出了自动的建筑物栋数检测、单栋建筑物外轮廓提取、单栋建筑物内部结构线提取方法;同时,在计算机无法完成部分工作时,人工辅助计算机完成高程阶越线提取、识别建筑物屋顶附属物点云等工作。实验证明,该方法可以适用于高密度机载LiDAR点云数据中城区大部分建筑物的3D模型重建。 相似文献
9.
10.
11.
12.
机载LiDAR点云数据的建筑物重建研究 总被引:3,自引:2,他引:3
提出了利用机载LiDAR点云数据进行复杂平面建筑物重建的方法。首先,将提取出的建筑物点云聚类到不同的平面点集;然后,对各个平面点集进行平面拟合,采用平面相交确定平面边界,并解算出各平面边界角点的三维坐标,从而重建建筑物模型。某区域的机载LiDAR点云数据的实验结果表明,该方法能有效地重建出较复杂的平面建筑物。 相似文献
13.
提出了一种基于点云特征图像和特征值分析的车载LiDAR点云建筑物立面位置边界的自动提取方法。首先利用车载LiDAR点云数据生成扫描区域的点云特征图像,并通过图像处理手段提取可能的建筑物目标点云;然后对提取的目标点云进行剖面分析和特征值分析,识别建筑物目标;最后对建筑物点云进行平面分割,提取建筑物立面,并对立面点云进行特征值分析,得到建筑物立面与地面交接的三维位置边界。实验结果表明,该方法能快速有效地提取车载LiDAR点云数据中的建筑物目标,同时提取的建筑物立面位置边界与原始点云能准确符合。 相似文献
14.
15.
17.
18.
为解决机载LiDAR点云数据建筑物提取精度不高的问题,首先分析了现有的基于机载LiDAR点云数据的建筑物提取方法;然后综合地形、树木、建筑物密度等对建筑物提取的影响,以德国斯图加特市法伊英根的LiDAR点云数据为例进行了建筑物提取实验;最后对提取结果进行了定量精度评定。结果表明,基于影像的机载LiDAR点云数据建筑物提取精度为93.1%;而基于数学形态学图像的处理方法和基于Delaunay三角剖分的方法受建筑物形状和地形等限制较多,提取精度分别为87.6%和81.3%,说明基于影像的机载LiDAR点云数据建筑物提取方法的准确性较高,限制性条件较少。 相似文献
19.
基于机载激光雷达LiDAR(Light Detection and Ranging)数据识别震后建筑物震害,其前提是快速准确地提取建筑物点云。通过分析地震灾区机载激光雷达点云中提取建筑物点云的诸多难点,已有的方法难以达到预期效果,因此提出融合同机航空影像数据的方法,实现了震后灾区建筑物点云的获取。该方法首先在数据预处理的基础上,利用布料模拟滤波CSF(Cloth Simulation Filtering)算法进行点云滤波,得到地面点云和非地面点云(主要是建筑物、植被和车辆行人等),并将航空影像红波段光谱信息赋予非地面点云;然后基于灰度直方图阈值分割的方法剔除植被点;最后对剩余激光脚点利用具有噪声的基于密度的空间聚类DBSCAN(Density-Based Spatial Clustering of Applications with Noise)算法进行聚类提取最终的建筑物点,并与参考建筑物点比对,进行精度验证,得到建筑物点云提取的漏检概率、虚警概率分别为15.61%、7.52%,总体精度可达84.39%。结果表明,在一定精度要求范围内,该方法能有效实现地震灾区建筑物点云的提取,可为震后机载LiDAR建筑物点云提取提供技术参考和方法借鉴,为建筑物震害识别做好基础工作。 相似文献
20.
针对目前机载LiDAR点云数据存在的数据组织效率低下以及不利于查询等问题,本文提出了一种基于体元的建筑物提取算法。首先,构建体元模型实现机载LiDAR数据的真三维描述;然后,计算局部邻域曲面拟合残差,将残差最小的体元视作种子体元;最后,根据局部邻域法向量夹角准则来实现种子体元的区域增长,从而获得建筑物点。本文选取ISPRS公开的点云滤波测试数据中的8种复杂场景进行实验,实验结果表明:本文算法不仅原理简单、容易实现,而且具有较好的鲁棒性,不会受地形以及建筑物类型和尺寸的限制,Kappa系数达到80%以上,实现了复杂场景下建筑物的提取。 相似文献