首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mean wind velocity profiles were measured by means of radio-windsondes over the Landes region in southwestern France, which consists primarily of pine forests with scattered villages and clearings with various crops. Analysis of neutral profiles indicated the existence of a logarithmic layer between approximately zd 0 = 67(±18)z 0 and 128(+-32)z 0 (z is the height above the ground, z 0 the surface roughness and d 0 the displacement height). The upper limit can also be given as zd 0 = 0.33 (±0.18)h, where h is the height of the bottom of the inversion. The profiles showed that the surface roughness of this terrain is around 1.2 m and the displacement height 6.0 m. Shear stresses derived from the profiles were in good agreement with those obtained just above the forest canopy at a nearby location with the eddy correlation method by a team from the Institute of Hydrology (Wallingford, England).  相似文献   

2.
Aerodynamic Scaling for Estimating the Mean Height of Dense Canopies   总被引:1,自引:1,他引:0  
We used an aerodynamic method to objectively determine a representative canopy height, using standard meteorological measurements. The canopy height may change if the tree height is used to represent the actual canopy, but little work to date has focused on creating a standard for determining the representative canopy height. Here we propose the ‘aerodynamic canopy height’ h a as the most effective means of resolving the representative canopy height for all forests. We determined h a by simple linear regression between zero-plane displacement d and roughness length z 0, without the need for stand inventory data. The applicability of h a was confirmed in five different forests, including a forest with a complex canopy structure. Comparison with stand inventory data showed that h a was almost equivalent to the representative height of trees composing the crown surface if the forest had a simple structure, or to the representative height of taller trees composing the upper canopy in forests with a complex canopy structure. The linear relationship between d and z 0 was explained by assuming that the logarithmic wind profile above the canopy and the exponential wind profile within the canopy were continuous and smooth at canopy height. This was supported by observations, which showed that h a was essentially the same as the height defined by the inflection point of the vertical profile of wind speed. The applicability of h a was also verified using data from several previous studies.  相似文献   

3.
Using a previous treatment of drag and drag partition on rough surfaces, simple analytic expressions are derived for the roughness length (z 0) and zero-plane displacement (d) of vegetated surfaces, as functions of canopy height (h) and area index (). The resulting expressions provide a good fit to numerous field and wind tunnel data, and are suitable for applications such as surface parameterisations in atmospheric models.  相似文献   

4.
In this study, a detailed model of an urban landscape has been re-constructed inthe wind tunnel and the flow structure inside and above the urban canopy has beeninvestigated. Vertical profiles of all three velocity components have been measuredwith a Laser-Doppler velocimeter, and an extensive analysis of the measured meanflow and turbulence profiles carried out. With respect to the flow structure inside thecanopy, two types of velocity profiles can be distinguished. Within street canyons,the mean wind velocities are almost zero or negative below roof level, while closeto intersections or open squares, significantly higher mean velocities are observed.In the latter case, the turbulent velocities inside the canopy also tend to be higherthan at street-canyon locations. For both types, turbulence kinetic energy and shearstress profiles show pronounced maxima in the flow region immediately above rooflevel.Based on the experimental data, a shear-stress parameterization is proposed, inwhich the velocity scale, us, and length scale, zs, are based on the level and magnitude of the shear stress peak value. In order to account for a flow region inside the canopy with negligible momentum transport, a shear stress displacement height, ds, is introduced. The proposed scaling and parameterization perform well for the measured profiles and shear-stress data published in the literature.The length scales derived from the shear-stress parameterization also allowdetermination of appropriate scales for the mean wind profile. The roughnesslength, z0, and displacement height, d0, can both be described as fractions of the distance, zs - ds, between the level of the shear-stress peak and the shear-stress displacement height. This result can be interpreted in such a way that the flow only feels the zone of depth zs - ds as the roughness layer. With respect to the lower part of the canopy (z < ds) the flow behaves as a skimming flow. Correlations between the length scales zs and ds and morphometric parameters are discussed.The mean wind profiles above the urban structure follow a logarithmic windlaw. A combination of morphometric estimation methods for d0 and z0 with wind velocity measurements at a reference height, which allow calculation of the shear-stress velocity, u*, appears to be the most reliable and easiest procedure to determine mean wind profile parameters. Inside the roughnesssublayer, a local scaling approach results in good agreement between measuredand predicted mean wind profiles.  相似文献   

