首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The crude enzyme, which was extracted from viscera of Lunella coronata coreensis (Recluz), was salted out and dialysed. Three enzymatic peaks isolated from DEAE-cellulose column chromatography were refered to as lyase Ⅰ, Ⅱ and Ⅲ, respectively. Then these lyases underwent gel-filtration on Sephadex G-25 respectively, and three purer lyases were derived therefrom, the highest purification being 73 fold.The kinetics of the three lyases was tested respectively. The optimum pH was as follows: lyase Ⅰ was 7.6±0.02 Tris-HCl buffer; lyase Ⅱ was 6.6±0.02 Na2HPO4-NaH2PO4 buffer; and lyase Ⅲ was 5.6±0.02 HAc-NaAc buffer. In the rang of tested concentration, KC1 and Nad were the activator and MnCl2 was the inhibitor, all for the three lyases; MgCl2 was the activator for lyases Ⅰ and Ⅱ, but the MgCl2 of high concentration was the inhibitor for lyase Ⅲ; Pb (OAc)2 acted differently for three lyases. The Km values of these lyases were 0.2, 0.6 and 0.04 mg/ml in order of precedence.  相似文献   

2.
EEG and tremor of three divers are recorded during simulated He-O2 saturation diving at a depth of 302 m. The results ate as follows:1.During the exposure to He-O2, a decrease in a rhythm and increase in activity of 8 and wave appear in subjects' EEGs and sometimees characteristics with sleep stage I are shown in individual EEG,2.During the exposure to He-O2. the increase in the amplitude of postural tremor in 4-8 Hz and 8-13 Hz is recorded and the increase of the amplitude of 8-13 Hz is more noticeable.3. During the exposure to He-O2, all the divers suffered from fatigue, poor sleep and memory failure. These symptoms accorded with the records of the subjects' EEG and tremor.  相似文献   

3.
长链烯酮及U37k值在北极海洋古温度的应用研究   总被引:1,自引:1,他引:1  
在北极楚科奇海和白令海表层沉积物中检出长链烯酮化合物,研究结果表明楚科奇海和白令海沉积物中长链烯酮以C37:3甲基酮占优势,C37~C39不饱和烯酮丰度变化顺序为C37>C38>C39.根据∑C37/∑C38比值,所检出的长链烯酮母质生物主要是颗石藻(Emiliania huxleyi).应用U37k和U37k'标准校正关系式估算了表层海水古温度,其中U37k'估算值为4.147~5.706℃(平均为5.092℃).  相似文献   

4.
作者运用简化的η坐标 POM模式数值研究了地形对东海黑潮锋面弯曲的产生与成长的影响。平底时 ,小扰动迅速发展导致锋面出现大弯曲。考虑到地形因素和黑潮流核远离陆架的情况 ,因其锋区正处在陡的陆坡之上 ,斜压不稳定被减小 ,其锋面不会出现如观测所示的弯曲。结果表明 ,在该实验条件下 ,地形对锋面起到稳定作用  相似文献   

5.
北部湾东北部表层沉积物主微量元素空间分布特征   总被引:1,自引:0,他引:1  
A multi-index analysis including grain size, major and trace elements is performed on the surface sediments from the northeastern Beibu Gulf to trace the sources of the sediments and to understand the controlling factors for elements distribution. The mean grain size exhibits a wide variation ranging from 0.09Φ to 8.05Φ with an average value of 5.33Φ. The average contents of major elements descend in an order of c(SiO_2)c(Al_2O_3)c(Fe_2O_3)c(CaO)c(MgO)c(K_2O)c(Na_2O)c(TiO_2)c(P_2O_5)c(MnO), while those of trace elements exhibit a descending order of c(Sr)c(Rb)c(V)c(Zn)c(Cr)c(Pb)c(Ni)c(Cu)c(As). On the basis of elementary distribution characteristics and statistical analyses, the study area is divided into the four zones: Zone I is located in the northeastern coastal area of the gulf, which receives large amount of fluvial materials from local rivers in Guangxi and Guangdong, China, and the Qiongzhou Strait; Zone Ⅱ is located in the center of the study area, where surface sediments exhibits a multiple source; Zone Ⅲ is located in the Qiongzhou Strait, where surface sediments are dominated by materials from the Zhujiang River and Hainan; Zone IV is located in the southwest of the study area, where surface sediments are mainly originated from the Red River and Hainan. The statistical analyses of sediment geochemical characteristics reveal that the grain size, which is mainly influenced by hydrodynamics and mineral composition of terrigenous materials, is the leading factor controlling the elementary distribution.Meanwhile, impacts from anthropogenic activities and marine biogenic process will also be taken into consideration.  相似文献   

