首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对树木等遮挡造成的车载LiDAR建筑物立面点云空洞,该文提出了一种基于机载和车载LiDAR数据融合的建筑物点云修复方法,即在空-地LiDAR点云融合的基础上,基于提取的机载LiDAR建筑物外轮廓线,通过缓冲区分析实现车载LiDAR建筑物点云分割;借助轮廓线信息实现了邻近建筑物间的相似性判断,基于匹配后的相似建筑物点云和空洞探测方法,实现了建筑物立面点云空洞修复。最后通过实验数据验证了该方法的可行性。  相似文献   

2.
针对建筑物立面几何模型构建的难题,该文提出了一套完整的建筑物立面提取方法。在车载-机载LiDAR点云数据精确配准的基础上,首先提取出机载建筑物的外轮廓线,通过设置轮廓线缓冲区实现立面点云分割,然后采用随机抽样一致性(RANSAC)平面探测算法探测建筑物主立面,最后结合立面语义规则及面片之间的拓扑关系构建建筑物立面的三维线框模型,实验结果表明,新方法能准确、有效地构建建筑物立面模型。  相似文献   

3.
针对建筑物立面几何模型构建的难题,该文提出了一套完整的建筑物立面提取方法。在车载-机载LiDAR点云数据精确配准的基础上,首先提取出机载建筑物的外轮廓线,通过设置轮廓线缓冲区实现立面点云分割,然后采用随机抽样一致性(RANSAC)平面探测算法探测建筑物主立面,最后结合立面语义规则及面片之间的拓扑关系构建建筑物立面的三维线框模型。实验结果表明,新方法能准确、有效地构建建筑物立面模型。  相似文献   

4.
针对建筑物立面几何模型构建的难题,该文提出了一套完整的建筑物立面提取方法。在车载-机载LiDAR点云数据精确配准的基础上,首先提取出机载建筑物的外轮廓线,通过设置轮廓线缓冲区实现立面点云分割,然后采用随机抽样一致性(RANSAC)平面探测算法探测建筑物主立面,最后结合立面语义规则及面片之间的拓扑关系构建建筑物立面的三维线框模型,实验结果表明,新方法能准确、有效地构建建筑物立面模型。  相似文献   

5.
从数据量庞大且散乱的车载LiDAR点云中分割出建筑物立面数据是一项繁琐而艰巨的工作。本文提出一种结合机载LiDAR点云的车载LiDAR点云建筑物立面分割方法。该方法在空-地点云严格配准的基础上,从机载LiDAR点云中分割出每栋建筑物的顶部点云,提取建筑物顶部外轮廓线并进行规则矢量化处理,设置轮廓线缓冲区实现立面点云的粗分割;再采用基于稳健特征值的平面拟合法对单栋建筑物的每个立面进行去噪滤波,实现建筑物立面的精细分割。试验结果证明了该算法对城市场景中车载LiDAR点云处理的有效性。  相似文献   

6.
将建筑物立面数据从散乱无序的车载LiDAR点云中分割出来是一项繁琐而艰巨的任务。本文提出基于基础地理数据辅助的分割方法:首先对基础地理数据进行要素精简,提取有效的建筑物轮廓数据;然后将提取数据转换到车载LiDAR点云数据所在坐标系中,实现坐标基准的统一;再根据建筑物立面特征设置合理的建筑物轮廓缓冲阈值,对建筑物立面点云进行自动分割;最后采用合理的质量评价机制,对分割结果进行检核和评价,实现分割结果的质量控制。实验表明文中方法简单有效。  相似文献   

7.
针对机载LiDAR建筑物点云提取过程中易受植被的影响的问题,本文提出了一种机载LiDAR建筑物点云的渐进提取算法.首先通过布料模拟滤波算法对地面点云与非地面点云进行区分,在此基础上利用最大类间方差法算法(Otsu)对非地面点云进行阈值分割,提取初始建筑物点云;然后根据点云的连通性对初始建筑物点云进行密度聚类分割(DBS...  相似文献   

8.
针对全自动建筑物3D重建存在需要后续人工检验,且发现重建错误需要花费额外时间修改的问题,提出了一种半自动的面向对象的机载LiDAR点云建筑物3D重建方法。基于建筑物类别点云的联通分析和平面生长分割结果,提出了自动的建筑物栋数检测、单栋建筑物外轮廓提取、单栋建筑物内部结构线提取方法;同时,在计算机无法完成部分工作时,人工辅助计算机完成高程阶越线提取、识别建筑物屋顶附属物点云等工作。实验证明,该方法可以适用于高密度机载LiDAR点云数据中城区大部分建筑物的3D模型重建。  相似文献   

9.
机载点云空洞的修复方法   总被引:1,自引:0,他引:1  
孙国强  嵇卉  庞岩 《北京测绘》2020,(2):185-189
为了有效修补由于遮挡造成的空洞,提出了将机载点云与车载点云融合,通过对空洞部分进行探测,选择对应的车载数据进行填充,充分利用车载点云和机载点云的优势进行互补。对于两种方式都没有扫到的空洞,通过确定收缩方向和收缩距离构造收缩环,根据给定的三角面片添加规则在边界环和收缩环之间添加新的三角面片,不断迭代,直到达到收缩距离阈值,停止收缩,填充完整。实验结果表明,该方法修复效果良好。  相似文献   

10.
本文利用面向对象的点云分析方法进行车载激光扫描点云数据中建筑物立面的识别。该方法对点云进行基于法向量和距离约束的点云分割,计算分割面片的倾角、面积、高程变化范围等特征,并依据建筑物立面垂直于水平面、面积比较大、高程变化范围较大等规则从点云数据中识别建筑物立面。实验表明该方法可以精确有效地进行MLS点云中建筑物立面提取。  相似文献   