5.
采用北京325 m铁塔2008—2012年的单层超声观测资料,基于莫宁-奥布霍夫相似理论(Monin-Obukhov similarity theory)和前人提出的最小误差分析方法,计算了铁塔周边下垫面的零平面位移高度和动力粗糙度长度。结果表明,由于铁塔位于北京市区,其周边下垫面呈现极其复杂的非均匀性,所以对应铁塔周边不同的扇区,零平面位移高度和动力粗糙度长度各有不同。平均而言,在2008—2012年间,铁塔周边下垫面的零平面位移高度为34.4 m,动力粗糙度长度为1.16 m。此外,综合前人的计算结果发现,铁塔周边的零平面位移高度和动力粗糙度长度在2001年之前呈显著增加的趋势,而在2001年以后并未增长,这一现象与铁塔周边的城市化进程相对应。  相似文献   

6.
Summary In this paper, we evaluate the applicability of flux-gradient relationships for momentum and heat for urban boundary layers within the Monin-Obukhov similarity (MOS) theory framework. Although the theory is widely used for smooth wall boundary layers, it is not known how well the theory works for urban layers. To address this problem, we measured the vertical profiles of wind velocity, air temperature, and fluxes of heat and momentum over a residential area and compared the results to theory. The measurements were done above an urban canopy whose mean height zh is 7.3 m. 3-D sonic anemometers and fine wire thermocouples were installed at 4 heights in the region 1.5zh < z < 4zh. We found the following: (1) The non-dimensional horizontal wind speed has good agreement with the stratified logarithmic profile predicted using the semi-empirical Monin-Obukov similarity (MOS) function, when it was scaled by the surface friction velocity that is derived from the shear stress extrapolated to the roof-top level. (2) The scaled gradient of horizontal wind speed followed a conventional semi-empirical function for a flat surface at a level (z/zh = 2.9), whereas, in the vicinity of the canopy height was larger than the commonly-used empirical relationship. (3) The potential temperature profile above the canopy shows dependency on the atmospheric stability and the scaled gradient of temperature is in good agreement with a conventional shear function for heat. In the case of heat, the dependency on height was not found. (4) The flux-gradient relationship for momentum and heat in the region 1.5zh < z < 4zh was rather similar to that for flat surfaces than that for vegetated canopies.  相似文献   

7.
The spray content in the surface boundary layer above an air—water interface was determined by a series of measurements at various feteches and wind speeds in a laboratory facility. The droplet flux density N(z) can be described in terms of the scaling flux density N* and von Karman constant K throguh the equation, N(z)/N* = −(1/K) ln(z/z0d) where z is height above the mean water level and z0d is the droplet boundary layer thickness. N* is given by a unique relationship in terms of the roughness Reynolds number u*σ/ν where σ is the root-mean-square surface displacement. Spray inception occurred for u* 0.3. The dominant mode of spray generation in the present and most other laboratory tests, as well as in available field data, appears to be bubble bursting.  相似文献   

8.
A wind-tunnel experiment has been used to investigate momentum absorption by rough surfaces with sparse random and clustered distributions of roughness elements. An unusual (though longstanding) method was used to measure the boundary-layer depth δ and friction velocity u * and thence to infer the functional relationship z 0/h = f(λ) between the normalised roughness length z 0/ h and the roughness density λ (where z 0 is the roughness length and h the mean height of the roughness elements). The method for finding u * is based on fitting the velocity defect in the outer layer to a functional form for the dimensionless velocity-defect profile in a canonical zero-pressure-gradient boundary layer. For the conditions investigated here, involving boundary layers over sparse roughness with strong local heterogeneity, this velocity-defect-law method is found to be more robust than several alternative methods for finding u * (uw covariance, momentum integral and slope of the logarithmic velocity profile).The experimental results show that, (1) there is general agreement in the relationship z 0/h = f(λ) between the present experiment with random arrays and other wind-tunnel experiments with regular arrays; (2) the main effect of clustering is to increase the scatter in the z 0/h = f(λ) relationship, through increased local horizontal heterogeneity; (3) this scatter obscures any trend in the z 0/h = f(λ) relationship in response to clustering; and (4) the agreement between the body of wind-tunnel data (taken as a whole) and field data is good, though with scatter for which it is likely that a major contribution stems from local horizontal heterogeneity in the field.  相似文献   