6.
The influences of mesoscale eddies on variations of the Kuroshio path south of Japan have been investigated using time series of the Kuroshio axis location and altimeter-derived sea surface height maps for a period of seven years from 1993 to 1999, when the Kuroshio followed its non-large meander path. It was found that both the cyclonic and anticyclonic eddies may interact with the Kuroshio and trigger short-term meanders of the Kuroshio path, although not all eddies that approached or collided with the Kuroshio formed meanders. An anticyclonic eddy that revolves clockwise in a region south of Shikoku and Cape Shionomisaki with a period of about 5–6 months was found to propagate westward along about 30°N and collide with the Kuroshio in the east of Kyushu or south of Shikoku. This collision sometimes triggers meanders which propagate over the whole region south of Japan. The eddy was advected downstream, generating a meander on the downstream side to the east of Cape Shionomisaki. After the eddy passed Cape Shionomisaki, it detached from the Kuroshio and started to move westward again. Sometimes the eddy merges with other anticyclonic eddies traveling from the east. Coalescence of cyclonic eddies, which are also generated in the Kuroshio Extension region and propagate westward in the Kuroshio recirculation region south of Japan, into the Kuroshio in the east of Kyushu, also triggers meanders which mainly propagate only in a region west of Cape Shionomisaki. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
On the parameterization of drag coefficient over sea surface   总被引:1,自引:0,他引:1  
Six parameterization schemes of roughness or drag coefficient are evaluated on the basis of the data from six experiments. They present great consistency with measurement when friction velocity u*<0.5 m/s (approximately corresponding to 10 m wind speed U10 <12 m/s) and large deviation from measurement when u*≥0.5 m/s (approximately U10≥12 m/s). In order to improve the deviation, a new parameterization of drag coefficient is derived on the basis of the similarity theory, Charnock relationship and Toba 3/2 power law. Wave steepness and wind-sea Reynolds number are considered in the new parameterization. Then it is tested on the basis of the measurements and shows significant improvement when u*≥0.5 m/s. Its standard errors are much smaller than the ones of the other six parameterizations. However, the new parameterization still needs more tests especially for high winds.  相似文献   

8.
Samples of O isotopic tracer were mlleMed at Sections P3,P25,PcM-t/2-E and PCM-1/2.w in both the Fast China Sea and the area to the east of the Ryūkyū-gunto during October-November,1991.Analytical results of the δ18O are as follows: (1) In the Kuroshio area,the δ18O isolines are almost parallel to the 200 m isobath.The value of δ18O is negative and reaches minimum mt the main axis of the Kuroshio,and increases on both sides.(2) In the Taiwan Warm Current (TWC) area there is a high δ18O tongue extending to the northeast.(3) In the area near the coast,the distribution of δ18O isoline shows that the Changjiang River runoff diffuses seaward and the land-ocean isotopic effect from the nearshore to the offshore.(4) The values of δ18O are from -1.0×10-3 to -0.5×10-3 in the shelf.(5) There is a low mre of δ18O value(<-1.6×10-3) at the 600 m layer in the Kuroshio area,which is quite in accord with the existence of a low salinity mre (S G 34.30) between the 600 and 800 m layers in the same area.Finally,the mrrelations of the δ18O with the salinity and temperature,the upwelling and so on are discussed.  相似文献   

