首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 916 毫秒
1.
Pillar design is of paramount importance to any underground mine design. Oversized pillars may lead to loss of coal while undersized pillars may lead to instability. While underground pillars are mostly square and rectangular, highwall mining pillars are long and narrow, as they are formed after driving parallel entries in the seam from the highwall. These pillars are termed as web pillars. The overall stability of highwall depends upon these pillars as no other supports are provided in the entries. Web pillar differs from usual coal pillars in respect of w/h ratio being <3.0, with an exceptionally longer length compared to its width, to the tune of 50–500 m. Several empirical coal pillar strength equations developed for rectangular pillars are still being used with some modifications to adapt to web pillars. Review and analysis of these empirical approaches for determining web pillar strength along with a numerical approach for web pillar design are discussed in this paper. Their application to some Indian case studies is also discussed.  相似文献   

2.
煤矿陷落柱地震层析成像试验   总被引:2,自引:1,他引:2  
陷落柱是我国北方煤矿机械化综采的主要障碍之一,在综采前探明采区陷落柱的位置和分布具有重要意义。本文介绍用于探测煤矿陷落柱的地震层析成像方法,并利用物理模拟的资料作成像试验,证实应用地震层析成像方法可以准确地圈定煤矿中的陷落柱。  相似文献   

3.
Strip mining was the major method to control surface subsidence when mining under buildings in China; however, its coal recovery ratio was only 30 to 50%, resulting in a large amount of coal resource waste due to the retained strip coal pillars. As such, it is of important significance to recover the retained pillars while guarantee the safety of the buildings at surface. In order to address this issue, excavating strip coal pillars using caving zone backfill technology was proposed in this study. The process of this technology was to grouting backfill the original strip caving zones using high-water content material at first, creating a combined backfill body of caved gangue and high-water content material, the backfill body acted as the temporary support. Then the retained pillars were excavated and the newly produced caving zones were backfilled with one interval, which effectively prevented the movement and deformation of the strata. The backfilling system and technology were designed and trailed to excavate the retained pillars at mining area 911 in Bucun colliery. It was found that the backfilling rate reached 96.8 to 98.7% in the original caving zones, the backfilling body in caving zones was highly compacted, and the maximum surface subsidence was only increased to 67 mm with no growth in the failure depth of floor. The retained coal pillars in three of the mining areas were safely excavated and the safety of buildings on the ground was preserved.  相似文献   

4.
Geotechnical and Geological Engineering - To ensure the safety of coal mining, lots of coal pillars were reserved in the coal mine. The stability of coal pillar and roof composite structures...  相似文献   

5.
Driving roadway along a goaf is commonly adopted for mining face of thick seam in a deep mine. Determining a reasonable width of coal pillar is a key scientific problem for driving roadway along a goaf in a deep mine. The paper took a roadway driven along a goaf at Zhaolou coal mine which is a typical kilometer-deep mine in China as engineering background. Field monitoring, model test, and numerical experiment are conducted. Stress and displacement evolution mechanism are analyzed with different pillar widths. The test results show that with the increase of coal pillar width, the peak stress value at the coal pillar working slope and integrated coal beside the roadway increases firstly and then tends to be stable, its position is transferred to the side of the roadway, and the deformation of coal pillar decreases gradually during roadway excavation. The coal pillar deformation and roadway vertical displacement increased as the coal pillar width increases under high abutment pressure. In order to reduce the waste of non-renewable resources and meet the requirements of bearing capacity and stability of coal pillars, a method is proposed for setting a reasonable width of coal pillars and the specific width of coal pillars is designed and applied in engineering practices based on the above research. All the tests are significant in the study of driving roadway along a goaf in a deep mine.  相似文献   

6.
According to statistics, there are a total of 39 sites of palaeo-karst collapse pillars in Northern China, as well as 3,650 palaeo-karst collapse pillars. Through an overall survey and analysis of the distribution regularities and formation mechanisms of palaeo-karst collapse pillars in the northern coal mine regions, this paper found that the rock formation structures, geological structures, karst characters, underground hydrodynamic conditions of karst and neotectonic movement conditions are basic geological bases for the formation of karst collapse pillars and rule the distribution of them. Karst collapse pillars apparently have three south–north regularities in terms of distribution, and they have resulted in severe damages to geological resources and environment in their distribution areas: mine water inrush causing and coal resources damage and influencing the impounding of reservoirs as well as the stability of dam sites. Based on the basic geological features of palaeo-karst collapse pillars in northern China, this paper also introduces the new methods of integrated prospecting of successive approximation to determine hydraulic conductivity of palaeo-karst collapse pillars.  相似文献   

