首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Kimberlitic olivines typically show a continuous range in size and texture rather than two discrete populations. The cores of small euhedral olivines commonly provide the template for the final crystal shape, which in turn closely matches morphologies produced by crystallization from a moderately under-cooled magma. Cores and edges of the majority of all olivines define a continuous compositional field, which can be interpreted in terms of Raleigh crystallization. Marked chemical gradients at the olivine margins are linked to rapid physico-chemical changes to the magma associated with loss of volatiles during the late stages of emplacement. Thus, rapid crystallization of groundmass olivines would deplete the magma in Ni, but increase Ca activity. The latter would be enhanced by decreasing pressure coupled with loss of CO2 from the carbonate-bearing kimberlite magma.For mantle olivines and the most refractory olivines in kimberlites (~ Fo94) to be in equilibrium with bulk rock compositions matching those of Mg-rich macrocrystic and aphanitic kimberlites (Mg# ~ 88) requires a mineral-melt Mg–Fe distribution coefficient of 0.47. This is well within the experimentally determined range for this distribution coefficient in carbonate-bearing systems. In southern African post-Gondwana alkaline pipe clusters, the average bulk rock Mg# and composition of the associated most Mg-rich olivine both decrease sympathetically from the interior to the continental margin, which is also consistent with a cognate origin for the olivines.A kimberlite magma following a plausible P-T trajectory relative to the CO2/H2O peridotite solidus would initially experience superheating, resulting in partial resorption of early-formed olivines that crystallized on the cool conduit walls. It would become supersaturated as it crossed the carbonated peridotite “ledge”, resulting in tabular and hopper growth forms typical of euhedral olivine cores. With further ascent, the magma would once again become superheated, resulting in partial resorption of these cores. Thus, apparently complex textures and internal zonation patterns of kimberlitic olivines are predicted by a plausible magma P-T trajectory.  相似文献   

2.
Cr-poor and Cr-rich megacryst suites, both comprising of varying proportions of megacrysts of orthopyroxene, clinopyroxene, garnet, olivine, ilmenite and a number of subordinate phases, coexist in many kimberlites, with wide geographic distribution. In rare instances, the two suites occur together on the scale of individual megacryst hand specimens. Deformation textures are common to both suites, suggesting an origin related to the formation of the sheared peridotites that also occur in kimberlites. Textures and compositions of the latter are interpreted to reflect deformation and metasomatism within the thermal aureole surrounding the kimberlite magma in the mantle. The megacrysts crystallized in this thermal aureole in pegmatitic veins representing small volumes of liquids derived from the host kimberlite magma, which were injected into a surrounding fracture network prior to kimberlite eruption. Close similarities between compositions of Cr-rich megacryst phases and those in granular lherzolites are consistent with early crystallization from a primitive kimberlite liquid. The low-Cr megacryst suite subsequently crystallized from residual Cr-depleted liquids. However, the Cr-poor suite also reflects the imprint of contamination by liquids formed by melting of inhomogeneously distributed mantle phases with low melting temperatures, such as calcite and phlogopite, present within the thermal aureole surrounding the kimberlite magma reservoir. Such carbonate-rich melts migrated into, and mixed with some, but not all, of the kimberlite liquids injected into the mantle fracture network. Contamination by the carbonate-rich melts changed the Ca–Mg and Mg–Fe crystal–liquid distribution coefficient, resulting in the crystallization of relatively Fe-rich and Ca-poor phases. The implied higher crystal-melt Mg–Fe distribution coefficient for carbonate-rich magmas accounts for the generation of small volumes of Mg-rich liquids that are highly enriched in incompatible elements (i.e. primary kimberlite magmas). The inferred metasomatic origin for the sheared peridotites implies that this suite provides little or no information regarding vertical changes in the thermal, chemical and mechanical characteristics of the mantle.  相似文献   

