首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The derivation of dynamic spectra of high energy electrons in flares from high resolution hard X-ray observations is considered. It is shown that the Bethe-Heitler formula for the electronproton bremsstrahlung cross-section over the 20–100 keV range of energies admits of a general analytic solution for the electron spectrum in terms of the X-ray spectrum, in a form convenient for computation. The bearing of this analysis on different models of flare conditions is considered. In examining the hypothesis that the X-rays are produced in regions of high ambient density, the duration of the burst being governed by modulation of the electron source rather than by the decay of trapped electrons injected impulsively, it is emphasised that the energy spectrum of the electrons at their source is different from their effective spectrum in the X-ray emitting region. This spectrum, at the source, is found to be much steeper than that in the X-ray region which means that the entire energy of the flare could reside in the injected electrons.  相似文献   

2.
Asymmetric magnetic field configurations in solar active regions hinder mildly relativistic electrons with magnetic moments suitable to produce microwave radiation from being trapped. Therefore the duration of stay of electrons in the microwave source region is much shorter (<0.2 s) than in the usually assumed trapping models. On this basis we construct a consistent model of hard X-ray correlated microwave bursts due to continuous injection of electrons into a pole field of an asymmetric magnetic loop (Figures 1 and 2). This resolves the discrepancy of the numbers of electrons needed to produce X-ray and radio emission.We compute gyrosynchrotron spectra with the assumption of conservation of the magnetic moment M in the microwave source. The consequence is an anticorrelation between the low frequency power index a of the microwave spectrum and the power index of the hard X-ray spectrum. In fact during the flare of May 18, 1972 increases with time while a is decreasing, so that +a= constant. Furthermore, it is shown that electrons with energies below 100 keV contribute significantly to the microwave radiation; they determine the low frequency spectrum completely.The model is able to explain the most often observed type C-spectra (Guidice and Castelli, 1975), but also flat spectra over one frequency decade.On leave from University of Berne, Institute of Applied Physics.  相似文献   

3.
《New Astronomy》2007,12(6):483-489
A new kind of static distribution function for trapped and precipitating electrons is derived by solving a time-independent Fokker–Planck equation in a magnetic mirror, with injection of initially narrow-beamed electrons at an arbitrary initial pitch-angle. There are two independent parameters to determine the ratio of trapped and precipitating electrons, as well as their emissions, i.e., the mirror ratio and the initial pitch-angle, which is helpful for understanding some new features of asymmetrical hard X-ray and microwave footpoint emissions in solar observations.  相似文献   

4.
Using observations from the ISEE-3 spacecraft, we compare the X-ray producing electrons and escaping electrons from a solar flare on 8 November, 1978. The instantaneous 5 to 75 keV electron spectrum in the X-ray producing region is computed from the observed bremsstrahlung X-ray spectrum. Assuming that energy loss by Coulomb collisions (thick target) is the dominant electron loss process, the accelerated electron spectrum is obtained. The energy spectrum of the escaping electrons observed from 2 to 100 keV differs significantly from the spectra of the X-ray producing electrons and of the accelerated electrons, even when the energy loss which the escaping electrons experienced during their travel from the Sun to the Earth is taken into account. The observations are consistent with a model where the escaping electrons come from an extended X-ray producing region which ranges from the chromosphere to high in the corona. In this model the low energy escaping electrons (2–10 keV) come from the higher part of the extended X-ray source where the overlying column density is low, while the high energy electrons (20–100 keV) come from the entire X-ray source.  相似文献   