9.
Summary In this paper the results of an urban measurement campaign are presented. The experiment took place from July 1995 to February 1996 in Basel, Switzerland. A total of more than 2000 undisturbed 30-minute runs of simultaneous measurements of the fluctuations of the wind vector u′, v′, w′ and the sonic temperature θ s ′ at three different heights (z=36, 50 and 76 m a.g.l.) are analysed with respect to the integral statistics and their spectral behaviour. Estimates of the zero plane displacement height d calculated by the temperature variance method yield a value of 22 m for the two lower levels, which corresponds to 0.92 h (the mean height of the roughness elements). At all three measurement heights the dimensionless standard deviation σ w /u * is systematically smaller than the Monin-Obukhov similarity function for the inertial sublayer, however, deviations are smaller compared to other urban turbulence studies. The σθ* values follow the inertial sublayer prediction very close for the two lowest levels, while at the uppermost level significant deviations are observed. Profiles of normalized velocity and temperature variances show a clear dependence on stability. The profile of friction velocity u * is similar to the profiles reported in other urban studies with a maximum around z/h=2.1. Spectral characteristics of the wind components in general show a clear dependence on stability and dimensionless measurement height z/h with a shift of the spectral peak to lower frequencies as thermal stability changes from stable to unstable conditions and as z/h decreases. Velocity spectra follow the −2/3 slope in the inertial subrange region and the ratios of spectral energy densities S w (f)/S u (f) approach the value of 4/3 required for local isotropy in the inertial subrange. Velocity spectra and spectral peaks fit best to the well established surface layer spectra from Kaimal et al. (1972) at the uppermost level at z/h=3.2. Received September 26, 1997 Revised February 15, 1998  相似文献   

10.
Potential temperature, specific humidity and wind profiles measured by radiosondes under unstable but windy conditions during FIFE in northeastern Kansas were analyzed within the framework of Monin-Obukhov similarity. Around 86% of these profiles were found to have a height range over which the similarity, formulated in terms of the Businger-Dyer functions, is valid and for which the resulting surface fluxes are in good agreement with independent measurements at ground stations. When scaled with the surface roughness z 0 = 1.05 m and the displacement height d 0 = 26.9 m, for the potential temperature this height range was 45 (±31) (z – d 0 )/z 0 104 (±54) and the comparison of the profile-derived surface fluxes with the independent measurements gave a correlation coefficient of r = 0.96. For the specific humidity these values are 42 (±29) (z – d 0 )/z 0 96 (±38) and r = 0.94. In terms of the height of the bottom of the inversion H i , in the morning hours the upper limit of (z – d 0 ) in the Monin-Obukhov layer is approximately 0.3H i , whereas for a fully developed ABL it is closer to 0.1H i . Probably, as a result of the short sampling times and perhaps also of the small gradients under the windy conditions, the exact height range of validity was difficult to establish from a mere inspection of these profiles.  相似文献   

11.
Mean wind speed profiles were measured by tracking radiosondes in the unstable atmospheric boundary layer (ABL) over the forested Landes region in southwestern France. New Monin-Obukhov stability correction functions, recently proposed following an, analysis by Kader and Yaglom, as well as the Businger-Dyer stability formulation were tested, with wind speeds in the surface sublayer to calculate the regional shear stress. These profile-derived shear stresses were compared with eddy correlation measurements gathered above a mature forest stand, at a location roughly, 4.5 km from the radiosonde launch site. The shear stress values obtained by means of the newly proposed stability function were in slightly better agreement with the eddy correlation values than those obtained by means of a Businger-Dyer type stability function. The general robustness of the profile method can be attributed in part to prior knowledge of the regional surface roughness (z 0=1.2 m) and the momentum displacement height (d 0=6.0 m), which were determined from neutral wind profile analysis. The 100 m drag coefficient for the unstable conditions above this broken forest surface was found to beu * 2 /V 100 2 =0.0173.  相似文献   

