首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
不同构造环境下的壳─幔过渡带结构   总被引:7,自引:1,他引:6  
位于中国西北部的天山造山带与准噶尔盆地是典型的盆岭构造。通过对横跨天山造山带与准噶尔盆地的沙雅-布尔津地学断面地震宽角反射、折射资料进行小波分析,获得了天山造山带与准噶尔盆地壳-幔过渡带的详细结构。结果表明,天山造山带的壳-幔间是以多个薄层过渡的。这些薄层的层厚度2~3km不等,层速度高低相间,总厚度约20km,平均速度较低,接近塔里木盆地下地壳的速度。塔里木盆地北缘与准噶尔盆地的壳-幔间不具有这种特点,其壳-幔间主要表现为一级间断面。而位于中国东北部的间阳-海城-东沟深地震测深剖面所揭示的辽东台隆-辽河盆地-燕山台褶带壳-幔过渡带的结构似乎具有完全相反的特征:辽河盆地的壳-幔过渡带比较复杂,它由数个薄层叠合而成,总厚度达15km;辽东台隆与燕山台褶带壳-幔过渡带结构十分简单,皆以一级间断面过渡为主。研究认为,造成二者差异的主要原因是它们所处的构造环境不同:前者为挤压环境,而后者为伸展环境。在挤压环境下,复杂的壳-幔过渡带形成于造山带的下面;而在伸展环境下,复杂的壳-幔过渡带形成于盆地的下面。壳-幔过渡的复杂程度与构造活动性相联系,在一定程度上反映了岩石圈目前的构造活动水平。  相似文献   

2.
塔里木盆地与天山山脉晚新生代盆山耦合机制   总被引:10,自引:0,他引:10  
根据塔里木盆地北缘地质构造几何学和运动学资料、油气勘探地震剖面、人工地震测深、地震层析成像以及地热资料,提出了塔里木盆地、准噶尔盆地岩石圈地幔在天山岩石圈之下碰撞并发生拆沉的盆山耦合机制的概念模型。由于印藏碰撞,青藏高原的北部前缘岩石圈地幔与塔里木盆地岩石圈地幔形成V字形碰撞结构,推动塔里木地块的高强度岩石圈向北运动并俯冲到天山岩石圈之下,以水平俯冲作用在中天山北缘岩石圈之下与准噶尔盆地向南俯冲的岩石圈地幔碰撞,并发生后剥拆离。塔里木岩石圈俯冲的过程中,形成库车再生前陆盆地和再生前陆冲断带以及再生天山山脉。冲断量约为塔里木俯冲量的20%。这一盆山耦合模型可以解释盆地构造、盆地沉降、山脉隆升、岩石圈深部构造和热特征。  相似文献   

3.
不同构造环境下的壳─幔过渡带结构   总被引:13,自引:0,他引:13  
位于中国西北部的天山造山带与准噶尔盆地是典型的盆岭构造。通过对横跨天山造山带与准噶尔盆地的沙雅-布尔津地学断面地震宽角反射、折射资料进行小波分析,获得了天山造山带与准噶尔盆地壳-幔过渡带的详细结构。结果表明,天山造山带的壳-幔间是以多个薄层过渡的。这些薄层的层厚度2~3km不等,层速度高低相间,总厚度约20km,平均速度较低,接近塔里木盆地下地壳的速度。塔里木盆地北缘与准噶尔盆地的壳-幔间不具有这种特点,其壳-幔间主要表现为一级间断面。而位于中国东北部的间阳-海城-东沟深地震测深剖面所揭示的辽东台隆-辽河盆地-燕山台褶带壳-幔过渡带的结构似乎具有完全相反的特征:辽河盆地的壳-幔过渡带比较复杂,它由数个薄层叠合而成,总厚度达15km;辽东台隆与燕山台褶带壳-幔过渡带结构十分简单,皆以一级间断面过渡为主。研究认为,造成二者差异的主要原因是它们所处的构造环境不同:前者为挤压环境,而后者为伸展环境。在挤压环境下,复杂的壳-幔过渡带形成于造山带的下面;而在伸展环境下,复杂的壳-幔过渡带形成于盆地的下面。壳-幔过渡的复杂程度与构造活动性相联系,在一定程度上反映了岩石圈目前的构造活动水平。  相似文献   