5.
The concept of the nanoflare, used in interpreting the solar X-ray corona, is extended to RS CVn stars which, unlike the Sun, exhibit non-thermal quiescent radio spectra. The theoretical synchrotron-radiation radio spectrum emitted by a regular series of nanoflare-electron pulses, injected into the coronal magnetic field, is derived: for an electron energy spectrum N ( γ )∝ γ − s , the spectral power density is given by P ( ν )∝ ν − s /2. This result is valid for the observation of a series of nanoflares with total time duration ≳ the characteristic electron radiation lifetime, which is the case for electrons trapped in extensive coronal regions such as exist in RS CVn stars on the magnetic-dipole magnetospheric model. The tenuous coronal plasma allows the electrons to give a radio spectrum unaffected at high frequencies (≳5 GHz) by electron collision loss, while the emission of bremsstrahlung X-rays by the electrons also occurs with a spectrum that is related to their radio emission. The observation of individual X-ray bursts, which would provide direct evidence for microflares, is not, however, attainable with current instrumentation.  相似文献   

6.
The effect of partial ionisation of a thick target bremsstrahlung source on the emitted X-ray intensity is analysed. It is shown that a totally ionised target produces an X-ray burst only about one third as intense as that from an unionised target.In the case of a solar flare plasma target, the ionisation decreases with increasing depth in the flare. Thus, in an X-ray flare model in which electrons are continuously accelerated down into the chromosphere, high energy photons are produced with increased efficiency in the deeper layers of the flare plasma with consequent hardening of the X-ray spectrum. As a result, the spectra of nonthermal electrons in flares, inferred from X-ray spectra, are steepened and their total energy correspondingly increased.  相似文献   

7.
X-ray fluxes at Earth estimated from hypothetical fluxes and spectra of energetic particles trapped in Jupiter's magnetic field are found to be 1/170000 times the upper limit X-ray flux from Jupiter based on published results from a rocket experiment. Detection of the calculated X-ray flux from Jupiter does not necessarily provide information on an energetic trapped proton component because the X-ray flux due to the hypothetical trapped energetic proton fluxes alone is comparable in magnitude to that due alone to trapped energetic electron fluxes at Jupiter.  相似文献   

8.
Gradual hard X-ray/radio bursts are characterized by their long duration, smooth time profile, time delays between peaks at different hard X-ray energies and microwaves, and radiation from extended sources in the low and middle corona. Their characteristic properties have been ascribed to the dynamic evolution of the accelerated electrons in coronal magnetic traps or to the separate acceleration of high-energy electrons in a second step process. The information available so far was drawn from qualitative considerations of time profiles or even only from the common occurrence of emissions in different spectral ranges. This paper presents model computations of the temporal evolution of hard X-ray and microwave spectra, together with a qualitative discussion of radio lightcurves over a wide spectral range, and metric imaging observations. The basic hypothesis investigated is that the peculiar gradual features can be related to the dynamical evolution of electrons injected over an extended time interval in a coronal trap, with electrons up to relativistic energies being injected simultaneously. The analyzed event (26 April, 1981) is particularly challenging to this hypothesis because of the long time delays between peaks at different X-ray energies and microwave frequencies. The observations are shown to be consistent with the hypothesis, provided that the electrons lose their energy by Coulomb collisions and possibly betatron deceleration. The access of the electrons to different coronal structures varies in the course of the event. The evolution and likely destabilisation of part of the coronal plasma-magnetic field configuration is of crucial influence in determining the access to these structures and possibly the dynamical evolution of the trapped electrons through betatron deceleration in the late phase of the event.  相似文献   

