首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以渤中8号采油平台为基地,对海上大气表面层的风速、温度和湿度廓线进行了同步测量。据测量数据的统计分析,确定了较好适用于渤海中部大气表面层的大气稳定度函数模式(不稳定状态),从而确定了一种海上大气表面层风湿廓线的参量化模式。依此模式,可由实测风温湿廓线数据计算海-气动量、感热和水汽通量。  相似文献   

2.
利用中国气象局上海台风研究所台风试验获取的4个典型台风个例数据,对地基微波辐射计反演的温度、水汽密度廓线与同址GP S探空资料得到的廓线进行对比分析,发现二者的温度、水汽密度相关系数分别为0.988、0.928.微波辐射计的探测精度在不同高度上有很大差异,整体来说,在高层温度探测精度较优于低层,而在低层水汽密度探测精度...  相似文献   

3.
基于1988-2017年高分辨率的欧洲中尺度天气预报中心再分析数据,本文对中国近海的低空大气波导进行了统计分析.结果表明:该海域整体大气波导概率为22%,其中悬空波导占60%以上;春季最容易发生大气波导,其次是夏季、秋季和冬季.区域时空分布上,中国近海大气波导特征具有明显的月变化和区域分布特征.大气波导发生概率北部海域...  相似文献   

4.
蒸发波导现象显著影响海上电磁波传播,快速获取大范围精确的修正折射率参数成为了蒸发波导研究热点。文中分析了现有的蒸发波导预测模型,对其中的经典模型进行了仿真,对比不同模型的仿真结果,总结了模型方法预测波导高度及修正折射率廓线的不足。然后从硬件角度出发对比现有蒸发波导测量系统原理、测量精度及适用条件,分析测量系统引入的误差源进而给出了不同测量系统的改进方向,总结出修正折射率廓线测量系统应具备的测量精度及数据条件。最后通过方法间对比及蒸发波导实测数据的应用过程分析,对不同方法未来的研究方向和发展趋势进行了展望。  相似文献   

5.
吴超  钟莹  杨少波  何鑫  李醒飞 《海洋科学》2017,41(8):134-141
蒸发波导是海上大气波导中发生概率最高、对海上舰艇和岸基雷达探测系统影响最大的一种波导类型,研究意义重大。本文搭建了一种基于NPS诊断模型的新型蒸发波导数值预报模式,对我国南海海域2014年11月1~5日的5 d海上蒸发波导分别进行了数值模拟。利用数值模拟数据与岸基铁塔实测数据分别绘制蒸发波导高度随时间的变化曲线,并进行误差分析,显示模拟结果与实测结果变化规律基本一致,统计计算这5 d的蒸发波导高度平均误差为1.289 m。这表明了本模式的可行性及其存在的模拟偏差。此外,利用本预报模式对南海海域2011年整年的蒸发波导进行了数值模拟,得到了12个月的蒸发波导时空分布特征,分析总结的规律与其它文献的研究结论基本一致。  相似文献   

6.
南海区域红外波段大气透过特征分析   总被引:1,自引:0,他引:1  
利用MODTRAN大气辐射传输模型,输入我国南海区域大气廓线数据,对比分析气溶胶对红外波段大气透过特性的影响。研究表明,气溶胶、温度和季节对该波段在大气中传输均有一定影响;南海区域大气透过率随季节变化很大,夏季比冬季小10%以上,00时大气透过率略大于12时;采用近似国外模式大气带来的误差最大可达到50%以上。该研究结果充分说明:在红外波段大气透过率计算中引入实际大气廓线数据具有重要的军事和工程应用意义。  相似文献   

