首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Several frequency-selection strategies have been used to obtain global minimum solutions in waveform inversion. One strategy, called the discretization method, is to discretize frequencies with a large sampling interval to minimize redundancy in wavenumber information. Another method, the grouping method, groups frequencies with redundancy in wavenumber information. The grouping method can be carried out in two ways. With the first method, the minimum frequency is fixed and the maximum frequency is gradually extended upward (i.e., the overlap-grouping method). Under the second method, frequencies are not overlapped across the groups and waveform inversion proceeds from lower to higher frequency groups (i.e., the individual-grouping method). In this study, we compare these three frequency-selection strategies using both synthetic and real data examples based on logarithmic waveform inversion. Numerical examples for synthetic and real field data demonstrate that the three frequency-selection methods provide solutions closer to the global minimum compared to solutions resulting from simultaneously performed waveform inversion, and that the individual-grouping method yields slightly better resolution for the velocity models than the other methods, particularly for the deeper part. These results may imply that using either too small or too large data sets at every stage slightly deteriorates inversion results, and that grouping data in appropriately sized aggregations improves inversion results.  相似文献   

2.
由于航空电磁系统具有工作频率低、时间延迟短等特点,地形对航空电磁响应有很大影响,忽略地形影响会给航空电磁数据解释造成很大误差.本文将基于非结构化网格的矢量有限元法应用于模拟起伏地表条件下频域/时域(FD/TD)三维航空电磁系统响应.该方法由于采用非结构网格,与传统的结构化网格电磁正演算法相比,能更好地拟合地形和地下不规则异常体,提高对不规则地形和地下介质航空电磁响应的计算精度.通过将计算结果与半空间模型的半解析解及已发表的结果进行对比,检验了本文算法的精度.通过对典型山峰和山谷地形航空电磁响应分析对比,总结了地形对航空电磁响应的影响特征.研究结果对航空电磁地形效应的识别和校正具有指导意义.  相似文献   

3.
This paper presents analytical solutions for computing the 3D displacements in a flat solid elastic stratum bounded by a rigid base, when it is subjected to spatially sinusoidal harmonic line loads. These functions are also used as Greens functions in a boundary element method code that simulates the seismic wave propagation in a confined or semi-confined 2D valley, avoiding the discretization of the free and rigid horizontal boundaries.The models developed are then used to simulate wave propagation within a rigid stratum and valleys with different dimensions and geometries, when struck by a spatially sinusoidal harmonic vertical line load. Simulations are performed in the frequency domain, for varying spatial wave numbers in the axial direction of the valley. Time results are obtained by means of inverse Fourier transforms, to help understand how the geometry of the valley may affect the variation of the displacement field.  相似文献   

4.
An improved interpolation scheme is presented for 2.5-dimensional marine controlled-source electromagnetic forward modelling. For the marine controlled-source electromagnetic method, due to the resistivity contrast between the seawater and seafloor sedimentary layers, it is difficult to compute the electromagnetic fields accurately at receivers, which are usually located at the seafloor. In this study, the 2.5-dimensional controlled-source electromagnetic responses are simulated by the staggered finite-difference method. The secondary-field approach is used to avoid the source singularities, and the one-dimensional layered background model is used for calculating the primary fields excited by the source quasi-analytically. The interpolation of electromagnetic fields at the cell nodes for the whole computational domain to the receiver locations is discussed in detail. Numerical tests indicate that the improved interpolation developed is more accurate for simulating the electromagnetic responses at receivers located at the seafloor, compared with the linear or rigorous interpolation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号