首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The New England Orogen in eastern Australia is characterised by orogenic-scale curvatures (oroclines). The largest and most prominent curvature in this system is the Texas Orocline, but its subsurface geometry is still poorly constrained. A large component of the orocline is covered by post-oroclinal sedimentary rocks, which obscure deeper sections of the orocline and make it difficult to understand how the structure is connected to other segments of the New England Orogen. Here, we present geophysical data that elucidate the structure of the Texas Orocline below the sedimentary cover. Using 2D seismic, aeromagnetic TMI (total magnetic intensity) and Bouguer gravity datasets, in combination with outcrop and well data, we identified the depth to the New England ‘basement’ and significant faults intersecting it. We also traced the strongly contorted subsurface continuation of the Peel-Yarrol Fault System, which is characterised by local gravity and magnetic anomalies associated with isolated serpentinite outcrops. Constraints on the timing of oroclinal bending were obtained from the interpretation of seismic transects, which showed that early Permian sedimentary rocks of the Bowen Basin were deposited in a subtrough that deviates from the general north–south trend of the Bowen Basin. The subtrough is oriented approximately parallel to the western limb of the Texas Orocline, thus suggesting that the orocline formed during and/or after early Permian rifting. Our analysis indicates that initial bending occurred contemporaneously with the development of the early Permian rift basins, most likely in the backarc region of a retreating subduction zone. Subsequently, phases of strike-slip and contractional deformation have further tightened the pre-existing curvatures.  相似文献   

2.
The middle to late Permian Hunter Bowen Event is credited with the development of orogenic curvature in the southern New England Orogen, yet contention surrounds the structural dynamics responsible for the development of this curvature. Debate is largely centred on the roles of orogen parallel strike-slip and orogen normal extension and contraction to explain the development of curvature. To evaluate the dynamic history of the Hunter Bowen Event, we present new kinematic reconstructions of the Tamworth Belt. The Tamworth Belt formed as a Carboniferous forearc basin and was subsequently inverted during the Hunter Bowen Event. Kinematic reconstructions of the Tamworth Belt are based on new maps and cross-sections built from a synthesis of best-available mapping, chronostratigraphic data and new interpretations of depth-converted seismic data. The following conclusions are made from our study: (i) the Hunter Bowen Event was dominantly driven by margin normal contraction (east–west shortening; present-day coordinates), and; (ii) variations in structural style along the strike of the Tamworth Belt can be explained by orthogonal vs. oblique inversion, which reflects the angular relationship between the principal shortening vector and continental-arc margin. Given these conclusions, we suggest that curvature around the controversial Manning Bend was influenced by the presence of primary curvature in the continental margin, and that the Hastings Block was translated along a sinistral strike-slip fault system that formed along this oblique (with respect to the regional east–west extension and convergence direction) part of the margin. Given the available temporal data, the translation of the Hastings Block took place in the Early Permian (Asselian) and therefore preceded the Hunter Bowen Event. Accordingly, we suggest that the Hunter Bowen Event was dominantly associated with enhancing curvature that was either primary in origin, or associated with fault block translation during the Early Permian. This model differs to previously proposed reconstructions where curvature largely formed by orogen parallel strike-slip transportation during the Hunter Bowen Event.  相似文献   

3.
The southwestern Pacific region consists of segmented and translated continental fragments of the Gondwanan margin. Tectonic reconstructions of this region are challenged by the fact that many fragmented continental blocks are submerged and/or concealed under younger sedimentary cover. The Queensland Plateau (offshore northeastern Australia) is one such submerged continental block. We present detrital zircon geochronological and morphological data, complemented by petrographic observations, from samples obtained from the only two drill cores that penetrated the Paleozoic metasedimentary strata of the Queensland Plateau (Ocean Drilling Program leg 133, sites 824 and 825). Results provide maximum age constraints of 319.4 ± 3.5 and 298.9 ± 2.5 Ma for the time of deposition, which in conjunction with evidence for deformation, indicate that the metasedimentary successions are most likely upper Carboniferous to lower Permian. A comparison of our results with a larger dataset of detrital zircon ages from the Tasmanides suggests that the Paleozoic successions of the Queensland Plateau formed in a backarc basin that was part of the northern continuation of the New England Orogen and/or the East Australian Rift System. However, unlike most of the New England Orogen, a distinctive component of the detrital zircon age spectra of the Mossman Orogen is also recognised, suggesting the existence of a late Paleozoic drainage system that crossed the northern Tasmanides en route from the North Australian Craton. A distinctive shift from abraded zircon grains to grains with well-preserved morphology at ca 305 Ma reflects a direct drainage of first-cycle sediments, most likely from an outboard arc and/or backarc magmatism.  相似文献   