3.
Fourier transform infrared spectrometry (FTIR) analyses of olivines from peridotite xenoliths found in southern African kimberlites indicate 0 to 80 ppm H2O concentrations. OH absorbance profiles across olivine grains show homogeneous H contents from core to edge for most samples. In one sample the olivines are H-free, while another has olivines characterized by lower H contents at the grain edges compared to the cores, indicating H loss during transport of the xenolith to the surface. Flat or near-flat H profiles place severe constraints on the duration of H loss from olivine grains, with implications for kimberlite magma ascent rates. Diffusion equations were used to estimate times of H loss of about 4 h for the sample with heterogeneous olivine H contents. Resulting kimberlite ascent rates are calculated to be 5-37 m s−1 minimum, although these estimates are highly dependent on volatile contents and degassing behavior of the host kimberlite magma. Xenolithic olivines from alkali basalts generally have lower H contents and more pronounced H diffusion profiles than do those from kimberlites. This difference is likely caused by higher magma temperatures and lower ascent rates of alkali basalts compared to kimberlites.  相似文献   

4.
The basaltic Martian meteorite Yamato 980459 consists of large olivine phenocrysts and often prismatic pyroxenes set into a fine-grained groundmass of smaller more Fe-rich olivine, chromite, and an interstitial residual material displaying quenching textures of dendritic olivine, chain-like augite and sulfide droplets in a glassy matrix. Yamato 980459 is, thus, the only Martian meteorite without plagioclase/maskelynite. Olivine is compositionally zoned from a Mg-rich core to a Fe-rich rim with the outer few micrometers being especially rich in iron. With Fo84 the cores are the most magnesian olivines found in Martian meteorites so far. Pyroxenes are also mostly composite crystals of large orthopyroxene cores and thin Ca-rich overgrowths. Separate pigeonite and augites are rare. On basis of the mineral compositions, the cooling rates determined from crystal morphologies, and crystal grain size distributions it is deduced that the parent magma of Yamato 980459 initially cooled under near equilibrium conditions e.g., in a magma chamber allowing chromite and the Mg-rich silicates to form as cumulus phases. Fractional crystallization at higher cooling rates and a low degree of undercooling let to the formation of the Ca-, Al-, and Fe-rich overgrowths on olivine and orthopyroxene while the magma was ascending towards the Martian surface. Finally and before plagioclase and also phosphates could precipitate, the magma was very quickly erupted quenching the remaining melt to glass, dendritic silicates and sulfide droplets. The shape preferred orientation of olivine and pyroxene suggests a quick, thin outflow of lava. According to the shock effects found in the minerals of Yamato 980459, the meteorite experienced an equilibration shock pressure of about 20-25 GPa. Its near surface position allowed the ejection from the planet’s surface already by a single impact event and at relatively low shock pressures.  相似文献   

5.

Olivine in kimberlites can provide unique insights into magma petrogenesis, because it is the most abundant xenocrystic phase and a stable magmatic product over most of the liquid line of descent. In this study we examined the petrography and chemistry of olivine in kimberlites from different tectonic settings, including the Slave craton, Canada (Ekati: Grizzly, Koala), the Brasilia mobile belt (Limpeza-18, Tres Ranchos-04), and the Kaapvaal craton, South Africa (Kaalvallei: Samada, New Robinson). Olivine cores display a wide range of compositions (e.g., Mg# = 78–95). The similarity in olivine composition, resorption of core zones and inclusions of mantle-derived phases, indicates that most olivine cores originated from the disaggregation of mantle peridotites, including kimberlite-metasomatised lithologies (i.e. sheared lherzolites and megacrysts). Olivine rims typically show a restricted range of Mg#, with decreasing Ni and increasing Mn and Ca contents, a characteristic of kimberlitic olivine worldwide. The rims host inclusions of groundmass minerals, which implies crystallisation just before and/or during emplacement. There is a direct correlation between olivine rim composition and groundmass mineralogy, whereby high Mg/Fe rims are associated with carbonate-rich kimberlites, and lower Mg/Fe rims are correlated with increased phlogopite and Fe-bearing oxide mineral abundances. There are no differences in olivine composition between explosive (Grizzly) and hypabyssal (Koala) kimberlites. Olivine in kimberlites also displays transitional zones and less common internal zones, between cores and rims. The diffuse transitional zones exhibit intermediate compositions between cores and rims, attributed to partial re-equilibration of xenocrystic cores with the ascending kimberlite melt. In contrast, internal zones form discrete layers with resorbed margins and restricted Mg# values, but variable Ni, Mn and Ca concentrations, which indicates a discrete crystallization event from precursor kimberlite melts at mantle depths. Overall, olivine exhibits broadly analogous zoning in kimberlites worldwide. Variable compositions for individual zones relate to different parental melt compositions rather than variations in tectonic setting or emplacement mechanism.