9.
The variations of the velocity and path of the Kuroshio are investigated by using the data obtained after the World War II. The time scales of these variations are classified into three categories,i.e. long-, medium- and short-terms. Period of the long-term variations seems to be about 7 to 9 years. Large meanders of the Kuroshio off Enshu-nada in 1953–1955 and 1959–1962 are accompanied with the low mean velocity of the Kuroshio. These large meanders are explained as a stationary Rossby wave by applying the equation for the phase velocity of the barotropic Rossby wave with the disturbance of finite width. To obtain the above conclusion, it is assumed that the Kuroshio extends down to the depth of 2,300 db and that the east component of the over-all mean velocity of the meandering Kuroshio should be substituted for the velocity of the eastward basic current in the above equation. As for the medium-term variation of the Kuroshio, there seems to exist variations in the velocity with the periods of 4, 6, 8 and 12 months and those in the position of the Kuroshio axis with the periods of 8 and 12 months. These meanders of the Kuroshio progress towards east with the mean phase velocity of about 5 miles a day, which is nearly the same as the calculated mean phase velocity of a progressive Rossby wave.  相似文献   

10.
The distribution of dissolved oxygen in the western Taiwan Strait was discussed by using the method of harmonic analysis. The periodic variation of dissolved oxygen in seawatcr can be expressed by the Fourier series:whereto is annual average value; Am andφm are amplitude and phase of constituent, respectively. The distribution of A0 and the annual and semiannual constants (Am, φm) of dissolved oxygen in the surface, bottom and vertical section of the western Taiwan Strait were described. The effect of the various currents on the distribution of dissolved oxygen was also discussed.  相似文献   

11.
海浪对北太平洋海-气二氧化碳通量的影响   总被引:1,自引:0,他引:1  
利用4种海-气界面气体传输速率公式对比研究了北太平洋气体传输速率及其CO2通量的季节变化特征。与单纯依赖风速的算法相比, 考虑波浪影响的气体传输速率和CO2通量在空间分布和季节变化上具有明显差异。在低纬度地区(0°~30°N), 波浪参数使气体传输速率下降, 海洋对大气CO2的吸收减少, 而在30°N以北范围内则出现新的气体传输速率高值区, 海洋对大气的吸收增加。进一步研究了黑潮延伸体区域的气候态月平均气体传输速率和CO2通量。结果表明, 该区域气体传输速率和CO2通量最大值分别出现于冬季和春季, 引入波浪参数后, 虽然该区域气体传输速率和CO2通量平均值没有明显差异, 但季节变化强度显著增强。  相似文献   

12.
George Anastasakis   《Marine Geology》2007,240(1-4):113-135
Santorini volcano has been the largest source of volcaniclastic sediment in the Eastern Mediterranean during the late Quaternary. A dozen cores from the Cretan Basin, south of Santorini, have sampled two megabeds that consist of gravity emplaced volcaniclastic sequences. The uppermost megabed U consists of a succession of five (U5–U1) base cut out turbiditic units. Lower megabed A is a single turbiditic event. Only the uppermost U2 and U1 turbidites are separated from the underlying beds by hemipelagic marls. The texture and composition of the U and A megabeds closely match the texture and composition of the fine, vitric ash of the “Minoan” deposits on Santorini islands, dating from about 3500 yr BP. These megabeds are therefore attributed to rapid accumulation of separate gravity flows fed by the “Minoan” eruption, except for the upper U2 and U1 turbidites deposited from subsequent gravity flows transporting eroded volcaniclastic sediments. With the exception of the margin south of Santorini, dozens of cores retrieved around the margins of the Cretan Basin have a continuous late Quaternary succession that shows no evidence for massive sediment remobilization into the deeper basin, including the passage of the “Minoan” tsunami.

Extensive high-resolution 3.5 kHz records revealed the acoustic character, architecture and distribution of the U and A megabeds and four underlying late Quaternary volcanogenic megabeds in the Cretan Basin. The acoustic facies of megabeds are typical of megaturbidites and consist of an upper, transparent, lower velocity layer that corresponds to the fine-grained upper turbiditic silt and clay section and a lower, strongly reflective higher velocity section that corresponds to the lowest, coarser-grained base of the turbidite that is developed over a sharp erosional surface. Penetration of the high-resolution records reveals the existence of at least six megabeds. Correlation with core lithology and the physical properties of the various lithofacies, including down-core velocity profiles, has allowed us to determine the thickness and volumes of the upper four megabeds which are: U ≤ 9 m thick, volume 3.7 km3; A ≤ 25 m thick, volume 12.2 km3; B ≤ 22 m thick, volume 10.3 km3; C ≤ 15 m thick, volume 8 km3. These thick megabeds are the uppermost products of repeated explosive eruption of Santorini in the late Quaternary. Calculated sedimentation rates from and after the “Minoan” eruption are 9.4 m/1000 yr that rise to over 15.7 m/1000 yr if megabed B was also deposited during this eruption.  相似文献   