4.
The Late Silurian to Middle Devonian Calliope Volcanic Assemblage in the Rockhampton region is deformed into a set of northwest‐trending gently plunging folds with steep axial plane cleavage. Folds become tighter and cleavage intensifies towards the bounding Yarrol Fault to the east. These folds and associated cleavage also deformed Carboniferous and Permian rocks, and the age of this deformation is Middle to Late Permian (Hunter‐Bowen Orogeny). In the Stanage Bay area, both the Calliope Volcanic Assemblage and younger strata generally have one cleavage, although here it strikes north to northeast. This cleavage is also considered to be of Hunter‐Bowen age. Metamorphic grade in the Calliope Volcanic Assemblage ranges from prehnite‐pumpellyite to greenschist facies, with higher grades in the more strongly cleaved rocks. In the Rockhampton region the Calliope Volcanic Assemblage is part of a west‐vergent fold and thrust belt, the Yarrol Fault representing a major thrust within this system.

A Late Devonian unconformity followed minor folding of the Calliope Volcanic Assemblage, but no cleavage was formed. The unconformity does not represent a collision between an exotic island arc and continental Australia as previously suggested.  相似文献   

5.
Detrital zircon U–Pb LAM-ICPMS age patterns for sandstones from the mid-Permian –Triassic part (Rakaia Terrane) of the accretionary wedge forming the Torlesse Composite Terrane in Otago, New Zealand, and from the early Permian Nambucca Block of the New England Orogen, eastern Australia, constrain the development of the early Gondwana margin. In Otago, the Triassic Torlesse samples have a major (64%), younger group of Permian–Early Triassic age components at ca 280, 255 and 240 Ma, and a minor (30%) older age group with a Precambrian–early Paleozoic range (ca 1000, 600 and 500 Ma). In Permian sandstones nearby, the younger, Late Permian age components are diminished (30%) with respect to the older Precambrian–early Paleozoic age group, which now also contains major (50%) and unusual Carboniferous age components at ca 350–330 Ma. Sandstones from the Nambucca Block, an early Permian extensional basin in the southern New England Orogen, follow the Torlesse pattern: the youngest. Early Permian age components are minor (<20%) and the overall age patterns are dominated (40%) by Carboniferous age components (ca 350–320 Ma). These latter zircons are inherited from either the adjacent Devonian–Carboniferous accretionary wedge (e.g. Texas-Woolomin and Coffs Harbour Blocks) or the forearc basin (Tamworth Belt) farther to the west, in which volcaniclastic-dominated sandstone units have very similar pre-Permian (principally Carboniferous) age components. This gradual variation in age patterns from Devonian–late Carboniferous time in Australia to Late Permian–mid-Cretaceous time in New Zealand suggests an evolutionary model for the Eastern Gondwanaland plate margin and the repositioning of its subduction zone. (1) A Devonian to Carboniferous accretionary wedge in the New England Orogen developing at a (present-day) Queensland position until late in the Carboniferous. (2) Early Permian outboard repositioning of the primary, magmatic arc allowing formation of extensional basins throughout the New England Orogen. (3) Early to mid-Permian translocation of the accretionary wedge and more inboard active-margin elements, southwards to their present position. This was accompanied by oroclinal bending which allowed the initiation of a new, late Permian to Early Triassic accretionary wedge (eventually the Torlesse Composite Terrane of New Zealand) in an offshore Queensland position. (4) Jurassic–Cretaceous development of this accretionary wedge offshore, in northern Zealandia, with southwards translation of the various constituent terranes of the Torlesse Composite Terrane to their present New Zealand position.  相似文献   