  相似文献   

6.
FTIR spectroscopy of OH in olivine: A new tool in kimberlite exploration   总被引:1,自引:0,他引:1  
Our study of olivines from Canadian kimberlites shows that the application of FTIR spectroscopy significantly improves the reliability of olivine as a kimberlite indicator mineral (KIM). We have developed an algorithm that yields the water concentration and the normalized intensity of the OH IR absorption band at 3572 cm−1 from unpolished olivine grains of unknown thickness. For 80% of kimberlitic olivines these two parameters are significantly higher than those for olivines from non-kimberlitic magmas and consequently, olivines with water concentrations >60 ppm and a strong absorption band at 3572 cm−1 can be reliably classified as being kimberlitic.We have identified two major spectral features in the OH absorption bands of kimberlitic olivines that allow for a more detailed classification: (a) the presence of three types of high-requency OH absorption bands (Group 1A, 1B and 1C) and (b) the proportion of low-frequency OH absorption bands (Group 2) relative to high-frequency bands (Group 1). Comparison of our results with experimental studies suggests that differences within Group 1 OH absorption bands are due to different pressures of crystallization or hydrogenation. The three identified types of Group 1 OH absorption bands approximately correspond to high (P > 2 GPa, Group 1A), moderate (2-1 GPa, Group 1B), and low (<1 GPa, Group 1C) pressures of hydrogenation. Group 2 OH IR absorption bands in olivines with NiO > 3500 ppm are interpreted to reflect olivine-orthopyroxene equilibria and hence are indicative of xenocrystic olivine derived from lherzolitic or harzburgitic mantle sources. Interaction of xenocrystic olivine with hydrous kimberlitic melts with low silica activity likely will cause a gradual increase in Group 1 absorption bands. Therefore, FTIR spectra of olivine can be used to obtain qualitative estimates of the duration of interaction between mantle material and a kimberlitic melt.In addition to applications in kimberlite and diamond exploration, FTIR spectra of olivine phenocrysts, combined with mineral chemical data, may also provide insights into kimberlite evolution. Our data suggest that in some instances the ascent of kimberlitic magmas could have been interrupted at or near the Moho, followed by olivine crystallization and exsolution of aqueous fluids.  相似文献   

7.
Mineralogical and chemical relationships indicate that the majority of ilmenites recovered from Group I kimberlites crystallized directly from the kimberlite magma in two contrasting P-T regimes: Ilmenites of the discrete nodule association formed in pegmatitic veins and apophyses surrounding the kimberlite magma at depth. Compositional ranges of the discrete nodule assemblage reflect essentially isobaric crystallization across the thermal aureole about the magma reservoir. Early crystallization of high pressure Cr-rich phases (garnet, clinopyroxene and possibly spinel) could result in later forming megacryst ilmenites being Cr-poor. During ascent of the kimberlite magma (essentially identical to the liquid injected into the pegmatitic veins), crystallization of garnet and clinopyroxene would be inhibited as a result of the expansion of the olivine phase field. The magma would not undergo Crdepletion, with the result that later crystallizing (ground-mass) ilmenites would be Cr-rich relative to associated ilmenite megacrysts.Rare ilmenite inclusions in diamonds show chemical affinities with those of the discrete nodule suite. It is proposed that large Type IIa diamonds may be late-crystallizing members of the discrete nodule assemblage. They are in other words related to the kimberlite event itself, and would represent a third diamond paragenesis, distinctly younger than those related to peridotites and eclogites.The mode of formation of rare MARID suite and metasomatized mantle xenoliths is not clearly understood, although mineralogical and chemical evidence point to a direct or indirect link to the host kimberlite.  相似文献   