7.
本文基于海洋大气近地层相似理论和一维Kolmogorov 谱函数, 建立考虑各向同性和各向异性湍流效应的蒸发波导模型, 并基于相对误差理论, 将数值模拟的大气修正折射率与根据试验采集数据计算得到的修正折射率进行对比分析。研究结果表明: 湍流效应对蒸发波导模型的预测结果有影响, 且考虑各向异性湍流效应的蒸发波导模型预测精度更高。因此在构建蒸发波导模型时, 需要考虑各向异性湍流对大气折射率的扰动影响, 才能得到更准确的大气修正折射率廓线。通过引入各向异性大气湍流理论, 能够有效提升蒸发波导模型的适用性, 为后续反演大气波导提供较好的模型基础。  相似文献   

8.
蒸发波导是发生在海气边界层的一种异常折射现象,因为其分布广、发生概率大,所以被认为是对海上电子装备影响最为显著的波导类型。然而由于其形成机制复杂,且在近岸地区存在水平不均匀性,使得目前非均匀蒸发波导的诊断及其应用还未能落实到实际工作中。针对这一现状,首先利用G L Geernaert的方法修正了Monin-Obukhov相似理论,将其扩展到海洋大气表面边界层不均匀条件下;其次在Babin模式的基础上引入张强普适函数的非线性修正因子与阵性风速,从而将蒸发波导诊断模式的适用范围拓展到近海沿岸地区和甚低风速条件下。并在此基础上研究了蒸发波导水平非均匀性对雷达探测的影响,得到了水平非均匀蒸发波导能够改变均匀波导环境下雷达的探测距离及其盲区的分布。  相似文献   

9.
利用2017—2020年廊坊市大厂县QFW-6000型微波辐射计和北京探空资料,对08时和20时2个时次共737组有效样本垂直方向的气温、湿度进行对比检验。结果表明:(1)整层气温均方根误差在5 ℃以内,相对湿度均方根误差为20%~30%,气温的相关系数明显高于相对湿度,即前者的探测精度更高。(2)1 km以下08时和20时温度和相对湿度的误差差异显著,08时误差均小于20时,1 km以上气温误差稳定在3 ℃左右,相对湿度误差廓线随高度先增大后减小。(3)夏秋季温度误差总体小于春季和冬季,但夏季贴地层误差明显大于其他季节,而相对湿度误差在冬季更为稳定。(4)晴天微波辐射计的探测精度明显优于云天和雨天,且随着云量的增多,探测精度逐渐下降。(5)降雨量级的差异对微波辐射计的探测精度产生不同影响,雨量越大,温度和相对湿度的误差越大;小雨时温度的相关系数在贴地层以上为0.60~0.90,但整层相对湿度的相关系数普遍在0.50以下,中雨及以上的降雨出现时,08时和20时温度的相关系数表现出显著差异,而相对湿度的相关系数在大雨及以上时波动最大,表现出极不稳定的探测性能。  相似文献   

10.
利用中尺度大气模式MM5对2007年中国近海大气蒸发波导进行了全年的高分辨的数值模拟。模拟结果统计表明,整个海域蒸发波导的平均出现概率约为90%。本文重点关注强度较大的蒸发波导,详细分析了其季节分布特征及其与海洋环流和海面气象条件的相关关系。研究发现,25°N以南的开阔海域的蒸发波导出现概率全年都较高,而以北的东海西北部、黄海与渤海,蒸发波导的出现概率呈现明显的季节特征;蒸发波导的空间分布受中国近海海洋环流的强烈影响,存在1个与黑潮区域相一致的带状波导高出现概率区域,台湾暖流、黄海暖流和对马暖流使得在某些季节相应海域蒸发波导出现概率高于其周围海域。此外,本文还基于WRF模式及其3DVAR系统构建了大气波导数值预报系统,尝试对中国东南海域的蒸发波导进行数值预报。  相似文献   

