首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Data of blue horizontal branch (BHB) stars and RR Lyrae variable stars from the literature are combined with unpublished observations of BHB stars in five fields. A flattened power law is used to model the spatial distribution of the horizontal branch stars. Completeness of the data sample and contamination by blue stragglers and metal-rich main-sequence A stars are considered, and taken into account. Using a maximum-likelihood method, the following best-fitting parameters are obtained: a power-law index α=−3.2±0.3 and an axial ratio of q =0.52±0.11 for the isodensity surfaces. From the fit a value for the local density of BHB stars of ρ0=26+20−11 kpc−3 is found. The values of the three parameters are in complete agreement with recent determinations by other authors.  相似文献   

2.
Large samples of field horizontal branch (FHB) stars make excellent tracers of the Galactic halo; by studying their kinematics, one can infer important physical properties of our Galaxy. Here we present the results of a medium-resolution spectroscopic survey of 530 FHB stars selected from the Hamburg/ESO survey. The stars have a mean distance of ∼7 kpc and thus probe the inner parts of the Milky Way halo. We measure radial velocities from the spectra in order to test the model of Sommer-Larsen et al., who suggested that the velocity ellipsoid of the halo changes from radially dominated orbits to tangentially dominated orbits as one proceeds from the inner to the outer halo. We find that the present data are unable to discriminate between this model and a more simple isothermal ellipsoid; we suggest that additional observations towards the Galactic Centre might help to differentiate them.  相似文献   

3.
4.
We present FOcal Reducer/low dispersion Spectrograph-1 spectra (from the European Southern Observatory's Very Large Telescope) of a sample of 34 faint  20.0 < g * < 21.1  A-type stars selected from the Sloan Digital Sky Survey Early Data Release, with the goal of measuring the velocity dispersion of blue horizontal branch (BHB) stars in the remote Galactic halo,   R ∼ 80 kpc  . We show that colour selection with  1.08 < u *− g * < 1.40  and  −0.2 < g *− r * < −0.04  minimizes contamination of the sample by less luminous blue stragglers. In classifying the stars we confine our attention to the 20 stars with spectra of signal-to-noise ratio >15 Å−1. Classification produces a sample of eight BHB stars at distances  65–102 kpc  from the Sun (mean 80 kpc), which represents the most distant sample of Galactic stars with measured radial velocities. The dispersion of the measured radial component of the velocity with respect to the centre of the Galaxy is  58 ± 15 km s−1  . This value is anomalously low in comparison with measured values for stars at smaller distances, as well as for satellites at similar distances. Seeking an explanation for the low measured velocity dispersion, further analysis reveals that six of the eight remote BHB stars are plausibly associated with a single orbit. Three previously known outer halo carbon stars also appear to belong to this stream. The velocity dispersion of all nine stars relative to the orbit is only  15 ± 4 km s−1  . Further observations along the orbit are required to trace the full extent of this structure on the sky.  相似文献   

5.
6.
7.
We use accurate absolute proper motions and Two-Micron All-Sky Survey   Ks   -band apparent magnitudes for 364 Galactic RR Lyrae variables to determine the kinematical parameters of the Galactic RR Lyrae population and constrain the zero-point of the   Ks   -band period–luminosity relation for these stars via statistical parallax. We find the mean velocities of the halo- and thick-disc RR Lyrae populations in the solar neighbourhood to be  [ U 0(Halo), V 0(Halo), W 0(Halo)]= (−12 ± 10, −217 ± 9, −6 ± 6) km s−1  and  [ U 0(Disc), V 0(Disc), W 0(Disc)]= (−15 ± 7, −44 ± 7, −25 ± 5) km s−1  , respectively, and the corresponding components of the velocity-dispersion ellipsoids,  [σ VR (Halo), σ V θ(Halo), σ W (Halo)]= (167 ± 9, 86 ± 6, 78 ± 5) km s−1  and  [σ VR (Disc), σ V θ(Disc), σ W (Disc)]= (55 ± 7, 44 ± 6, 30 ± 4) km s−1  , respectively. The fraction of thick-disc stars is estimated at  0.25 ± 0.03  . The corrected infrared period–luminosity relation is     , implying a Large Magellanic Cloud (LMC) distance modulus of  18.27 ± 0.08  and a solar Galactocentric distance of  7.58 ± 0.40 kpc  . Our results suggest no or slightly prograde rotation for the population of halo RR Lyraes in the Milky Way.  相似文献   

8.
A new sample of 31 faint B and A0 stars is reported, 30 of which comprise a complete sample within the limits ( U − V )<0 and 10.0< B ≲18.0. The sample is based on low- and intermediate-resolution spectrophotometry of colour-excess objects selected in the US survey. Atmospheric parameters for the stars are derived through the use of synthetic colours, Balmer-line strengths, and model-atmosphere fitting. The atmospheric parameters and preliminary metallicity estimates indicate that most of the stars are distributed along the blue horizontal branch, with low metallicities ([Fe/H]∼−1.0) and with both the first and second Newell gaps present. However, nine of the B/A0 stars can be identified as candidate main-sequence stars, based on evidence of high metallicities ([Fe/H]∼0) and/or derived effective temperatures and surface gravities which place them close to the main-sequence relation. The completeness characteristics of the sample are discussed, and its surface density is compared to that of other recently isolated B-star samples. The sample exhibits a shallow integral number-count slope. This new sample will help provide increased statistical coverage of the B-star population in the Galactic halo through its relatively faint magnitude-completeness limits and its relatively red colour-completeness limit.  相似文献   