6.
The Texas and Coffs Harbour oroclines are defined by a Z-shaped curvature in the southern New England Orogen (eastern Australia), but the geometry and kinematics of faults around these oroclines, as well as their possible role during oroclinal bending, have hitherto not been understood. Using aeromagnetic and open file seismic data, as well as field observations, the pattern, geometry and kinematics of fault systems, have been investigated. Fault traces with a strike-slip component are oriented parallel to the curved magnetic and structural fabrics of the Texas and Coffs Harbour oroclines. Our observations show evidence for sinistral or sinistral-reverse, dextral (or dextral-reverse) and normal kinematics along NW-striking faults. The dominant kinematics along NNE- and NE-striking faults is dextral or dextral-reverse. The timing of faulting is not well constrained, but the ubiquitous recognition of orocline-parallel faults may suggest that a flexural slip mechanism operated during oroclinal bending in the early–middle Permian (ca 299–265 Ma). Our observations indicate that many of the orocline-parallel faults, with strike-slip separation, were reactivated during the Mesozoic and Cenozoic, as indicated by the recognition of displaced Triassic granitoids, Mesozoic sedimentary rocks and Cenozoic basalts.  相似文献   

7.
Australites in an excellent state of preservation are common (up to 1 specimen per 300 m2) in lag gravels flooring corridors between seif dunes in the Motpena and Myrtle Springs areas of the Lake Torrens plain, South Australia. A study of the Quaternary stratigraphy of the region indicates that late Wisconsinan relict dunes (Lake Torrens Formation) are the most likely source of the australites. Radiocarbon dating indicates that the Lake Torrens Formation was deposited between about 24,000 and 16,000 years B.P. As the excellent preservation of most of the australites indicates that they have undergone negligible transport since their infall, it is concluded that the australites fell into the dune field sometime between about 24,000 and 16,000 years B.P.  相似文献   

8.

The Hastings Terrane comprises two or three major fragments of the arc‐related Tamworth Belt of the southern New England Orogen, eastern Australia, and is now located in an apparently allochthonous position outboard of the subduction complex. A palaeomagnetic investigation of many rock units has been undertaken to shed light on this anomalous location and orientation of this terrane. Although many of the units have been overprinted, pre‐deformational magnetizations have been isolated in red beds of the Late Carboniferous Kullatine Formation from the northern part of the terrane. After restoring these directions to their palaeohorizontal (pre‐plunging and pre‐folding) orientations they appear to have been rotated 130° clockwise (or 230° anti‐clockwise) when compared with coeval magnetizations from regions to the west of the Hastings Terrane. Although these data are insensitive to translational displacements, a clockwise rotation is incompatible with models previously proposed on geological grounds. While an anti‐clockwise rotation is in the same sense as these models the magnitude appears to be too great by about 100°. Nevertheless, the palaeomagnetically determined rotation brings the palaeoslopes of the Tamworth Belt, facing east, and the Northern Hastings Terrane, facing west before rotation and facing southeast after rotation, into better agreement. A pole position of 14.4°N, 155.6°E (A95 = 6.9°) has been determined for the Kullatine Formation (after plunge and bedding correction but not corrected for the hypothetical rotation). Reversed magnetizations interpreted to have formed during original cooling are present in the Werrikimbe Volcanics. The pole position from the Werrikimbe Volcanics is at 31.6° S, 185.3° E (A95 = 26.6°). These rocks are the volcanic expression of widespread igneous activity during the Late Triassic (~ 226 Ma). While this activity is an obvious potential cause of the magnetic overprinting found in the older units, the magnetic directions from the volcanics and the overprints are not coincident. However, because only a few units could be sampled, the error in the mean direction from the volcanics makes it difficult to make a fair comparison with the directions of overprinted units. The overprint poles determined from normal polarity magnetizations of the Kullatine Formation is at 61.0°S, 155.6°E (A95 = 6.9°) and a basalt from Ellenborough is at 50.7° S, 148.8° E (A95 = 15.4°), and from reversed polarity magnetizations, also from the basalt at Ellenborough is at 49.4° S, 146.2° E (A95 = 20.4°). These are closer to either an Early Permian or a mid‐Cretaceous position, rather than a Late Triassic position, on the Australian apparent polar wandering path. Therefore, despite their mixed polarity, and global observations that the Permian and mid‐Cretaceous geomagnetic fields were of constant polarities, the age of these overprint magnetizations appears to be either Early Permian or mid‐Cretaceous.  相似文献   