8.
为探究山东蒙阴金伯利岩中蛇纹石化橄榄石的微组构特征、蚀变环境、元素迁移规律及其对金伯利岩表生演化的指示意义,对该区金伯利岩中部分蛇纹石化的橄榄石和完全蚀变的橄榄石进行了XRD、EPMA和LA-ICP-MS分析测试。结果表明,蛇纹石中少部分Mg被Fe、Al、Ca、Ni、Mn取代,其中Fe含量仅次于Mg;从蚀变橄榄石的中心到边缘,Li与Zn、Ba与Sc、Co与Y含量分别呈3组变化趋势;部分蚀变的橄榄石为负Eu异常、低氧逸度,推测其形成于封闭的还原环境;完全蚀变的橄榄石无Eu异常,氧逸度相对较高,推测其形成于更开放的偏氧化环境;未完全蚀变的橄榄石大部分微量元素含量都高于完全蚀变橄榄石;稀土元素在蛇纹石化过程中可能存在迁移活动。  相似文献   

9.
王思琪  郑建平  韩双  王俊烈 《地质学报》2020,94(9):2676-2686
辽南金伯利岩岩区是我国最大的原生金刚石矿产区,该区金刚石主要寄主岩石类型为斑状金伯利岩。橄榄石是金伯利岩中最重要的造岩矿物,根据其结构特征可以分为橄榄石粗晶、橄榄石斑晶以及基质中微细粒三个世代。本文将岩相学特征和前人研究成果相结合,构建辽南斑状金伯利岩岩浆起源、上升、喷发和成岩模型,探讨各世代矿物的形成过程。具体包括:深部交代地幔部分熔融,形成初始碳酸盐岩浆;初始岩浆上升过程中捕获的岩石圈地幔橄榄岩不断溶解(形成橄榄石粗晶),岩浆成分发生改变,成为金伯利岩岩浆;金伯利岩岩浆迅速上升侵位,至地表处爆破喷发,最后冷却固结形成包含粗晶及其他两个世代橄榄石的斑状金伯利岩。  相似文献   

10.
11.
A.K. Ferguson 《Lithos》1978,11(3):189-194
Data are presented on the Ca-content of olivines in a range of volcanic rocks from a variety of suites. These include olivine basalts through to trachytes from Gough, St. Helena and Tristan da Cunha Islands; trachytes from central Victoria, Australia, and a leucitite and phonclitic-tephrite series from Bufumbira, Uganda. In olivine crystals from basaltic lavas the Ca- and Mn-contents are low and Fe shows the most significant zoning from core to rim. In Fe-rich olivines from trachytic differentiates Ca and Mn frequently show more significant variation than Fe. While the Mn-content is proportional to the Fe-content of these olivines, Ca-zoning, in many cases, is unrelated to Fe-content. The marked Ca-enrichment in olivines occurs with the absence of plagioclase in the host lavas. The Ca(Al  Na  K) ratio is shown to be related not only to the Ca-content of the olivines in the lava, but may be used to predict olivine stability in evolved compositions.  相似文献   