12.
Wind speed was measured at a height of 1 cm above the ground and at several other heights in and above a canopy of tall fescue grass (Festuca arundinacea) using single hot-wire and triple hot-film anemometers. The plant area density in the canopy was concentrated close to the ground, with 75% of the plant area standing belowz=15 cm, wherez is height above the ground. The frequency distributions of horizontal wind speeds,s, were sharply skewed towards positive values at all measurement heights, but were most highly skewed near the ground where the coefficient of skewness ranged from 1.6 to 2.9. Above mid-canopy height, the frequency distribution ofs was described reasonably well by a Gumbel extreme value distribution. Average wind speed,S, decreased exponentially with depth into the canopy with an exponential scale length of abouth/2.8, whereh is the height of the canopy. Atz=1 cm, the value ofS was about 11% of the surface-layeru *. The standard deviation of the fluctuations of the vertical and horizontal components of the wind speed also decreased exponentially with depth inside the canopy with a scale length of abouth/2.5.Inside the canopy, the Eulerian integral time scales for the vertical ( w ) and horizontal ( u ) components of wind speed were about 0.1 s and 1.0 s, respectively, and were approximately constant with height. Above the canopy, these time scales increased sharply and, atz=2.25h, w and u were approximately 1.0 and 3.0s, respectively. Turbulence length scales in the vertical and downwind directions, u and w ·U, respectively, were approximately 1 cm for heights between 1 to 10 cm above the ground inside the canopy, while atz=2.25h, they were about 55 cm and 277 cm. Relatively quiescent periods (lulls) in the air close to the ground were interrupted frequently by gusts. The frequency of occurrence of gusts appears to be correlated with the value of the local shear near the top of the canopy.  相似文献   

13.
An experimental study has been made of stagnation points and flow splitting on the upstream side of obstacles in uniformly stratified flow. A range from small to large values of Nh/U (where N is the buoyancy frequency, hm is the maximum obstacle height and U is the undisturbed fluid velocity) has been covered, for three obstacle shapes which are, respectively, axisymmetric, and elongated in the across-stream and in the downstream directions. Upstream stagnation for the first two of these models does not occur until Nhm/U > 1.05, where it occurs at zhm/2. On the central line below this point the flow descends and diverges, and we term this ‘flow splitting’. For the third model (elongated in the downstream direction), stagnation upstream first occurs at Nhm/U ≈ 1.43, at z ≈ 0. Results for this obstacle are not consistent with the ‘Sheppard criterion’, and this upstream flow stagnation is not apparently related to lee wave overturning, in contrast to flow over two-dimensional obstacles.  相似文献   

14.
A method for the determination of the zero-plane displacement, d, and roughness length, z 0, for tall vegetation is described. A new relationship between d and z 0 is developed by imposing the condition of mass conservation on the logarithmic wind profile. Further, d and z 0 can be evaluated directly if independent measurements of friction velocity are available in addition to wind profile measurements. The proposed method takes into account the existence of a transition layer immediately above the vegetation where the logarithmic wind profile law is not valid. Only one level of wind speed measurements is necessary within the inertial sub-layer.The method is applied to wind profile and eddy correlation measurements taken in and above an 18.5 m pine forest to yield d = 12.7 m and z 0 = 1.28 m. The choice of height for the upper level of measurement and problems with measuring canopy flow are discussed.Work carried out while on leave at the Institute of Hydrology.  相似文献   

15.
We use a conceptual model to investigate how randomly varying building heights within a city affect the atmospheric drag forces and the aerodynamic roughness length of the city. The model is based on the assumptions regarding wake spreading and mutual sheltering effects proposed by Raupach (Boundary-Layer Meteorol 60:375?C395, 1992). It is applied both to canopies having uniform building heights and to those having the same building density and mean height, but with variability about the mean. For each simulated urban area, a correction is determined, due to height variability, to the shear stress predicted for the uniform building height case. It is found that u */u *R , where u * is the friction velocity and u *R is the friction velocity from the uniform building height case, is expressed well as an algebraic function of ?? and ?? h /h m , where ?? is the frontal area index, ?? h is the standard deviation of the building height, and h m is the mean building height. The simulations also resulted in a simple algebraic relation for z 0/z 0R as a function of ?? and ?? h /h m , where z 0 is the aerodynamic roughness length and z 0R is z 0 found from the original Raupach formulation for a uniform canopy. Model results are in keeping with those of several previous studies.  相似文献   