7.
红层与煤系复合结构覆岩采动破坏分析及其应用   总被引:3,自引:0,他引:3  
许多矿区煤层采动影响范围内的覆岩层由红层和煤层共同构成。本文研究了山东省太平煤矿东区二叠系 3号煤层覆岩破坏和防水煤柱留设的问题 ,在对上覆第四系水文地质条件分析的基础上 ,对红层和煤系复合结构覆岩的工程地质特征和破坏状况进行了分析 ,确定了合理的防水煤岩柱高度 ,并经过开采验证 ,避免了水害发生.  相似文献   

8.
Summary This paper develops a rational approach for design of coal pillars under weak floor strata conditions considering ultimate bearing capacity (UBC) as well as pillar settlement. An approximate solution is presented for estimation of UBC for a shallow foundation on a two-layered rock system with consideration of both cohesion (c) and (ø) for both layers. Similarly, deformability underneath a full-size pillar is estimated from deformability calculated from plate loading tests. The effect of adjacent pillars on UBC and deformability of coal pillars in a panel is considered using foundation engineering analysis techniques. The design of pillars based on limiting settlements considers both differential settlements as well as mean settlement of pillar in a panel. An attempt is made to validate the proposed design approach based on field data and observations at an Illinois mine.  相似文献   

9.
细长窄煤柱破坏机理的数值分析   总被引:5,自引:0,他引:5  
程国明  黄侃  王思敬  宁柯 《岩土力学》2004,25(2):266-269
对特厚煤层条件下采用螺旋钻机开采细长窄煤柱的破坏过程进行了数值模拟。模拟结果再现了开采过程中煤柱破坏发生、发展直至塑性区贯通破坏的全过程,并从应力场演化分析了煤柱破坏过程的应力分布特征及破坏机理。  相似文献   

10.
条带煤柱的抗滑稳定性分析   总被引:1,自引:0,他引:1  
本文给出了走向条带开采条带煤柱抗滑稳定性分析的力学模型。提出了确定条带煤柱稳定性主要影响因素的敏感性分析法。通过峰峰矿务局九龙口矿的条采实例。介绍了走向条带煤柱抗滑稳定性分析的方法与步骤。  相似文献   

11.
In underground coal mining any increase in coal recovery rate is dependent on a decrease in pillar size. Backfilling is one way of reducing the required size of pillars and hence the volume of coal left underground. Therefore any comparisons made between a self-supported mine layout and backfill supported mine layout are based directly on pillar design. The most effective way to examine the effect of backfill on pillar support, and subsequently the rate of recovery, would be to incorporate the mechanisms of backfill support directly into the current design procedure for coal pillars. This paper presents a review of the mechanics of backfill support, a method of estimating the magnitude of that support based on earth pressure theory, and an example that incorporates backfill support into current coal pillar design.  相似文献   

12.
导水裂隙带高度预测途径探讨   总被引:3,自引:0,他引:3  
邹海  桂和荣 《江苏地质》1997,21(2):98-102
导水裂隙带高度是设计防水煤(岩)柱尺寸的主要技术参数,是煤矿防治水工作的重要内容。详细论述了其研究现状及发展趋势,并提出了履岩体地质环境,履岩体力学环境和数值模拟技术三位一体的综合预测评价方法。  相似文献   

13.
In this work, a shortwall block backfill mining (SBBM) technique is proposed for the recovery of residual corner coal pillars and irregular blocks left behind during the exploitation of coal mines, and a solution is provided for the risks associated with gangue piling and the loss of water resources owing to coal mining. Based on the theory of beams on elastic foundations, a mechanical analysis model was established for calculating the height of a water-conducting fracture zone (WCFZ) in the overlying strata of coal mines exploited using the SBBM technique. It was found that the key factors influencing the development of the WCFZ are the mining height, width of the protective coal pillars, backfill percentage, block length, and number of mining blocks. The relationships between these factors and the height of the WCFZ were obtained by incorporating the relevant parameters in the above-mentioned model. In the field experiment site, it was discovered that the minimum coal pillar width and goaf backfill percentage required to prevent the development of water-conducting fractures that could reach an aquifer are 5 m and 65%, respectively. Based on this result, the protective pillars of the site were designed to be 5 m wide, while the goaf backfill percentage was set as 80%. The borehole fluid method was used to measure the height of the WCFZ, which was found to be 26.8 m. This is consistent with the theoretical calculations (27.0 m) of this study, and thus, validates the reliability of the proposed mechanical model. The findings of this work will improve the recovery rate of residual coal resources in coal mining areas, and they are significant for the refinement of water conservation mining theories.  相似文献   