12.
The chemical compositions of melt inclusions in a primitive and an evolved basalt recovered from the mid-Atlantic ridge south of the Kane Fracture Zone (23°–24°N) are determined. The melt inclusions are primitive in composition (0.633–0.747 molar Mg/(Mg+Fe2+), 1.01–0.68 wt% TiO2) and are comparable to other proposed parental magmas except in having higher Al2O3 and lower CaO. The primitive melt inclusion compositions indicate that the most primitive magmas erupted in this region are not near primary magma compositions. Olivine and plagioclase microphenocrysts are close to exchange equilibrium with their respective basalt glasses, whose compositions are displaced toward olivine from 1 atm three phase saturation. The most primitive melt inclusion compositions are close to exchange equilibrium with the anorthitic cores of zoned plagioclases (An78.3-An83.1; the hosts for the melt inclusions in plagioclase) and with olivines more forsteritic (Fo89-Fo91) than the olivine microphenocrysts (the hosts for the melt inclusions in olivine). Xenocrystic olivine analyzed is Fo89 but contains no melt inclusions. These observations indicate that olivines have exchanged components with the melt after melt inclusion entrapment, whereas plagioclase compositions have remained the same since melt inclusion entrapment. Common denominator element ratio diagrams and oxide versus oxide variation diagrams show that the melt inclusion compositions, which represent liquids higher along the liquid line of descent, are related to the glass compositions by the fractionation of olivine, plagioclase and clinopyroxene (absent from the mincral assemblage), probably occurring at elevated pressures. A model is proposed whereby clinopyroxene segregates from the melt at elevated pressures (to account for its absence in the erupted lavas that have the chemical imprint of clinopyroxene fractionation). Zoned plagioclases in the erupted lavas are thought to be survivors of decompressional melting during magma ascent. Since similar primitive melt inclusions occur in olivine microphenocrysts and in the cores of zoned plagioclases, any model must account for all phases present.  相似文献   

13.

Distinctly different groundmass mineralogy characterise the hypabyssal facies, Mesoproterozoic diamondiferous P3 and P4 intrusions from the Wajrakarur Kimberlite Field, southern India. P3 is an archetypal kimberlite with macrocrysts of olivine and phlogopite set in a groundmass dominated by phlogopite and monticellite with subordinate amounts of serpentine, spinel, perovskite, apatite, calcite and rare baddeleyite. P4 contains mega- and macrocrysts of olivine set in a groundmass dominated by clinopyroxene and phlogopite with subordinate amounts of serpentine, spinel, perovskite, apatite, and occasional gittinsite, and is mineralogically interpreted as an olivine lamproite. Three distinct populations of olivine, phlogopite and clinopyroxene are recognized based on their microtextural and compositional characteristics. The first population includes glimmerite and phlogopite–clinopyroxene nodules, and Mg-rich olivine macrocrysts (Fo 90–93) which are interpreted to be derived from disaggregated mantle xenoliths. The second population comprises macrocrysts of phlogopite and Fe-rich olivine (Fo 81–89) from P3, megacrysts and macrocrysts of Fe-rich olivine (Fo 85–87) from P4 and a rare olivine–clinopyroxene nodule from P4 which are suggested to have a genetic link with the precursor melt of the respective intrusions. The third population represents clearly magmatic minerals such as euhedral phenocrysts of Fe-rich olivine (Fo 85–90) crystallised at mantle depths, and olivine overgrowth rims formed contemporaneously with groundmass minerals at crustal levels. Close spatial association and contemporaneous emplacement of P3 kimberlite and P4 lamproite is explained by a unifying petrogenetic model which involves the interaction of a silica-poor carbonatite melt with differently metasomatised wall rocks in the lithospheric mantle. It is proposed that the metasomatised wall rock for lamproite contained abundant MARID-type and phlogopite-rich metasomatic veins, while that for kimberlite was relatively refractory in nature.

  相似文献   

14.
The Cambrian Gahcho Kué kimberlite cluster includes four main pipes that have been emplaced into the Archaean basement granitoids of the Slave Craton. Each of the steep-sided pipes were formed by the intrusion of several distinct phases of kimberlite in which the textures vary from hypabyssal kimberlite (HK) to diatreme-facies tuffisitic kimberlite breccia (TKB). The TKB displays many diagnostic features including abundant unaltered country rock xenoliths, pelletal lapilli, serpentinised olivines and a matrix composed of microlitic phlogopite and serpentine without carbonate. The HK contains common fresh olivine set in a groundmass composed of monticellite, phlogopite, perovskite, serpentine and carbonate. A number of separate phases of kimberlite display a magmatic textural gradation from TKB to HK, which is characterised by a decrease in the proportion of pelletal lapilli and country rock xenoliths and an increase in groundmass crystallinity, proportion of fresh olivine and the degree of xenolith digestion.