4.
为系统、深入地研究中国西部盆(盆地)、山(山脉)、原(高原)的壳幔结构与深部动力学过程,2003年我们提出并领导实施了"羚羊计划"(ANTILOPE-Array Network of Tibetan International Lithospheric Observation and Probe Experiments),在青藏高原先后完成了羚羊-I(ANTILOPE-I)到羚羊-IV(ANTILOPE-IV)4条二维宽频带台阵剖面,而在青藏高原东西构造结则实施了羚羊-V和羚羊-VI两个三维宽频带台阵探测。另外,我们将前期在准噶尔盆地、天山造山带、塔里木盆地、阿尔金造山带和柴达木盆地开展的九条综合地球物理观测剖面也纳入羚羊计划的总体框架中来。通过"羚羊计划"的实施,我们在中国西部(包括西北部的环青藏高原盆山体系以及西南部的青藏高原)取得了大量的、高质量的、综合的第一手观测数据,获得了中国西部盆、山、原精细的壳幔结构,系统地揭示了中国西部盆山原的深部地球动力学过程。主要结论总结如下:确定了准噶尔盆地基底的结构与属性,优化了盆地的基底构造格架;建立了天山造山带"层间插入削减"新的陆内造山模式,揭示了印欧碰撞在天山岩石圈缩短44%的去向以及由洋-陆俯冲到陆-陆碰撞俯冲的转换机制;揭示了塔里木盆地、阿尔金造山带和柴达木盆地的盆山接触关系;获得了塔里木盆地顺时针旋转的深部几何学、运动学和动力学证据;确定了青藏高原之下印度板块与欧亚板块的碰撞边界;发现目前的青藏高原由南部的印度板块、北部的欧亚板块和夹持于二者之间的巨型破碎区——西藏"板块"构成,首次确定了各自的岩石圈底边界;修正了高原变形的两个端员模型;建立了深部构造对地表地形的制约关系;系统地揭示了印度板块沿喜马拉雅造山带俯冲的水平距离与俯冲角度的变化规律与控制因素。"羚羊计划"以其巨大的观测网络与综合地球物理探测技术,采用地球物理学、地质学、地球化学等不同学科相结合的分析方法,揭示了印度板块俯冲、西藏巨型破碎区发育、塔里木板块顺时针旋转、西部水汽通道提前关闭、中国西北部干旱、沙漠化提前这一深部结构、动力学过程及其对地表地形、油气资源和环境变化的制约关系,推动了青藏高原地球系统科学理论的发展。  相似文献   

5.
为系统、深入地研究中国西部盆(盆地)、山(山脉)、原(高原)的壳幔结构与深部动力学过程,2003年我们提出并领导实施了“羚羊计划”(ANTILOPE-Array Network of Tibetan International Lithospheric Observation and Probe Experiments),在青藏高原先后完成了羚羊-I(ANTILOPE-I)到羚羊-IV(ANTILOPE-IV)4条二维宽频带台阵剖面,而在青藏高原东西构造结则实施了羚羊-V和羚羊-VI两个三维宽频带台阵探测。另外,我们将前期在准噶尔盆地、天山造山带、塔里木盆地、阿尔金造山带和柴达木盆地开展的九条综合地球物理观测剖面也纳入羚羊计划的总体框架中来。 通过“羚羊计划”的实施,我们在中国西部(包括西北部的环青藏高原盆山体系以及西南部的青藏高原)取得了大量的、高质量的、综合的第一手观测数据,获得了中国西部盆、山、原精细的壳幔结构,系统地揭示了中国西部盆山原的深部地球动力学过程。主要结论总结如下:确定了准噶尔盆地基底的结构与属性,优化了盆地的基底构造格架;建立了天山造山带“层间插入削减”新的陆内造山模式,揭示了印欧碰撞在天山岩石圈缩短44%的去向以及由洋-陆俯冲到陆-陆碰撞俯冲的转换机制;揭示了塔里木盆地、阿尔金造山带和柴达木盆地的盆山接触关系;获得了塔里木盆地顺时针旋转的深部几何学、运动学和动力学证据;确定了青藏高原之下印度板块与欧亚板块的碰撞边界;发现目前的青藏高原由南部的印度板块、北部的欧亚板块和夹持于二者之间的巨型破碎区——西藏“板块”构成,首次确定了各自的岩石圈底边界;修正了高原变形的两个端员模型;建立了深部构造对地表地形的制约关系;系统地揭示了印度板块沿喜马拉雅造山带俯冲的水平距离与俯冲角度的变化规律与控制因素。 “羚羊计划”以其巨大的观测网络与综合地球物理探测技术,采用地球物理学、地质学、地球化学等不同学科相结合的分析方法,揭示了印度板块俯冲、西藏巨型破碎区发育、塔里木板块顺时针旋转、西部水汽通道提前关闭、中国西北部干旱、沙漠化提前这一深部结构、动力学过程及其对地表地形、油气资源和环境变化的制约关系,推动了青藏高原地球系统科学理论的发展。  相似文献   