9.
Devonian rocks occur in northeastern Australia within the ‘Tasman Geosyncline’ in three major tectonic divisions—(a) a very broad mobile platform related to the last stages of stabilisation of the Lachlan Geosyncline, marginal to which is found, (b) the volcanic‐rich New England Geosyncline, and (c) a contrasting region in northern Queensland where complex marine to continental sedimentation occurred on cratonic blocks while non‐volcanic flysch‐like sedimentation occurred in the marginal Hodgkinson Basin.

The tectonic setting was governed by differences in the nature of the continental margin, so that the New England Geosyncline and Hodgkinson Basin, which developed along the eastern margin of the continent from the earliest Devonian to the late Palaeozoic, show correspondingly different sedimentation and deformation histories.

An integrated account of the Devonian geology of these regions is given, leading to.an interpretation of the environments of the Devonian in terms of plate‐tectonic movements, generally from the east.

Postulated tectonic zones within the New England Geosyncline region include pre‐Devonian deep ocean deposits with mild high‐pressure low‐temperature meta‐morphism, and Devonian volcanic arc and marginal sea volcanic‐derived deposits. Within the mobile platform to the west, variable marine and continental deposits are associated with volcanicity in the zone transitional to the New England Geosyncline. In the northern region, rifting of the craton and development of an Atlantic‐type margin was followed by subduction with folding and metamorphism at the end of the Devonian.

The Devonian rocks are strongly affected by intense late Palaeozoic tectonic and igneous activity in the eastern marginal regions, but only minor effects are seen to the west.  相似文献   

10.
The New England Orogen (NEO), the youngest of the orogens of the Tasmanides of eastern Australia, is defined by two main cycles of compression–extension. The compression component involves thrust tectonics and advance of the arc towards the continental plate, while extension is characterised by rifting, basin formation, thermal relaxation and retreat of the arc towards the oceanic plate. A compilation of 623 records of U–Pb zircon geochronology rock ages from Geoscience Australia, the geological surveys of Queensland and New South Wales and other published research throughout the orogen, has helped to clarify its complex tectonic history. This contribution focuses on the entire NEO and is aimed at those who are unfamiliar with the details of the orogen and who could benefit from a summary of current knowledge. It aims to fill a gap in recent literature between broad-scale overviews of the orogen incorporated as part of wider research on the Tasmanides and detailed studies usually specific to either the northern or southern parts of the orogen. Within the two main cycles of compression–extension, six accepted and distinct tectonic phases are defined and reviewed. Maps of geological processes active during each phase reveal the centres of activity during each tectonic phase, and the range in U–Pb zircon ages highlights the degree of diachronicity along the length of the NEO. In addition, remnants of the early Permian offshore arc formed during extensive slab rollback, are identified by the available geochronology. Estimates of the beginning of the Hunter-Bowen phase of compression, generally thought to commence around 265?Ma are complicated by the presence of extensional-type magmatism in eastern Queensland that occurred between 270 and 260?Ma.  相似文献   

11.
South Percy Island is located approximately 50 km off the central Queensland coast and comprises a disrupted ophiolite mass alongside a diverse array of metamorphosed felsic and mafic rocks that record several episodes of magmatism, volcanism and deformation from the Permian to Early Cretaceous. This paper aims to constrain the age, affinity and deformation history of these units, as well as to establish the tectonic significance of the terrane. The trace-element compositions of mafic and felsic meta-igneous rocks record a change from MORB-like prior to ca 277 Ma to subduction-related by ca 258 Ma. Overprinting relationships between intrusive phases and deformation features reveal a relative chronology for the tectonothermal evolution of the area, while U–Pb and 40Ar/39Ar geochronology provides absolute age constraints. Deformation is localised around a NNE-striking tectonic contact that separates serpentinised ultramafic rocks from metamorphosed pillow lavas. Early formed ductile fabrics associated with the main episode of deformation (D1) preserve bulk flattening strains at greenschist-facies conditions. Emplacement and post-kinematic cooling ages of a pre-D1 quartz-monzonite dyke constrain the age of D1/M1 deformation and metamorphism to the period between ca 258 and ca 248 Ma. Minor brittle deformation (D2) occurred at ca 230 Ma, based on U–Pb dating of a syn-D2 diorite dyke (ca 231 ± 10 Ma) and several ca 230 Ma 40Ar/39Ar cooling ages. The deformation, metamorphism, and supra-subduction zone magmatism preserved on South Percy Island is correlated with the nearby Marlborough Terrane and more broadly with the second pulse of the Hunter–Bowen Orogeny, which affected much of the central and northern parts of eastern Australia in the late Permian and Early Triassic. Our results support previous suggestions that the second pulse of the Hunter–Bowen Orogeny involved coeval thrust systems in both the inboard and outboard parts of the orogen.  相似文献   