The pipe shapes and infills of the Gahcho Kué kimberlites are similar to those of the classic South African pipes, particularly those of the Kimberley area. Similar intrusive magmatic emplacement processes are proposed in which the diatreme-zone results from the degassing, after breakthrough, of the intruding magma column. The transition zones represent ‘frozen’ degassing fronts. The style of emplacement of the Gahcho Kué kimberlites is very different from that of many other pipes in Canada such as at Lac de Gras, Fort à la Corne or Attawapiskat.  相似文献   


15.
A suite of fresh, Late Cretaceous to Eocene hypabyssal kimberlites from the Lac de Gras field were studied in order to understand better carbonate, silicate and oxide paragenesis. The samples have excellent preservation of textures and primary mineralogy and are archetypal or Group 1 kimberlite. Five kimberlite localities are identified as calcite-bearing based on the presence of high Sr–Ba calcite as phenocrysts, microphenocrysts and in segregations. Three kimberlite localities are identified as dolomite-bearing based on the presence of mixed calcite–dolomite segregations containing oscillatory and banded textures of calcite–dolomite solid solution and dolomite (±magnesite). Sr–Ba calcite are characterized by high XCa (>0.95) and are enriched in Sr (4900–11,100 ppm) and Ba (3200–14,200 ppm). The calcite–dolomite and dolomite–magnesite solid solution compositions span the XCa range from 0.42 to 0.95, and typically have Sr and Ba contents in the range of 1000–4000 ppm. The carbonate, silicate and oxide mineral compositions suggest that the origin of the calcite-bearing versus dolomite-bearing kimberlites studied is related to subtle differences in parent magma composition, in particular, the CO2/H2O ratio. Formation of the carbonates reflects the latter part of a protracted magmatic crystallization sequence, in which Sr–Ba calcite precipitates from an evolved kimberlite melt. Subsequently, calcite–dolomite solid solution and dolomite is precipitated from localized, Mg-rich carbonate fluids at relatively high temperatures (higher than serpentine stability).  相似文献   

16.
Olivine melilitites from Namaqualand, South Africa are characterized by a broad range in olivine compositions on the scale of individual hand specimens. It is possible to distinguish four petrographically and chemically distinct olivine populations in both the northern and southern pipe clusters studied: (a) Scarce anhedral or subhedral olivines that display marked disequilibrium features with the surrounding matrix, and which are characterized by having high iron and extremely low nickel contents (referred to as HILN olivines) relative to the other olivines in the same rock, (b) A dominant population of euhedral and often skeletal (hopper) olivines that are richer in Mg and Ni than the HILN olivines in the same rock. There are in addition unusual hopper olivines that are petrographically similar to the skeletal olivines, but show aberrant zonation patterns. Hopper and HILN type olivines contain fluid and carbonate inclusions which apparently record the loss of a vapour phase and an immiscible carbonate liquid during magma ascent, (c) A third population consists of large rounded olivines (megacrysts), up to 40 mm in greatest diameter. Individuals are chemically homogeneous, but megacrysts from the same pipe collectively define a trend of decreasing Mg and Ni (Fo92, 0.36% Ni to Fo75, 0.17% Ni). The most fayalitic megacrysts are depleted in Mg and Ni relative to the hopper olivines in the same rock, (d) Scarce magnesium-rich (Fo91) anhedral olivines which show strained extinction are believed to be xenocrysts.It is suggested that the HILN-type olivines crystallized from primitive carbonate-rich magmas under conditions of low oxygen fugacity, intermediate between the Ni-NiO and Fe-FeO buffers. Mineral-melt partition coefficients for the transition elements determined in basaltic systems are considered to be inappropriate to such carbonate-rich melts. Loss of volatiles and an immiscible carbonate liquid during magma ascent resulted in an increase in oxygen activity, a decrease in the Fe-Mg distribution coefficient (K D ) for olivine and liquid and an increase in liquidus temperatures. These effects led to the rapid crystallization of Mg- and Ni-enriched skeletal hopper olivines. The unusual hoppers crystallized later than the HILN olivines but prior to the normal hoppers, under conditions chracterized by rapid and independent changes in oxygen activity and partition coefficients associated with the loss of volatiles and an immiscible carbonate liquid. The range in chemistry which characterizes the megacryst-olivine suite is believed to record physico-chemical changes to the magmas subsequent to separation from a mantle source area, but prior to crystallization of the HILN olivines. Most important of these changes was an increasing degree of polymerization of the liquid structure and a progressive decrease in oxygen activity as the molar ratio (CO 3 2- /(CO 3 2- + CO2)) in the magma increased with decreasing pressure. Increasing polymerization of the liquid resulted in an increase in olivine-liquid partition coefficients for transition elements.Olivines in kimberlites show compositional characteristics and zonation patterns similar to those recognized in the olivine melilitites which, coupled with ilmenite compositions, suggests that the two magma types initially evolved along similar physico-chemical paths.  相似文献   