9.
We analyze the time variation of microwave spectra and hard X-ray spectra of 1989 March 18, which are obtained from the Solar Array at the Owens Valley Radio Observatory (OVRO) and the Hard X-Ray Burst Spectrometer (HXRBS) on the Solar Maximum Mission (SMM), respectively. From this observation, it is noted that the hard X-ray spectra gradually soften over 50–200 keV on-and-after the maximum phase while the microwaves at 1–15 GHz show neither a change in spectral shape nor as rapid a decay as hard X-rays. This leads to decoupling of hard X-rays from the microwaves in the decay phase away from their good correlation seen in the initial rise phase. To interpret this observation, we adopt a view that microwave-emitting particles and hard X-ray particles are physically separated in an inhomogeneous magnetic loop, but linked via interactions with the Whistler waves generated during flares. From this viewpoint, it is argued that the observed decoupling of microwaves from hard X-rays may be due to the different ability of each source region to maintain high energy electrons in response to the Whistler waves passing through the entire loop. To demonstrate this possibility, we solve a Fokker-Planck equation that describes evolution of electrons interacting with the Whistler waves, taking into account the variation of Fokker-Planck coefficients with physical quantities of the background medium. The numerical Fokker-Planck solutions are then used to calculate microwave spectra and hard X-ray spectra for agreement with observations. Our model results are as follows: in a stronger field region, the energy loss by electron escape due to scattering by the waves is greatly enhanced resulting in steep particle distributions that reproduce the observed hard X-ray spectra. In a region with weaker fields and lower density, this loss term is reduced allowing high energy electrons to survive longer so that microwaves can be emitted there in excess of hard X-rays during the decay phase of the flare. Our results based on spectral fitting of a flare event are discussed in comparison with previous studies of microwaves and hard X-rays based on either temporal or spatial information.  相似文献   

10.
A simple model is presented to account for theYohkoh flare observations of Feldmanet al. (1994), and Masuda (1994). Electrons accelerated by the flare are assumed to encounter the dense, small regions observed by Feldmanet al. at the tops of impulsively flaring coronal magnetic loops. The values of electron density and volume inferred by Feldmanet al. imply that these dense regions present an intermediate thick-thin target to the energised electrons. Specifically, they present a thick (thin) target to electrons with energy much less (greater) thanE c , where 15 keV <E c < 40 keV. The electrons are either stopped at the loop top or precipitate down the field lines of the loop to the footpoints. Collisional losses of the electrons at the loop top produce the heating observed by Feldmanet al. and also some hard X-rays. It is argued that this is the mechanism for the loop-top hard X-ray sources observed in limb flares by Masuda. Adopting a simple model for the energy losses of electrons traversing the dense region and the ambient loop plasma, hard X-ray spectra are derived for the loop-top source, the footpoint sources and the region between the loop top and footpoints. These spectra are compared with the observations of Masuda. The model spectra are found to qualitatively agree with the data, and in particular account for the observed steepening of the loop-top and footpoint spectra between 14 and 53 keV and the relative brightnesses of the loop-top and footpoint sources.  相似文献   

11.
Gan  W.Q.  Li  Y.P.  Chang  J.  Tiernan  James M. 《Solar physics》2002,207(1):137-147
By changing a dimensionless calculation to a dimensional one, introducing a more accurate bremsstrahlung cross section, and using a more reasonable fitting energy range, we have recalculated the hard X-ray bremsstrahlung produced by a beam of power-law electrons with a lower energy cutoff (E c). The method to deduce E c from the hard X-ray spectral observations has therefore been refined in comparison with our previous one. The universality of this method has been clarified and discussed. We have applied this improved method to the 54 BATSE/Compton Gamma Ray Observatory (CGRO) hard X-ray events. It was found that about 44% of sample hard X-ray spectra can be directly explained by a beam of power-law electrons with a lower energy cutoff. The value of E c, varying from 45 keV to 97 keV, is on average 60 keV. Another 44% of sample hard X-ray spectra might be explained by a beam of power-law electrons with the energy cutoff lower than 45 keV, which is however beyond the availability of BATSE/CGRO. Still another 11% sample hard X-ray spectra cannot be explained by a beam of power-law electrons with a lower energy cutoff. These results, based on the lower energy resolution data, however, should be compared in the future with that based on a higher energy resolution data, like the data from HESSI.  相似文献   

12.
In this paper we discuss a set of three consecutive VLBI observations of the binary system UX Arietis. The most interesting result is the variation with time of the source structure. The usual interpretation in terms of gyrosynchrotron emission from relativistic electrons trapped in a magnetic loop and undergoing collisional and radiative losses is not able, alone, to explain the observed variations. By using optical, radio and X-ray information we have produced a model of two giant loops anchored on a rotating star. As the star rotates, the loops change their relative position and orientation with respect to the line of sight, causing the observed variation of the source structure. The qualitative agreement found is consistent with our hypothesis and makes these observations a sort of a pilot experiment for a new way of using VLBI to observe radio-stars. In order to quantitatively test our model of evolving electrons confined in loops anchored on a rotating star, we plan in the near future a set of several phase-reference VLBI observations fully covering the 6.4 day rotational period.  相似文献   