13.
The variation features of the Antarctic sea ice (Ⅱ)   总被引:1,自引:0,他引:1  
ThevariationfeaturesoftheAntarcticseaice(Ⅱ)¥XieSimei;HaoChunjiang;QianPingandZhangLin(ReceivedFebruary6,1993;acceptedAugust29...  相似文献   

14.
CarbonatechemistryandtheanthropogenicCO_2intheSouthChinaSea¥Chen-TungArthurChenandMing-HsiungHuang(ReceivedSeptember21,1993;a?..  相似文献   

15.
The characteristics of the Kuroshio axis south of Kyushu, which meanders almost sinusoidally, are clarified in relation to the large meander of the Kuroshio by analyzing water temperature data during 1961–95 and sea level during 1984–95. The shape of the Kuroshio axis south of Kyushu is classified into three categories of small, medium, and large amplitude of meander. The small amplitude category occupies more than a half of the large-meander (LM) period, while the medium amplitude category takes up more than a half of the non-large-meander (NLM) period. Therefore, the amplitude and, in turn, the curvature of the Kuroshio axis is smaller on average during the LM period than the NLM period. The mean Kuroshio axis during the LM period is located farther north at every longitude south of Kyushu than during the NLM period, with a slight difference west of the Tokara Islands and a large difference to the east. A northward shift of the Kuroshio axis in particular east of the Tokara Islands induces small amplitude and curvature of the meandering shape during the LM period. During the NLM period, the meandering shape and position south of Kyushu change little with Kuroshio volume transport. In the LM formation stage, the variation of the Kuroshio axis is small west of the Tokara Islands but large to the east due to a small meander of the Kuroshio. In the LM decay stage, the Kuroshio meanders greatly south of Kyushu and is located stably near the coast southeast of Kyushu. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
One hundred and seven marine aerosol samples were collected during December 1988 to March 1990, and 3 dry deposition samples, 16 rain samples and 2 Cascade Impacter samples were collected from March to May 1990 at the southeast coast of the Xiamen Island. All the samples were analyzed for SO42-, NO3-, Cl-, Na+ , NH4+, using ion chromatography.The results indicate that the concentration of sulfate in marine aerosols over the Xiamen waters appears to be of seasonal variation, in an order of winter > spring > autumn > summer. The mean sulfate concentration lor the total marine aerosol samples over the Xiamen waters is 9. 37 μg/m3, respectively 0. 89 and 8. 48 μg/m3 for the seasalt and non-sea-salt sulfate. The distribution of sulfate shows a bimodal form with a peak in the coarse particle range which is derived from the sea-salt sulfate, and a peak in the fine particle range which is derived from the non-sea-salt sulfate. The total deposition of sulfate to the Xiamen waters is estimated to be 4. 68g/m2   相似文献   

17.
We conducted a detailed analysis of along-trench variations in the flexural bending of the subducting Pacific Plate at the Tonga-Kermadec Trench. Inversions were conducted to obtain best-fitting solutions of trench-axis loadings and variations in the effective elastic plate thickness for the analyzed flexural bending profiles. Results of the analyses revealed significant along-trench variations in plate flexural bending: the trench relief(W_0) of 1.9 to 5.1 km;trench-axis vertical loading(V_0) of –0.5×(10)~(12) to 2.2×(10)~(12) N/m; axial bending moment(M_0) of 0.1×(10)~(17) to 2.2×(10)~(17) N;effective elastic plate thickness seaward of the outer-rise region(T_e~M) of 20 to 65 km, trench-ward of the outer-rise(T_e~m) of 11 to 33 km, and the transition distance(X_r) of 20 to 95 km. The Horizon Deep, the second greatest trench depth in the world, has the greatest trench relief(W_0 of 5.1 km) and trench-axis loading(V_0 of 2.2×(10)~(12) N/m); these values are only slightly smaller than that of the Challenger Deep(W_0 of 5.7 km and V_0 of 2.9×(10)~(12) N/m) and similar to that of the Sirena Deep(W_0 of 5.2 km and V_0 of 2.0×(10)~(12) N/m) of the Mariana Trench,suggesting that these deeps are linked to great flexural bending of the subducting plates. Analyses using three independent methods, i.e., the T_e~M/T_e~m inversion, the flexural curvature/yield strength envelope analysis, and the elasto-plastic bending model with normal faults, all yielded similar average Te reduction of 28%–36% and average Te reduction area S¢Te of 1 195–1 402 km~2 near the trench axis. The calculated brittle yield zone depth from the flexural curvature/yield strength envelope analysis is also consistent with the distribution of the observed normal faulting earthquakes. Comparisons of the Manila, Philippine, Tonga-Kermadec, Japan, and Mariana Trenches revealed that the average values of T_e~M and T_e~m both in general increase with the subducting plate age.  相似文献   