17.
Fe-rich dunite xenoliths within the Kimberley kimberlites compriseolivine neoblasts with minor elongated, parallel-oriented ilmenite,and rarely olivine porphyroclasts and spinel. Compared withtypical mantle peridotites, olivines in the Fe-rich duniteshave lower forsterite (Fo87–89) and NiO contents (1300–2800ppm), which precludes a restitic origin for the dunites. Chrome-richspinels are remnants of a metasomatic reaction that producedilmenite and phlogopite. Trace element compositions differ betweenporphyroclastic and neoblastic olivine, the latter having higherTi, V, Cr and Ni and lower Zn, Zr and Nb contents, documentingtheir different origins. The dunites have high 187Os/ 188Osratios (0·11–0·15) that result in youngmodel ages for most samples, whereas three samples show isotopicmixtures between Phanerozoic neoblasts and ancient porphyroclasticmaterial. Most Fe-rich dunite xenoliths are interpreted to berecrystallized cumulates related to fractional crystallizationof Jurassic Karoo flood basalt magmatism, whereas the porphyroclastsare interpreted to be remnants from a much earlier (probablyArchaean Ventersdorp) magmatic episode. The calculated parentalmagma for the most primitive olivine neoblasts in the Fe-richdunites is similar to low-Ti Karoo basalts. Modelling the crystalfractionation of the inferred parental magma with pMELTS yieldselement fractionation trends that mirror the element variationof primitive low-Ti Karoo basalts. KEY WORDS: dunite xenoliths; fractional crystallization; Karoo; large igneous province; pMELTS; Re–Os; trace elements  相似文献   

18.
MORSE  S. A. 《Journal of Petrology》1996,37(5):1037-1061
Olivines, present throughout the layered cumulates of the KiglapaitIntrusion, record extreme iron enrichment during fractionalcrystallization. Mn is less compatible than Fe; the exchangecoefficient KD for Mn/Fe (OL-LIQ) has values near 0.95 but theydrop to 0.7 near the Lower Zone-Upper Zone boundary. Ca is depletedby more than a factor of 30 relative to experimental valuesat 5 kbar pressure. Attempts to find a sink for Ca in the LowerZone without invoking liquid as a reactant are unconvincing,and questions of metastability arise. Cumulus olivines varysystematically to lower Fo contents with stratigraphic height.Using equilibrium values for the exchange coefficient KD (Fe/Mg,OL-LIQ), and the observed mode of olivine and residual porosity,a Rayleigh fractionation calculation reproduces the observedLower Zone trend without recourse to multiple injections ofmagma. An anomalously Fe-rich region above the Main Ore Bandin the Upper Zone is ascribed to ponding of Fe-rich magma atthe floor of the intrusion until later, buoyant residual magmaentrained the Fe-rich residua. Such Fe-rich ponds probably accountfor the abnormal Feenrichment shown by some other Fenner-trendlayered intrusions. Summation over the observed crystal compositionsyields values of XMg that do not represent the equilibrium liquid,but that reduce to it by a simple multiplier p = 0.78. Thisresult means that if KD is known, the high-temperature, liquidusolivine compositions can be retrieved, or vice versa. Becausethe observed olivine compositions are supported by realisticforward models, there is no need to invoke evolved boundary-layerliquids to explain the in situ crystallization of Kiglapaitcumulates. Classical cumulate theory suffices. KEY WORDS: olivine; Rayleigh fractionation; Kiglapait Intrusion; cumulative theory  相似文献   