12.
Abstract

This paper summarises current knowledge on metamorphism within the entire New England Orogen (NEO) of eastern Australia. Rocks recording metamorphic assemblages characteristic of each of the three metamorphic facies series (high, medium and low P/T) have been identified within the orogen. These include high P/T blueschists and eclogites, mid P/T orogenic metamorphism and low P/T contact aureoles and sub-regional high-temperature–low-pressure (HTLP) metamorphism (regional aureoles). Metamorphism is described as it relates to six tectonic phases of development of the NEO that together comprise two major cycles of compression–extension. Medium–high-grade contact metamorphism spans all six tectonic phases while low-grade burial and/or orogenic metamorphism has been identified for four of the six phases. In contrast, exposure of high P/T eclogites and blueschists, and generation of sub-regional low P/T metamorphism is restricted to extensional phases of the orogen. Hallmarks of the orogen are two newly identified zones of HTLP metamorphism, the older of which extends for almost the entire length of the orogen.
  1. KEY POINTS
  2. The orogen is dominated by low-temperature rocks while high-temperature amphibolite to granulite facies rocks are restricted to small exposures in HTLP complexes and contact aureoles.

  3. Blueschist metamorphism falls into two categories; that associated with subduction during the Currabubula-Connors continental arc phase occurring at depths of ~13–30?km; and the other of Cambrian–Ordovician age, exposed within a serpentinite melange and associated with blocks of eclogite. The eclogite, initially from depths of ~75–90?km, appears to have been entrained in the deep crust for an extended period of geological time.

  4. A comprehensive review of contact metamorphism in the orogen is lacking and as studies on low-grade metamorphism are more extensive in the southern part of the orogen than the north, this highlights a second research gap.

  相似文献   

13.
The recent review of the Lopingian (upper Permian) stratigraphic framework of the Galilee Basin, prompted a reconsideration of the paleo-environments of deposition. This study interpreted the distribution of sedimentary facies from geophysical logs across the basin complemented by detailed logging from four key wells (GSQ Tambo 1-1A, OEC Glue Pot Creek 1, CRD Montani 1 and GSQ Muttaburra 1). Seven facies associations were identified: terrestrial fluvial, floodplain, lacustrine and mire; and paralic to marine estuarine shoreline, delta and restricted marine. Coal measures (mire facies) are best developed in the northeastern margin of the basin, whereas the southern Springsure Shelf was dominated by marine conditions throughout the Lopingian, only developing terrestrial facies towards the very uppermost Lopingian. The ‘Colinlea Sandstone equivalent’ was deposited in a fluvial system, with tidal influence exhibited in the southern part of the basin, which decreases further north as lacustrine environments become common. The regional transgression represented by the Black Alley Shale can be mapped into the central part of the basin, but based on new exploration data its northern extent is more limited than previously thought. The ‘Burngrove Formation equivalent’ and Bandanna Formation represent a southerly prograding fluvial-deltaic system during the regional regression in the upper part of the Lopingian.  相似文献   

14.