16.
The aerodynamic effects of various configurations of an urban array were investigated in a wind-tunnel experiment. Three aerodynamic parameters characterising arrays—the drag coefficient (C d ), roughness length (z o) and displacement height (d)—are used for analysis. C d is based on the direct measurement of the total surface shear using a floating element, and the other two parameters are estimated by logarithmic fitting of the measured wind profile and predetermined total drag force. The configurations of 63 arrays used for measurement were designed to estimate the effects of layout, wind direction and the height variability of the blocks on these parameters for various roughness packing densities. The results are summarised as follows: (1) The estimated C d and z o of the staggered arrays peak against the plan area index (λ p ) and frontal area index (λ f ), in contrast with values for the square arrays, which are less sensitive to λ p and λ f . In addition, the square arrays with a wind direction of 45° have a considerably larger C d , and the wind direction increases z o/H by up to a factor of 2. (2) The effect of the non-uniformity of roughness height on z o is more remarkable when λ f exceeds 20%, and the discrepancy in z o is particularly remarkable and exceeds 200%. (3) The effect of the layout of tall blocks on C d is stronger than that of short blocks. These results indicate that the effects of both wind direction and the non-uniformity of the heights of buildings on urban aerodynamic parameters vary greatly with λ p and λ f ; hence, these effects should be taken into account by considering the roughness packing density.  相似文献   

17.
The roughness length, z 0u , and displacement height, d 0u , characterise the resistance exerted by the roughness elements on turbulent flows and provide a conventional boundary condition for a wide range of turbulent-flow problems. Classical laboratory experiments and theories treat z 0u and d 0u as geometric parameters independent of the characteristics of the flow. In this paper, we demonstrate essential stability dependences—stronger for the roughness length (especially in stable stratification) and weaker but still pronounced for the displacement height. We develop a scaling-analysis model for these dependences and verify it against experimental data.  相似文献   

18.
Profiles of wind and turbulence over an urban area evolve with fetch in response to surface characteristics. Sodar measurements, taken on 22 April 2002 during the Salford Experiment in the UK (Salfex), are here related to upstream terrain. A logarithmic layer up to z = 65m was observed in all half-hour averaged profiles. Above this height the profile showed a different vertical gradient, suggesting a change in surface cover upstream. The drag coefficient varied by a factor of two over only a 20° direction change. Turbulence intensity (σ x ) for each wind component (x) decreased with height, but the ratio suggested an underestimate of σ u compared to previous results. Mean urban and suburban cover fraction within the source area for each height decreased sharply between z = 20 and 50m, increasing slightly above. The near-convergence of cover fractions thus occured for source areas of minimum length ≈ 2,200 m. In comparison, the mean length scale of heterogeneity L P was calculated from surface cover data to be 1,284 m, and the corresponding mean blending height h b was 175 m. Finally, the mean streamline angle, α, was negative and the magnitude decreased with height. An exponential fit to α for z ≤ 65m gave an e-folding height scale of 159 m. A simple relationship between this height scale and L P was assumed, giving L P ≈ 1,080 m, which is in reasonable agreement with the estimate from surface cover type. The results suggest that more emphasis is required on modelling and measuring surface-layer flow over heterogeneous urban canopies.  相似文献   

19.
The values of roughness length for momentum z 0and zero-plane displacement d 0over a hilly rough complex region with vegetation were evaluated without any assumption concerning z 0and d 0.It was found that for widely scattered profile data, the method of least squares will not give a reasonable result in determining the roughness parameters. For this purpose, the method of maximum correlation was introduced instead. This method gave a fair result for captive balloon observations conducted in hilly terrain mainly covered with forest in the northwestern part of the Kanto Plain, Japan.  相似文献   

20.
This paper examines the practical importance of stability, baroclinicity, and acceleration in the bulk ABL similarity formulations, in light of the random errors inherent in field measurements. This is done by propagating the measurement uncertainties through a theoretical model for the bulk ABL similarity functionsA 0 andB 0, under a range of assumed (but always unstable) conditions. It is shown that random measurement errors and acceleration effects may overwhelm most effects of baroclinicity and stability, once conditions are at least slightly unstable. Because of this, it is hard to discern a clear functional dependence ofA 0 andB 0 on degree of instability. Thus, for a given value ofh i/z0, whereh i is the inversion height andz 0 is the surface roughness, the geostrophic drag coefficient, which depends onA 0 andB 0, and weakly onh i/z0, may also be taken to be nearly independent of degree of instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号