11.
利用中尺度大气模式MM5对2007年中国近海大气蒸发波导进行了全年的高分辨的数值模拟.模拟结果统计表明,整个海域蒸发波导的平均出现概率约为90%.本文重点关注强度较大的蒸发波导,详细分析了其季节分布特征及其与海洋环流和海面气象条件的相关关系.研究发现,25°N以南的开阔海域的蒸发波导出现概率全年都较高,面以北的东海西北部、黄海与渤海,蒸发波导的出现概率呈现明显的季节特征;蒸发波导的空间分布受中国近海海洋环流的强烈影响,存在1个与黑潮区域相一致的带状波导高出现概率区域,台湾暖流、黄海暖流和对马暖流使得在某些季节相应海域蒸发波导出现概率高于其周围海域.此外,本文还基于WRF模式及其3DVAR系统构建了大气波导数值预报系统,尝试对中国东南海域的蒸发波导进行数值预报.  相似文献   

12.
以14:00时离水辐亮度作为背景光强度,模拟355nm激光雷达测量不同深度水层叶绿素a荧光的信噪比.分析体积衰减系数c、辐照度衰减系数k、散射系数b和透明度盘深度(SDD)的关系.最后模拟532nm激光雷达测量悬移质浓度的最大测量深度和误判率小于10%时的最大海底探测深度随SDD的变化.  相似文献   

13.
2009年4月9—12日黄海海域发生了一次受高压系统影响的海雾过程。利用卫星观测与探空数据、WRF模式(Weather Research and Forecasting Model)对此次海雾过程及相伴的大气波导进行了观测分析与数值模拟。海雾与波导发展可分为3个阶段:(1)大气波导先于海雾存在于黄海海面;受高压下沉影响,黄海上空存在逆温层和较强的湿度梯度,表现为较强的贴海表面波导和非贴海表面波导。(2)海雾始于高压西部,并随高压系统逐渐东移减弱,向黄海北部扩展;辐射冷却虽然使雾顶附近逆温增强,但海雾的机械湍流使其顶部湿度梯度减小,雾顶附近对应弱悬空波导或波导消失。(3)高压系统影响使干空气下沉到雾区导致黄海海雾消散;雾顶附近逆温仍存在,同时湿度梯度增大,黄海上空逐渐变为非贴海表面波导。本研究结果表明:高压系统不仅极易为波导的发生提供有利条件,而且有利于海雾的生成,在海雾演变过程中主要是雾顶水汽梯度的变化导致了波导类型及强度的变化。  相似文献   

14.
本研究利用国际在轨SSMIS、WindSat、AMSR-E、ASMR2和国产HY-2A微波辐射计多源遥感大气柱水汽含量观测数据,基于最优插值算法,生成了2003-2015年全球海洋每日0.25°高分辨率的大气柱水汽含量多源遥感融合产品,以及2012-2015年未使用HY-2A微波辐射计数据的全球海洋每日0.25°遥感融合产品。利用无线电探空仪水汽含量观测数据,对生成的全球海洋大气柱水汽含量融合产品进行精度检验。结果表明,总体上,13年间均方根误差和标准差小于3 mm,平均偏差小于0.6 mm,平均绝对偏差小于2 mm,相关系数大于0.98;使用HY-2A微波辐射计数据产品会使融合结果的精度出现微小的降低;AMSR2和HY-2A微波辐射计数据的联合使用对于替代AMSR-E数据具有积极意义。  相似文献   

15.
基于局地相似理论的蒸发波导计算方案及敏感性试验   总被引:3,自引:0,他引:3  
蒸发波导是海洋环境中最常出现的异常大气折射结构,具有很高的利用价值.利用局地相似理论代替 Monin-Obukhov 相似理论来确定近地层温度、湿度垂直分布廓线,并借助热带海洋全球大气-海气耦合响应试验(TOGA COARE) 中提出的总体通量算法,对 Local 模式和 New 的推导过程和算法设计进行了详细的阐述和说明.通过比较不同模式的计算结果和敏感性试验发现,在较强逆温和低风速(强稳定层结) 条件下,除 P-J 模式外,基于 Monin-Obukhov 相似理论的蒸发波导模式计算的高度值均出现异常突变;而基于局地相似理论的 Local 模式能够有效抑制这种异常突变的现象,且与加入人为修正的 P-J 模式结果比较接近.New 模式集 Babin 模式与 Local 模式的优点于一身,应该说是目前理论上最为完善的模式.  相似文献   