6.
利用在2002~2004年新疆天山地区富蕴—库尔勒布设的流动地震台,经过连续两年的观测所采集的数据,挑选远震P波到时数据,进行了地震层析反演处理,获得此剖面地震层析图像推断地壳上地幔的速度结构。反演结果表明,富蕴—库尔勒剖面上塔里木板块向北的推进相对于西部有所减弱,在西部表现强烈的造山作用,向东逐步减缓,在天山的底部不过100km上下。地震活动集中在此范围内。岩石圈物质移动方向发生变化部分向东推移,自然也降低了天山的隆升作用,从而造成天山西段和东段的差异。在本剖面范围内天山的Moho面结构复杂有重叠、斜插特征,深度最大在天山地区达80km,准噶尔盆地和本剖面范围内塔里木盆地北部Moho面深度为40~50km。  相似文献   

7.
准噶尔造山带地壳结构复杂 ,构造形态多样。根据地球物理资料 ,特别是国家“30 5”项目可可托海至阿克塞地学大断面反映出 ,准噶尔造山带至少由四个不同时代、不同性质的地质块体拼合而成。地体间为深断裂或超岩石圈深断裂分隔。在地块内部不同层次之间也常有巨型水平剪切或滑脱带存在 ,造成了准噶尔造山带在垂向上有明显的分层性 ,在横向上具有不均一性和不连续性。  相似文献   

8.
大陆俯冲作用及青藏高原周缘造山带的崛起   总被引:65,自引:6,他引:59  
青藏高原周缘造山带于新生代时崛起。周缘造山带中古老变质地体的折返与3种挤 出作用方式有关:喜马拉雅"逆冲-伸展"型挤出、祁连山"反向逆冲"型挤出和阿尔金"逆冲-转换"型挤出。据地质与地球物理综合研究推测,造山带的折返与周缘大陆岩石圈向内的俯冲作用有关:印度板块岩石圈向北俯冲至雅鲁藏布江缝合带下约 200 km处,西伯利亚板块往南低角度插入祁连山 40 km以下,塔里木地块沿阿尔金北缘边冲断层呈铲式往南俯冲于阿尔金山下100km处,扬子地块呈入体插入青藏高原东部中地壳下面。是否存在扬子地块往西运动及大陆俯冲作用尚待探究。  相似文献   