14.
应用模糊相似比原理,对电探小煤窑中的电测深曲线进行相似比计算,较准确地确定出小煤窑开采范围内的煤层、煤柱和采空区,提高了电测深曲线的定量解释精度。   相似文献   

15.
Summary. The extraction of coal seams under built-up structures and especially under water bodies has been a challenge to the miners due to the potential risk of disturbance to the surface. A number of safety and ground control problems are associated with the mining operations under water bodies. These can be dealt with through proper planning for the optimization of coal recovery and systematic strata control investigations. At Godavari khani (GDK) no. 3 incline of the Singareni Collieries Company Limited (SCCL), two panels namely SS-10/1A and SS-10/1B in no. 1 seam, were identified for extraction under the surface water body called Janagaon tank. A feasibility study was carried out by the authors for working these panels, and hydraulic sand stowing method was recommended. Further, strata behaviour monitoring was carried out using remote type geotechnical instruments during the extraction of pillars in one of the panels. The extraction of the pillars in the experimental panel progressed smoothly without any strata control problems. The mine management could extract coal reserves in the panel with more than 60% recovery, which were otherwise unworkable. This paper presents the feasibility of extraction of pillars under the Janagaon tank, and strata behaviour observations made during the actual extraction.  相似文献   

16.
Summary The demand for increased productivity and the problems associated with mining at greater depths have increased the interest in using the yield pillar concept in the United States. This paper summarizes chain pillar behaviour in a mine that historically experienced coal bumps in both room-and-pillar and longwall sections. Results indicate that, generally, the chain pillars yield as designed, but that yielding occurred either after development or with approach of the longwall face. The Bureau of Mines investigated several yield pillar design approaches to possibly explain observed differences in pillar behaviour. These approaches suggest that very localized conditions, such as coal and rock properties, cover depth, and extraction height, may influence the behaviour of any one pillar. At this mine, yielding chain pillars result in de-stressing of the longwall entries and the transfer of potentially dangerous stress concentrations to adjacent panels. Pre-longwall-mining behaviour indicates the existence of a pressure arch, the width of which increases with depth. Results indicate that use of yield pillars improves stress control, reduces bump potential, and increases resource recovery.  相似文献   

17.
利用数字测井资料对矿区工作面上覆地层的冒落带、裂隙带和弯曲沉降带进行系统的综合解释,确定其发育情况,对指导矿区的安全生产、开采范围的确定及开采煤柱留舍颇有益处。  相似文献   

18.
陕西神南矿区煤炭开采保水煤柱留设分析   总被引:2,自引:0,他引:2  
陕北榆神府区是我国西部重要的原煤产地,与丰富的煤炭资源比较,水资源贫乏,生态环境脆弱,科学开发利用有限的水资源,促进煤炭基地健康发展至关重要。本文以神南矿区为例,研究了保水采煤保水煤柱留设的科学性,分析了保水采煤的技术措施,提出了针对神南矿区浅埋煤层保水需要而留设保水煤柱尺寸为20~57.2m。  相似文献   

19.
针对孤岛工作面煤层开采底板损伤问题,以河北葛泉煤矿11913孤岛工作面为研究对象,采用微震方法分析其底板破坏深度;并通过数值模拟对首采、跳采及孤岛3种工作面回采过程中围岩采动应力与底板破坏的规律进行了对比分析。微震测试结果显示11913工作面回采过程中微震事件主要发生在下巷,识别出工作面最大破坏深度20~25 m;基于COMSOL的11912首采、11914跳采及11913孤岛3个工作面数值模拟结果显示,11912首采与11914跳采条件下煤柱地应力集中状态变化不大,最大破坏深度小于11.56 m,仅发育至工作面底板的注浆改造层内部;而11913孤岛回采条件下,受到重复采动影响,工作面两侧煤柱应力集中状态骤增,最大破坏深度剧增至23 m,已发育至煤层底板的本溪组灰岩含水层。研究结果对于华北型煤田下组煤层开采底板破坏规律分析与不同类型工作面回采条件下底板水害防治有一定的参考价值。   相似文献   

20.
卢兴利  尤春安  孙锋  战玉宝 《岩土力学》2006,27(Z1):239-242
考虑某典型煤矿特殊地质条件,采用ANSYS建立二维有限元模型,对于断层存在情况下煤柱的合理留设进行了数值模拟计算。分析了留设不同断层保护煤柱情况下开采对工作面前方煤柱及断层的影响,并对开采区顶板的支承压力进行了模拟,提出了断层保护煤柱的合理留设长度,为实际开采提供了可靠的科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号