16.
提出了一种可用于船(舰)载的Ku波段微波波高计,它是一种非接触式的波高测量设备,可架设于船头,动态测量海浪波高参数.为了修正船体颠簸对测量结果的影响,在微波探测单元上设置了加速度传感器,提出了两种不同的数学模型——加速度匀变模型和简谐振动模型,分别计算船体的实时颠簸位移,并对理论上可能出现的最大误差进行了分析.测量结果表明,两种模型均能有效地校正船体颠簸的影响,实测海浪波高的平均误差小于8%.  相似文献   

17.
利用1993年ENSO事件爆发(4月)前酝酿时期“热带大洋与全球大气-海洋耦合响应试验”强化观测阶段“向阳红五号”科学考察船155°E,2°S定点海洋气象和高空大气探测资料,分析了赤道西太平洋大气边界层特征。结果表明:赤道西太平洋上空辐合对流区边界层内也有等温或逆温层存在,大气边界层物理参数变化与大尺度海-气变异有密切关系,赤道太平洋沃克环流加强、东移,边界层上部逆温层出现概率明显增大,边界层内高湿层湿度减小。另外,边界层内实测风速、风向廓线随高度的变化基本上不服从Ekman规律,但由其平均,分量合成得到的平均风随高度的变化却基本符合Ekman规律。  相似文献   

18.
海岸带湿度对人类生产生活有较大影响。文章根据风廓线雷达和RASS(Radio Acoustic Sounding System)测量湿度的相关理论,结合实测数据计算某海滨观测站个例的大气湿度分布,并与探空数据进行比对,分析误差及其原因。结果表明:风廓线雷达联合RASS测量湿度的方法得到的湿度结果与常规探测结果较为接近,可进一步研究实现其监测海岸带大气湿度的业务化应用。  相似文献   

19.
利用西北印度洋船测数据评估基于卫星的海表面温度   总被引:1,自引:1,他引:0  
本文描述了一次夏季在西北印度洋进行的调查船水文测量,用船测数据评估卫星海面表温度,并寻找影响海表面温度误差的主要因素。我们考虑了两种卫星数据,第一种是微波遥感产品——热带降雨测量任务微波成像仪TMI数据,另外一种是融合了微波,红外线,以及少部分观测数据的融合数据产品——可处理海表温度和海冰分析OSTIA数据。结果表明融合数据的日平均海表面温度的平均误差和均方根误差都比微波遥感小。这一结果证明了融合红外线遥感,微波遥感以及观测数据来提高海表面温度数据质量的必要性。此外,我们分析了海表面温度误差与各项水文参数之间的相关关系,包括风速,大气温度,想对湿度,大气压力,能见度。结果表明风速与TMI海表面温度误差的相关系数最大。而大气温度是影响OSTIA海表面温度误差最重要的因素;与此同时,想对湿度与海表面温度误差的相关系数也很高。  相似文献   

20.
利用最小方差算法对NOAA/AMSU(Advanced Microwave Sounding Unit)探测资料在105°E~135°E、0~30°N海域范围内的大气温度垂直廓线进行了反演研究。利用NCEP再分析资料对算法的反演性能进行了验证;并与中国海洋大学卫星地面站SeaSpace/TeraS-can软件系统反演的温度廓线进行了比较。结果表明:该算法在中国区域具有较好的反演精度和适应能力;总体上改善了TeraScan软件的反演结果,尤其提高了对流层大部分区域的反演精度。本研究为地面站ATOVS(Advanced TIROS Operational Vertical Sounder)数据的进一步利用提供了一种较好的理论参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号