Palaeozoic intrusive rocks of the New England Batholith from the Rockvale district in the southern New England Orogen form three distinct associations: (i) the Carboniferous Rockvale Adamellite, a member of the Hillgrove Suite of deformed S‐type granitoids; (ii) a small I‐type igneous complex on the northwestern margin of the Rockvale Adamellite: several members of this complex have similar chemical compositions to the most mafic members of the Moonbi Suite of New England Batholith I‐types; and (iii) a suite of dyke rocks ranging in composition from calc‐alkaline lamprophyre through hornblende and biotite porphyrite to aplite. Ion‐microprobe U‐Pb zircon analysis indicates intrusion of the Rockvale Adamellite at 303 ±3 Ma (weighted mean 206Pb/238U age; 95% confidence limits). Preliminary investigation of zircon inheritance within the Rockvale Adamellite is consistent with chemical and isotopic indications of derivation of New England Batholith S‐type granitoids from a relatively juvenile protolith. Deformation of the Rockvale Adamellite occurred after complete crystallization of the pluton and prior to emplacement of dykes and I‐type intrusives. K‐Ar biotite and hornblende ages show broadly synchronous intrusion of I‐type magmas and lamprophyre dykes at ca 255 Ma, indicating that mantle magmatism associated with lamprophyres was contemporaneous with the crustal production of I‐type melts. Chemical similarities between the most mafic Moonbi Suite members and calc‐alkaline lamprophyres may also indicate a direct mantle contribution to some I‐type magmas.  相似文献   

15.
The Manning Group is characterised by rapidly filled strike-slip basins that developed during the early Permian along the Peel--Manning Fault System in the southern New England Orogen. Typically, the Manning Group has been difficult to date owing to the lack of fossiliferous units or igneous rocks. Thus, the timing of transition from an accretionary convergent margin in the late Carboniferous to dominantly strike-slip tectonic regimes that involved development and emplacement of the Great Serpentinite Belt (Weraerai terrane) is not well constrained. One exception are rhyolites of the Ramleh Volcanics that were erupted into the Echo Hills Formation. These developed along the dextral Monkey Creek Fault splay east of the Peel--Manning Fault System. Zircons extracted from the Ramleh Volcanics yield a U–Pb (SHRIMP) age of 295.6?±?4.6?Ma that constrains the minimum age of deposition in this basin to earliest Permian. Whole-rock geochemistry indicates these are peraluminous felsic melts enriched in LREE and incompatible elements with strong depletions in U, Nb, Sr and Ti. These are similar in age and composition to the nearby S-type Bundarra and Hillgrove plutonic supersuites. We suggest that extensive movement along the east-dipping Peel--Manning Fault System was responsible, not only for strike-slip basin development at the surface (Manning Group), but was also the locus for crustal melting that was responsible for generating S-type felsic melts that utilised hanging-wall fault splays as conduits to the surface or to coalesce in the crust as batholiths exclusively to the east of the Peel--Manning Fault System.  相似文献   

16.
Detrital zircon from the Carboniferous Girrakool Beds in the central Tablelands Complex of the southern New England Orogen, Australia, is dominated by ca 350–320 Ma grains with a peak at ca 330 Ma; there are very few Proterozoic or Archean grains. A maximum deposition age for the Girrakool Beds of ca 309 Ma is identified. These data overlap the age of the Carboniferous Keepit arc, a continental volcanic arc along the western margin of the Tamworth Belt. Zircon trace-element and isotopic compositions support petrographic evidence of a volcanic arc provenance for sedimentary and metasedimentary rocks of the central Tablelands Complex. Zircon Hf isotope data for ca 350–320 Ma detrital grains become less radiogenic over the 30 million-year record. This pattern is observed with maturation of continental volcanic arcs but is opposite to the longer-term pattern documented in extensional accretionary orogens, such as the New England Orogen. Volcanic activity in the Keepit arc is inferred to decrease rapidly at ca 320 Ma, based on a major change in the detrital zircon age distribution. Although subduction continues, this decrease is inferred to coincide with the onset of trench retreat, slab rollback and the eastward migration of the magmatic arc that led to the Late Carboniferous to early Permian period of extension, S-type granite production and intrusion into the forearc basin, high-temperature–low-pressure metamorphism, and development of rift basins such as the Sydney–Gunnedah–Bowen system.  相似文献   