9.
10.
11.
12.
Using the stellar photometry catalogue based on the latest data release (DR4) of the Sloan Digital Sky Survey (SDSS), a study of the Galactic structure using star counts is carried out for selected areas of the sky. The sample areas are selected along a circle at a Galactic latitude of +60°, and 10 strips of high Galactic latitude along different longitudes. Direct statistics of the data show that the surface densities of ℓ from 180° to 360° are systematically higher than those of ℓ from 0° to 180°, defining a region of overdensity (in the direction of Virgo) and another one of underdensity (in the direction of Ursa Major) with respect to an axisymmetric model. It is shown by comparing the results from star counts in the ( g − r ) colour that the density deviations are due to an asymmetry of the stellar density in the halo. Theoretical models for the surface density profile are built and star counts are performed using a triaxial halo of which the parameters are constrained by observational data. Two possible reasons for the asymmetric structure are discussed.  相似文献   

13.
The halo structure at high Galactic latitudes near both the north and south poles is studied using Sloan Digital Sky Survey (SDSS) and SuperCOSMOS data. For the south cap halo, the archive of the SuperCOSMOS photographic photometry sky survey is used. The coincident source rate between SuperCOSMOS data in B J band from 16.5 to 20.5 mag and SDSS data is about 92 per cent, in a common sky area in the south. While that in the R F band is about 85 per cent from 16.5 to 19.5 mag. Transformed to the SuperCOSMOS system and downgraded to the limiting magnitudes of SuperCOSMOS, the star counts in the North Galactic Cap from SDSS show up to an  16.9 ± 6.3  per cent  asymmetric ratio (defined as relative fluctuations over the rotational symmetry structure) in the B J band, and up to  13.5 ± 6.7  per cent  asymmetric ratio in the R F band. From SuperCOSMOS B J and R F bands, the structure of the Southern Galactic hemisphere does not show the same obvious asymmetric structures as the northern sky does in both the original and downgraded SDSS star counts. An axisymmetric halo model with n = 2.8 and q = 0.7 can fit the projected number density from SuperCOSMOS fairly well, with an average error of about 9.17 per cent. By careful analysis of the difference of star counts between the downgraded SDSS northern halo data and SuperCOSMOS southern halo data, it is shown that no asymmetry can be detected in the South Galactic Cap at the accuracy of SuperCOSMOS, and the Virgo overdensity is likely a foreign component in the Galactic halo.  相似文献   

14.
By adopting the same approach outlined by De Santis & Cassisi, we evaluate the absolute bolometric magnitude of the zero-age horizontal branch (ZAHB) at the level of the RR Lyrae variable instability strip in selected Galactic globular clusters. This allows us to estimate the ZAHB absolute visual magnitude for these clusters and to investigate its dependence on the cluster metallicity. The derived M V (ZAHB)–[Fe/H] relation, corrected in order to account for the luminosity difference between the ZAHB and the mean RR Lyrae magnitude, has been compared with some of the most recent empirical determinations in this field, such as the one provided by Baade–Wesselink analyses, RR Lyrae periods, Hipparcos data for field variables and main-sequence fitting based on Hipparcos parallaxes for field subdwarfs. As a result, our relation provides a clear support to the 'long' distance scale. We discuss also another method for measuring the distance to Galactic globular clusters. This method is quite similar to the one adopted for estimating the absolute bolometric magnitude of the ZAHB but it relies only on the pulsational properties of the Lyrae variables in each cluster. The reliability and accuracy of this method have been tested by applying it to a sample of globular clusters for which, owing to the morphology of their horizontal branch (HB), the use of the commonly adopted ZAHB fitting is a risky procedure. We notice that the two approaches for deriving the cluster distance modulus provide consistent results when applied to globular clusters, the RR Lyrae instability strip is well populated. As the adopted method relies on theoretical predictions on both the fundamental pulsational equation and the allowed mass range for fundamental pulsators, we give an estimate of the error affecting present results, owing to systematic uncertainties in the adopted theoretical framework.  相似文献   