9.
青藏高原隆升对新疆天山山脉地壳-上地幔构造的影响   总被引:1,自引:0,他引:1  
依据地震层析和接收函数的结果获得了天山山脉东段和西段的深部构造的速度图像,探讨了印度板块向北推进和青藏高原隆升对天山山脉造山作用的影响以及天山山脉不同地段的地壳上地幔构造的差异。克拉玛依—库车剖面上清楚地展示出,天山是由高速和低速的地体拼合而成。来自塔里木的高速体向北俯冲到天山达200km以下的深度,而来自准噶尔盆地的高速体则没有明显地向南推进,说明由南向北的推进是很强的,它是造成天山山脉继续隆升的主要动力,从而造就了天山山脉。天山山脉在Moho面以上的部分是中天山北缘断裂和中天山南缘断裂之间的低速体与两侧的高速体拼合成的,其南北宽度约350km,向深度延伸越过200km。塔里木盆地和准噶尔盆地均为高速体的范围,天山山脉东段Moho面以上的地壳部分,南部高速体有向北推进和俯冲的特征,但不明显。夹在两盆地之间的天山主要为低速体,仅在乌鲁木齐和北天山山前断裂以南有残留的高速体,深度不超过30km,这表明天山是由速度不同的地质体挤压而拼合成的。天山延伸到乌鲁木齐以东,向深部的延伸仅仅100km上下。在富蕴—库尔勒剖面上,塔里木板块向北的推进相对于克拉玛依—库车剖面有所减弱。天山西段表现出强烈的造山作用,向东逐步减缓,到达天山的东段,虽然天山深部的构造活动仍然在继续进行,地震活动频繁,可是,活动区域集中在天山底部不过100km上下。说明山根的范围比西部减少了近一半。  相似文献   

10.
中国中西部中、新生代前陆盆地与挤压造山带耦合分析   总被引:69,自引:8,他引:61  
中国中西部主要由中、新生代造山带与中、新生代盆地构成盆山格局 :秦岭造山带与南北两侧四川盆地与鄂尔多斯盆地 ;天山造山带与南北两侧塔里木盆地与准噶尔盆地 ;哀牢山造山带与东西两侧楚雄盆地与兰坪思茅盆地等 ,总体上构成盆山耦合。根据挤压造山带类型与前陆盆地类型 ,可以划分出 3种耦合类型 ,即 ( 1)碰撞造山带与周缘前陆盆地 ,( 2 )俯冲造山带与弧后前陆盆地及 ( 3)再生造山带与再生前陆盆地。因此前陆盆地是伴随着造山带的形成与演化而发育 ,造山带断滑系统直接控制前陆盆地结构、沉积层序及构造样式等 ,从而制约前陆盆地油气分布的有序性  相似文献   

11.
西昆仑—塔里木—天山岩石圈深地震探测综述   总被引:40,自引:6,他引:40  
高锐  高弘 《地质通报》2002,21(1):11-18,T001,T002
沿新疆地学断面走廊域实施了3种深地震探测方法:近垂直深地震反射剖面、宽角反射与折射深地震测深剖面和移动式宽频地震观测,揭露出西屁仑-塔里木-天山岩石圈的结构与横向变化,发现了塔里木大陆地块与青藏高原西北部西昆仑造山带碰撞的地震学证据,揭示出天山与塔里木、天山与准噶尔,以及昆仑山与塔里木之间的岩石圈尺度盆山耦合关系。阶段成果发表后引起国内外学者广泛注意,本文结合相关资料对这些新成果进行了系统综述,旨在对比研究青藏高原南北两缘不同的碰撞变形之深部过程。  相似文献   

12.
塔里木地块北部横向构造及断条模式   总被引:5,自引:0,他引:5       下载免费PDF全文
李涛  王宗秀 《中国地质》2006,33(1):14-27
提要:塔里木盆地北部与西南天山毗邻区域发育的浅部构造系统是喀什坳陷—柯坪塔格逆冲推覆构造带—库车前陆坳陷冲断带,它们在山前以1~3排方式平行造山带展布,是一套由底板滑脱断坪和断坡构成的逆冲推覆系统,具有明显的横向分段性;该区深部构造系统却是一组以北西向为主展布的断条构造,并可以划分出4个一级断条构造。笔者从构造层变形、重力、航磁异常场及天然地震平面分布密度等几个角度,对区内深部横向构造系统进行了研究,并利用天然地震深度/频次统计结果,识别出圈层拆离解耦面的深度分布,进而探讨了深部横向构造运动的岩石圈地壳圈层归属,对区域北西向横向构造系统做了详细的论述。本文选择喀拉玉尔滚断裂带和库尔勒断裂带进行重点解剖,研究了横向构造与浅部构造的转换关系,最终提出了塔里木地块北部断条构造几何学运动学模式,即塔里木地块深部向北西方向运动受到古西南天山的阻挡性约束而“被迫”俯冲,岩石圈地壳发生拆离解耦,原有的横向构造——北西向构造带(断裂带)被激活,使得俯冲系统以断条为单位进行俯冲;在俯冲过程中,岩石圈地壳的拆离及横向构造被激活的方向是从约束体(南天山)附近开始,向塔里木盆地(北部)的腹地方向推进,因此,越是接近造山带区域,断条俯冲状态的差异越明显,横向分段性越突出;而正因为塔里木地块以断条形式向南天山的俯冲行为,使得山前坳陷冲断带(及天山)发生分段。  相似文献   