11.
12.
机载LiDAR点云数据的建筑物重建研究   总被引:3,自引:2,他引:3  
提出了利用机载LiDAR点云数据进行复杂平面建筑物重建的方法。首先,将提取出的建筑物点云聚类到不同的平面点集;然后,对各个平面点集进行平面拟合,采用平面相交确定平面边界,并解算出各平面边界角点的三维坐标,从而重建建筑物模型。某区域的机载LiDAR点云数据的实验结果表明,该方法能有效地重建出较复杂的平面建筑物。  相似文献   

13.
提出了一种基于点云特征图像和特征值分析的车载LiDAR点云建筑物立面位置边界的自动提取方法。首先利用车载LiDAR点云数据生成扫描区域的点云特征图像,并通过图像处理手段提取可能的建筑物目标点云;然后对提取的目标点云进行剖面分析和特征值分析,识别建筑物目标;最后对建筑物点云进行平面分割,提取建筑物立面,并对立面点云进行特征值分析,得到建筑物立面与地面交接的三维位置边界。实验结果表明,该方法能快速有效地提取车载LiDAR点云数据中的建筑物目标,同时提取的建筑物立面位置边界与原始点云能准确符合。  相似文献   

14.
针对单一参数的Alpha-Shape算法无法适应密度差异较大的点集数据以及提取的边界信息具有锯齿形状的问题,结合Alpha-Shape算法与D-P算法进行轮廓线的粗略提取,利用最小二乘方法以及建筑物边界线之间向量、长度等特征确定建筑物关键点;通过寻找建筑物主方向,实现建筑物边界线规则化。实验选取国际摄影测量与遥感协会提供的典型区域的LiDAR点云数据进行建筑物边界线提取,并与传统Alpha-Shape算法提取建筑边界线结果进行比较,结果表明本文算法在建筑物边界线信息提取方面更准确、更稳定。  相似文献   

15.
针对建筑物三维模型建立自动化程度与效率无法并存的问题,本文提出一种自动提取机载激光雷达(light detection and ranging,LiDAR)点云的建筑物关键点算法,针对规则建筑物实现快速三维重建.该方法通过阿尔法-形状(Alpha-Shape)边缘检测算法和屋顶分割算法完成建筑物关键点提取,再利用夏普·...  相似文献   

16.
17.
采用车载LiDAR数据进行窗户模型构建是一项艰巨的工作,本文提出了一整套窗户模型构建方法。首先利用RANSAC算法对建筑物立面进行探测分离主墙面,基于空洞思想对主墙面窗户进行聚类,然后采用动态椭圆凸壳算法探测窗户边界轮廓点。对获取窗户边界点采用RANSAC算法进行分割,采用基于稳健整体最小二乘算法进行直线拟合和角点恢复,最终结合窗户的几何特征完成窗户模型构建。试验结果证明了该方法能够准确有效地构建建筑物立面中的窗户模型。  相似文献   

18.
为解决机载LiDAR点云数据建筑物提取精度不高的问题,首先分析了现有的基于机载LiDAR点云数据的建筑物提取方法;然后综合地形、树木、建筑物密度等对建筑物提取的影响,以德国斯图加特市法伊英根的LiDAR点云数据为例进行了建筑物提取实验;最后对提取结果进行了定量精度评定。结果表明,基于影像的机载LiDAR点云数据建筑物提取精度为93.1%;而基于数学形态学图像的处理方法和基于Delaunay三角剖分的方法受建筑物形状和地形等限制较多,提取精度分别为87.6%和81.3%,说明基于影像的机载LiDAR点云数据建筑物提取方法的准确性较高,限制性条件较少。  相似文献   

19.
基于机载激光雷达LiDAR(Light Detection and Ranging)数据识别震后建筑物震害,其前提是快速准确地提取建筑物点云。通过分析地震灾区机载激光雷达点云中提取建筑物点云的诸多难点,已有的方法难以达到预期效果,因此提出融合同机航空影像数据的方法,实现了震后灾区建筑物点云的获取。该方法首先在数据预处理的基础上,利用布料模拟滤波CSF(Cloth Simulation Filtering)算法进行点云滤波,得到地面点云和非地面点云(主要是建筑物、植被和车辆行人等),并将航空影像红波段光谱信息赋予非地面点云;然后基于灰度直方图阈值分割的方法剔除植被点;最后对剩余激光脚点利用具有噪声的基于密度的空间聚类DBSCAN(Density-Based Spatial Clustering of Applications with Noise)算法进行聚类提取最终的建筑物点,并与参考建筑物点比对,进行精度验证,得到建筑物点云提取的漏检概率、虚警概率分别为15.61%、7.52%,总体精度可达84.39%。结果表明,在一定精度要求范围内,该方法能有效实现地震灾区建筑物点云的提取,可为震后机载LiDAR建筑物点云提取提供技术参考和方法借鉴,为建筑物震害识别做好基础工作。  相似文献   

20.
针对目前机载LiDAR点云数据存在的数据组织效率低下以及不利于查询等问题,本文提出了一种基于体元的建筑物提取算法。首先,构建体元模型实现机载LiDAR数据的真三维描述;然后,计算局部邻域曲面拟合残差,将残差最小的体元视作种子体元;最后,根据局部邻域法向量夹角准则来实现种子体元的区域增长,从而获得建筑物点。本文选取ISPRS公开的点云滤波测试数据中的8种复杂场景进行实验,实验结果表明:本文算法不仅原理简单、容易实现,而且具有较好的鲁棒性,不会受地形以及建筑物类型和尺寸的限制,Kappa系数达到80%以上,实现了复杂场景下建筑物的提取。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号