15.
A by-product of the APM high-redshift quasar survey was the discovery of several distant (20–100 kpc) N-type carbon stars at high galactic latitude. Following on from this, we have started a systematic all-sky survey at galactic latitudes ⊢ b ⊢>30° to find further examples of these rare objects, and we report here on the results from the first season of follow-up spectroscopy. Faint, high-latitude carbon (FHLC) giants make excellent probes of the kinematic structure of the outer Galactic halo. Therefore, in addition to detailed spectrophotometry covering a wide wavelength range, we have obtained high-resolution (∼1 Å) spectra centred on the CN bands at ∼8000 Å, and have derived accurate (≲10 km s−1) radial velocities for the known FHLC stars. From the initial phase of our survey covering ≈6500 deg2, we find a surface density of faint N-type carbon stars in the halo of ≈1 per 200 deg2, roughly a factor of 4 less than the surface density of CH-type carbon stars in the halo. Intermediate-age, N-type carbon stars seem unlikely to have formed in the halo in isolation from other star-forming regions, and one possibility that we are investigating is that they either arise from the disruption of tidally captured dwarf satellite galaxies or are a manifestation of the long-sought optical component of the Magellanic Stream.  相似文献   

16.
17.
The space motions of Mira variables are derived from radial velocities, Hipparcos proper motions and a period–luminosity relation. The previously known dependence of Mira kinematics on the period of pulsation is confirmed and refined. In addition, it is found that Miras with periods in the range 145–200 d in the general Solar neighbourhood have a net radial outward motion from the Galactic Centre of 75±18 km s−1. This, together with a lag behind the circular velocity of Galactic rotation of 98±19 km s−1, is interpreted as evidence for an elongation of their orbits, with their major axes aligned at an angle of ∼17° with the Sun–Galactic Centre line, towards positive Galactic longitudes. This concentration seems to be a continuation to the Solar circle and beyond of the bar-like structure of the Galactic bulge, with the orbits of some local Miras probably penetrating into the bulge. These conclusions are not sensitive to the distance scale adopted. A further analysis is given of the short-period (SP) red group of Miras discussed in companion papers in this series. In Appendix A the mean radial velocities and other data for 842 oxygen-rich Mira-like variables are tabulated. These velocities were derived from published optical and radio observations.  相似文献   

18.
The photometric observations and three-dimensional classification in the Vilnius system have been carried out for 13 of the red horizontal branch (RHB) stars in the Galactic thick disk identified by Rose (1985). The photometric spectral types, metallicities [Fe/H], effective temperatures, surface gravities and absolute magnitudes are determined. The age of about 10–12 Gyr is evaluated for this group of stars from comparison with model isochrones, indicating that the age of the thick disk is intermediate between the disk globular and the oldest open clusters.  相似文献   

19.
Sulphur is a volatile α ‐element which is not locked into dust grains in the interstellar medium (ISM). Hence, its abundance does not need to be corrected for dust depletion when comparing the ISM to the stellar atmospheres. The abundance of sulphur in the photosphere of metal‐poor stars is a matter of debate: according to some authors, [S/Fe] versus [Fe/H] forms a plateau at low metallicity, while, according to other studies, there is a large scatter or perhaps a bimodal distribution. In metal‐poor stars sulphur is detectable by its lines of multiplet 1 at 920 nm, but this range is heavily contaminated by telluric absorptions, and one line of the multiplet is blended by the hydrogen Paschen ζ line. We study the possibility of using multiplet 3 (at 1045 nm) for deriving the sulphur abundance because this range, now observable at the VLT with the infra‐red spectrograph CRIRES, is little contaminated by telluric absorption and not affected by blends at least in metal‐poor stars. We compare the abundances derived from multiplets 1 and 3, taking into account NLTE corrections and 3D effects. Here we present the results for a sample of four stars, although the scatter is less pronounced than in previous analysis, we cannot find a plateau in [S/Fe], and confirm the scatter of the sulphur abundance at low metallicity (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
High signal-to-noise ratio spectra were obtained of 10 high-proper-motion stars having  −1 ≲[Fe/H] < 0  , and a comparable number of disc stars. All but two of the high-proper-motion stars were confirmed to have  [Fe/H] > −1.0  , some approaching solar metallicity, but, even so, earlier measurements overestimated the metallicities and velocities of some of these stars. Models of stellar populations were used to assign membership probabilities to the Galactic components to which the high-velocity stars might belong. Many were found to be more probably thick-disc than halo objects, despite their large space motions, and two might be associated with the inner Galaxy. It may be necessary to reassess contamination of previous halo samples, such as those used to define the metallicity distribution, to account for contamination by high-velocity thick-disc stars, and to consider possible subcomponents of the halo.
The change in [α/Fe] ratios at  [Fe/H]≃−1.0  is often used to constrain the degree and timing of Type Ia supernova nucleosynthesis in Galactic chemical-evolution models. [Ti/Fe] values were measured for eight of the high-velocity stars. Both high- and low-[Ti/Fe] halo stars exist; likewise high- and low-[Ti/Fe] thick-disc stars exist. We conclude that the [Ti/Fe]'break' is not well defined for a given population; nor is there a simple, continuous evolutionary sequence through the break. Implications for the interpretation of the [α/Fe] break in terms of SN Ia time-scales and progenitors are discussed. The range of [Ti/Fe] found for high -velocity (low rotation) thick-disc stars contrasts with that for the low -velocity (high rotation) thick-disc sample studied by Prochaska et al.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号