18.
Three Kuroshio small meanders off the southeast coast of Kyushu that occurred during 1994 to 1995 were investigated by using satellite-derived sea surface temperature (SST) and sea surface height (SSH) maps, World Ocean Circulation Experiment (WOCE) Hydrographic Program (WHP) repeat section and Japan Meteorological Agency (JMA) hydrographic observations. Based on the satellite data, we observed that the three small meanders are formed by different processes: the triggering and growth of these meanders are caused by a cyclonic eddy propagating from the Kuroshio recirculation region or Kuroshio front meanders traveling from the East China Sea. Investigation of the two small meanders in 1994 and 1995 spring that are captured by the WHP observation showed quite consistent hydrographic features. On the nearshore side of the meandering Kuroshio, a countercurrent appears, associated with vertically uniform upward lifts of the isopycnals from sea surface to bottom at the boundary between the countercurrent and the Kuroshio. In the countercurrent region, the waters in the density ranges of the North Pacific subtropical mode water (NPSTMW) and the North Pacific Intermediate Water (NPIW) are more saline and less saline than typical waters that the Kuroshio carries in a non-small meander state, respectively. There are indications that high-salinity NPSTMW and low-salinity NPIW distributed off the Kuroshio was supplied to the countercurrent region. In the meandering Kuroshio flow, while there is no notable change in properties around the NPSTMW density range, salinity of the NPIW is significantly higher than that carried by the Kuroshio in a non-small meander state, but not higher than that in the Kuroshio at the Tokara Strait, which suggests that saline NPIW from the Tokara Strait, less mixed with low-salinity NPIW off the Kuroshio, may be carried by the meandering Kuroshio. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
南海中部地震反射波特征及其地质解释   总被引:8,自引:2,他引:6  
刘建华 《海洋学报》2000,22(6):73-80
20世纪70年代以来,在南海中部海区开展了各种地震调查,为研究盖层和基底发育、断裂和岩浆活动、海盆成生演化提供了重要依据。在对南海中部海区4112km48道反射地震资料解释的基础上,识别出了T1,T2,T4,T6,Tg等五个反射界面;识别出了I~V五套地震反射层组,推测时代分别为上新世-第四纪、中新世晚期、中新世早-中期、渐新世和前渐新世。层组I~Ⅱ全区广布。在陆坡、岛坡区,层组Ⅲ以下层组主要见于断陷中;在深海盆,层组Ⅲ分布仍较广,除了在深海盆北段见到层组Ⅳ外,在西南次海盆剖面两缘也见到该层组。在东部次海盆剖面中还不同程度见到了双程反射时间为8.4~8.7s的莫霍面反射,埋深为10~12km,地壳厚度为6~8km.西南次海盆水深和新生界基底埋深均比深海盆北段除外的东部次海盆深,分别为4000-4300和5200~5500m.根据年龄和基底深度关系经验公式,计算西南次海盆基底年龄为距今51~39Ma.地震反射层组解释和年龄一基底深度关系计算表明,西南次海盆形成并非晚于东部次海盆,而是同时或早于东部次海盆。  相似文献   

20.
In the northwestern North Pacific, annual net air-sea CO2 flux is greatest in the Kuroshio Extension(KE) zone,owing to its low annual mean partial pressure of CO2(pCO2), and it decreases southward across the basin. To quantify the influences of factors controlling the latitudinal gradient in CO2 uptake, sea surface pCO2 and related parameters were investigated in late spring of 2018 in a study spanning the KE, Kuroshio Recirculation(KR), and...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号