19.
This paper reviews key characteristics of kimberlites on the Ekati property, NWT, Canada. To date 150 kimberlites have been discovered on the property, five of which are mined for diamonds. The kimberlites intrude Archean basement of the central Slave craton. Numerous Proterozoic diabase dykes intrude the area. The Precambrian rocks are overlain by Quaternary glacial sediments. No Phanerozoic rocks are present. However, mudstone xenoliths and disaggregated sediment within the kimberlites indicate that late-Cretaceous and Tertiary cover (likely <200 m) was present at the time of emplacement. The Ekati kimberlites range in age from 45 to 75 Ma. They are mostly small pipe-like bodies (surface area mostly <3 ha but up to 20 ha) that typically extend to projected depths of 400–600 m below current surface. Pipe morphologies are strongly controlled by joints and faults. The kimberlites consist primarily of variably bedded volcaniclastic kimberlite (VK). This is dominated by juvenile constituents (olivine and lesser kimberlitic ash) and variable amounts of exotic sediment (primarily mud), with minor amounts of xenolithic wall-rock material (generally <5%). Kimberlite types include: mud-rich resedimented VK (mRVK); olivine-rich VK (oVK); sedimentary kimberlite; primary VK (PVK); tuffisitic kimberlite (TK) and magmatic kimberlite (MK). The presence and arrangement of these rock types varies widely. The majority of bodies are dominated by oVK and mRVK, but PVK is prominent in the lower portions of certain kimberlites. TK is rare. MK occurs primarily as precursor dykes but, in a few cases, forms pipe-filling intrusions. The internal geology of the kimberlites ranges from simple single-phase pipes (RVK or MK), to complex bodies with multiple, distinct units of VK. The latter include pipes infilled with steep, irregular VK blocks/wedges and at least one case in which the pipe is occupied by well-defined sub-horizontal VK phases, including a unique, 100-m-thick graded sequence. The whole-rock compositions of VK samples suggest significant loss of kimberlitic fines during eruption followed by variable dilution by surface sediment and concurrent incorporation of kimberlitic ash. Diamond distribution within the kimberlites reflects the amount and nature of mantle material sampled by individual kimberlite phases, but is modified considerably by eruption and depositional processes. The characteristics of the Ekati kimberlites are consistent with a two-stage emplacement process: (1) explosive eruption/s causing vent clearing followed by formation of a significant tephra rim/cone of highly fragmented, olivine-enriched juvenile material with varying amounts of kimberlitic ash and surface sediments (predominantly mud); and (2) infilling of the vent by direct deposition from the eruption column and/or resedimentation of crater rim materials. The presence of less fragmented, juvenile-rich PVK in the lower portions of certain pipes and the intrusion of large volumes of MK to shallow levels in some bodies suggest emplacement of relatively volatile-depleted, less explosive kimberlite in the later stages of pipe formation and/or filling. Explosive devolatilisation of CO2-rich kimberlite magma is interpreted to have been the dominant eruption mechanism, but phreatomagmatism is thought to have played a role and, in certain cases, may have been dominant.  相似文献   

20.
本文百次研究了山东金伯利岩中橄榄石的产状、含量、大小、世代、形态、颜色、环带、矿物包体、折光率、2V、化学成分、端员组分特征及红外光谱和穆斯堡尔谱特征,并分析研究了橄榄石的成因。指出了无色—浅绿色的、含MgO、Cr2O3、NiO高的橄榄石是找金刚石矿的指示性矿物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号