13.
汪洋  程素华 《地学前缘》2013,20(1):182-189
根据均衡原理制约的地热计算得到中国西部及邻区岩石圈的温度分布状态,以40、100km和莫霍面深度等温线图的形式表示,同时计算了以1 350℃等温面深度表示的中国西部及邻区的热岩石圈厚度。结果显示:中国大陆西北部地区、哈萨克斯坦东部地区以及上扬子地块、蒙古中西部地区和青藏高原中部的深部地温较低,青藏高原北部、东部以及天山褶皱带中部的深部地温高。在中国西部及邻区范围内,岩石圈厚度在180km以上的地区包括准噶尔盆地,塔里木盆地核心部位,西藏东部、中部以及祁连山地区。上扬子地块(四川盆地)岩石圈厚度为160km或更多,蒙古中西部地区以及哈萨克斯坦东部地区的岩石圈厚度为140~180km。青藏高原东部边缘和藏北地区以及天山中部吉尔吉斯伊塞克湖地区的岩石圈厚度较薄(<140km)。地热计算得到的结果与地震层析成像研究结果之间相互吻合。采用湿的上地幔流变学模型的计算结果表明,青藏高原及其东部边缘、天山褶皱带中部和蒙古中西部地区的岩石圈流变学强度模型为"奶油蛋糕(crèmebrlée)"型,其强度剖面显示强地壳而弱地幔的特点;上扬子地块(四川盆地)、准噶尔盆地、塔里木盆地和哈萨克斯坦东部地区岩石圈流变学强度模型为"果冻三明治(jelly sandwich)"型。  相似文献   

14.
青藏高原东北缘岩石圈密度与磁化强度及动力学含义   总被引:4,自引:0,他引:4  
利用横贯柴达木盆地南北的格尔木—花海子剖面岩石圈二维P波速度结构以及地震波速度与介质密度之间的关系,建立了该剖面岩石圈二维密度结构与二维磁化强度的初始模型。依据重磁同源原理,在柴达木盆地重、磁异常的二重约束下完成了重磁联合反演,获得了该剖面岩石圈二维密度结构与二维磁化强度分布。结果表明:柴达木盆地地壳厚度沿测线变化较大,平均厚度约60km。在柴达木盆地南缘地壳厚约50km,达布逊湖附近地壳最厚为63km左右,大柴旦附近地壳较薄,为50km左右。柴达木盆地的地壳纵向上可分为三层,即上地壳、中地壳与下地壳。位于盆地中部的中、下地壳分别发育大范围的壳内低密度体,并处于上地幔隆起的背景之上;横向上可将盆地分成南北两个部分,分界在达布逊湖附近。整个剖面结晶基底埋深变化也很大,在达布逊湖附近为12km,在昆仑山北缘基底几乎出露地表。结晶基底的展布形态与地壳底界,即莫霍面呈近似镜像对称。综合研究认为,柴达木盆地的岩石圈结构存在着明显的南北差异,其分界在达布逊湖的北面。在盆地南部,岩石圈介质横向变化较小,各层介质分布正常;在盆地的北侧,岩石圈结构特别在中、下地壳和上地幔顶部横向上发生了变化。壳内低密度体的存在意味着柴达木盆地具有较热的岩石圈和上地幔,加之基底界面与莫霍面的镜像对称分布,形成与准噶尔盆地和塔里木盆地的构造差异。多种地球物理参数所揭示的地壳上地幔结构及其横向变化特点为柴达木盆地构造演化及青藏高原北部边界的地球动力学研究提供了岩石圈尺度的地球物理证据。  相似文献   