17.
The southern part of the New England Orogen exhibits a series of remarkable orogenic bends (oroclines), which include the prominent Z-shaped Texas and Coffs Harbour oroclines. The oroclines are defined by the curvature of Devonian–Carboniferous forearc basin and accretionary complex rock units. However, for much of the interpreted length of the Texas Orocline, the forearc basin is mostly concealed by younger strata, and crops out only in the Emu Creek Block in the eastern limb of the orocline. The geology of the Emu Creek Block has hitherto been relatively poorly constrained and is addressed here by presenting new data, including a revised geological map, stratigraphic sections and new detrital zircon U–Pb ages. Rocks of the Emu Creek Block include shallow-marine and deltaic sedimentary successions, corresponding to the Emu Creek and Paddys Flat formations, respectively. New detrital zircon U–Pb data indicate that these formations were deposited during the late Carboniferous and that strata were derived from a magmatic source of Devonian to Carboniferous age. The sedimentary provenance and detrital zircon age distribution suggest that the sequence was deposited in a forearc basin setting. We propose that the Emu Creek and Paddys Flat formations are arc-distal, along-strike correlatives of the northern Tamworth Belt, which is part of the forearc basin in the western limb of the Texas Orocline. These results confirm the suggestion that Devonian–Carboniferous forearc basin rocks surround the Texas Orocline and have been subjected to oroclinal bending.  相似文献   

18.
The Texas Orocline is a prominent orogenic curvature that developed during the early Permian in the southern New England Orogen. Outliers preserving lower Permian sedimentary successions (Bondonga, Silver Spur, Pikedale, Terrica, Alum Rock and Ashford beds) approximately outline the oroclinal structure, but the tectonic processes responsible for the development of these basinal successions, and their relationships to the Texas Orocline, are unclear. Here we address this shortcoming by providing new U–Pb detrital and primary zircon ages from these successions, as well as detailed stratigraphic and structural data from the largest exposed succession (Bondonga beds). Field observations and U–Pb geochronological data suggest that the lower Permian successions in the Texas Orocline are remnants of a single, formerly larger basin that was deposited after ca 302 Ma. Time constraints for formation of this basin are correlative with constraints from the lower Permian Nambucca Block, which was likely deposited in response to regional back-arc extension during and/or after the development of the Texas Orocline. The conclusion that the lower Permian sedimentary basins in the Texas Orocline belong to this back-arc extensional system supports the suggestion that oroclinal bending in the New England Orogen was primarily controlled by trench retreat and associated overriding-plate extension.  相似文献   

19.
LA-ICP-MS U–Pb geochronological data from metamorphic monazite in granulite-facies metapelites in the Barossa Complex, southern Australia, yield ages in the range 1580–1550 Ma. Metapelitic rocks from the Myponga and Houghton Inliers contain early biotite–sillimanite-bearing assemblages that underwent partial melting to produce peak metamorphic garnet–sillimanite-bearing anatectic assemblages. Phase equilibrium modelling suggests a clockwise P–T evolution with peak temperatures between 800 and 870°C and peak pressures of 8–9 kbar, followed by decompression to pressures of ~6 kbar. In combination with existing age data, the monazite U–Pb ages indicate that the early Mesoproterozoic evolution of the Barossa Complex is contemporaneous with other high geothermal gradient metamorphic terranes in eastern Proterozoic Australia. The areal extent of early Mesoproterozoic metamorphism in eastern Australia suggests that any proposed continental reconstructions involving eastern Proterozoic Australia should share a similar tectonothermal history.  相似文献   

20.
The Platypus Tuff Bed in the Permian Moranbah Coal Measures provides a basin‐wide marker horizon traceable for over 300 km along strike. The bed is a tephra event unit, the product of a large‐scale volcanic eruptive episode involving a pyroclastic volume > 10 km3. The relatively even thickness (~1–1.5 m) of the tuff across the entire northern Bowen Basin (~10 000 km2) implies a distant source. The tuff is ash‐rich and its original geochemistry has been compromised by diagenetic alteration. Crystal content (10–15%) is dominated by quartz, suggesting a rhyolitic association. SHRIMP U–Pb analysis of zircons indicates an age of 258.9 ± 2.7 Ma for the Platypus Tuff Bed, confirming the Late Permian age that has generally been assigned to the Blackwater Group. The age framework now apparent for the coal‐bearing Blackwater Group suggests an average depositional rate ranging from ~133 m/106 years for its eastern depocentre in the northern Bowen Basin to ~70 m/106 years in more marginal settings to the west.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号