15.
准噶尔南缘新生代断裂的形成机制   总被引:3,自引:0,他引:3  
准南有三条走向东西右列的新生代冲断褶皱带,是天山北麓右行走滑兼走逆冲断层的尾端冲断扇构造。各冲断褶皱带的西端与天山北麓断层相接触处形成最早,在中新世中期开始形成,主体在中新世晚期约10Ma开始形成,其末端在第四纪才开始形成,表现出挤压的构造动力和变形自南向北扩展。准南逆冲构造带的初始时间比天山南麓的库车逆冲构造带晚约8Ma,说明天山造山带因为塑性较高,构造动力传播是耗时的,这与塔里木盆地刚性高、瞬时传递的特征形成对照。瞬时传递构造应力和耗时传递构造动力在空间上的交替出现是印藏陆陆碰撞导致陆内变形传播形式的基本原因。  相似文献   

16.
Located at the center of the Eurasian continent and accommodating as much as 44% of the present crustal shortening between India and Siberia, the Tianshan orogenic belt (TOB) is one of the youngest (<20 Ma) and highest (elevation>7000 m) orogenic belts in the world. It provides a natural laboratory for examining the processes of intracontinental deformation. In recent years, wide angle seismic reflection/refraction profiling and magnetotelluric sounding surveys have been carried out along a geoscience transect which extends northeastward from Xayar at the northern margin of the Tarim basin (TB), through the Tianshan orogenic belt and the Junggar basin (JB), to Burjing at the southern piedmont of the Altay Mountain. We have also obtained the 2D density structure of the crust and upper mantle of this area by using the Bouguer anomaly data of Northwestern Xinjiang. With these surveys, we attempt to image the 2D velocity and the 2D electric structure of the crust and upper mantle beneath the Tianshan orogenic belt and the Junggar basin. In order to obtain the small-scale structure of the crust–mantle transitional zone of the study area, the wavelet transform method is applied to the seismic wide angle reflection/refraction data. Combining our survey results with heat flow and other geological data, we propose a model that interprets the deep processes beneath the Tianshan orogenic belt and the Junggar basin.Located between the Tarim basin and the Junggar basin, the Tianshan orogenic belt is a block with relatively low velocity, low density, and partially high resistivity. It is tectonically a shortening zone under lateral compression. A detachment exists in the upper crust at the northern margin of the Tarim basin. Its lower part of the upper crust intruded into the lower part of the upper and the middle crust of the Tianshan, near the Korla fault; its middle crust intruded into the lower crust of the Tianshan; and its lower crust and lithospheric mantle subducted into the upper mantle of the Tianshan. In these processes, the mass of the lower crust of the Tarim basin was carried down to the upper mantle beneath the Tianshan, forming a 20-km-thick complex crust–mantle transitional zone composed of seven thin layers with a lower than average velocity. The thrusting and folding of the sedimentary cover, the intrusive layer in the upper and middle crust, and the mass added by the subduction of the Tarim basin into the upper mantle of the Tianshan are probably responsible for the crustal thickening of the Tianshan. Due to the important mass deficiency in the crust and the upper mantle of the Tianshan, buoyancy must occur and lead to rapid ascent of the Tianshan.The episodic tectonic uplift of the Tianshan and tectonic subsidence of the Junggar basin are closely related to the evolution of the Paleozoic, Mesozoic, and Cenozoic Tethys.  相似文献   

17.
Seismic Features of the Crust-Upper Mantle Beneath Karamay-Kuqa, Xinjiang   总被引:2,自引:0,他引:2  
1. IntoductionSponsored by the National 305 Program, China, a teleseismic experiment was performed jointly by the Chinese Academy of Geological Sciences and the French Scientific Research Center in Tian Shan area from June 1997 to February 1998. The array was mostly deployed along the main road, starting from Karamay in the north to Kuqa in the south. Geologically, the 700 km-long profile covers the Junggar basin, the Tian Shan Mts., the Bo-A Fault and the Korla Fault, ending in nort…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号