13.
The effects of dust charge fluctuations and deviations from isothermality of electrons are incorporated in the study of nonlinear dust ion-acoustic waves. Deviations from isothermality of electrons are included in this model as a result of nonlinear resonant interaction of the electrostatic wave potential with electrons during its evolution. The basic properties of stationary structures are studied by employing the reductive perturbation method, and conditions for the formation of small but finite amplitude dust ion-acoustic solitary waves in the space dusty plasma situations are clearly explained. It is shown that a more depletion of the background free electrons owing to the attachment of these electrons to the surface of the dust grains during the charging process can lead to the formation of solitary waves with smaller amplitude. Furthermore, effects of the dust charge fluctuation and deviations from isothermality of electrons show a non-uniform behavior for the amplitude of solitary waves in transition from the Boltzmann electron distribution to a trapped electron one. It is also found that the dust charge fluctuation caused by trapped as well as free electrons is a source of dissipation, and is responsible for the formation of the dust ion-acoustic shock waves.  相似文献   

14.
Observations of interplanetary relativistic electrons from several solar-flare events monitored through 1964 to mid-1967 are presented. These are the first direct spectral measurements and time histories, made outside the magnetosphere, of solar-flare electrons having relativistic velocities. The 3- to 12-MeV electrons detected have kinetic energies about two orders of magnitude higher than those solar electrons previously studied in space, and measurements of both the time histories and energy spectra for a number of events in the present solar cycle were carried out. These measurements of interplanetary electrons are also directly compared with solar X-ray data and with measurements of related interplanetary solar protons.The time histories of at least four electron events show fits to the typical diffusion picture. A demonstrated similarity between the electron and the medium-energy proton fits for the event of 7 July, in particular, indicates that at these electron energies, but over several orders of magnitude of rigidity, whatever diffusion does take place is very nearly on a velocity, rather than a rigidity or an energy, basis. Diffusion-fit time histories varied as a function of T 0 also indicate that the electrons in certain flare events originate at times near the X-ray and microwave burst, establishing their likely identity as the same electrons which cause the impulsive radiations. Also, the energy spectra and total numbers of the interplanetary electrons, compared with those of the flare-site electrons calculated from X-ray and microwave measurements, indicate that probably a small fraction of flare electrons escape into interplanetary space.  相似文献   

15.
We present a full set of model atmosphere equations for the accretion disc around a supermassive black hole irradiated by a hard X-ray lamp of power-law spectral distribution. Model equations allow for multiple Compton scattering of radiation on free electrons, and for large relative photon–electron energy exchange at the time of scattering. We present spectra in specific intensities integrated over the disc surface. Theoretical outgoing intensity spectra show soft X-ray excess below 1 keV, and distinct Kα and Kβ fluorescent lines of iron. We demonstrate the existence of the Compton Shoulder and claim that it can contribute to the asymmetry and equivalent widths of some observed Fe Kα lines in active galactic nuclei. Our models exhibit the effect of limb-brightening in reflected X-rays.  相似文献   

16.
The M7.7 solar flare of July 19, 2012, at 05:58 UT was observed with high spatial, temporal, and spectral resolutions in the hard X-ray and optical ranges. The flare occurred at the solar limb, which allowed us to see the relative positions of the coronal and chromospheric X-ray sources and to determine their spectra. To explain the observations of the coronal source and the chromospheric one unocculted by the solar limb, we apply an accurate analytical model for the kinetic behavior of accelerated electrons in a flare. We interpret the chromospheric hard X-ray source in the thick-target approximation with a reverse current and the coronal one in the thin-target approximation. Our estimates of the slopes of the hard X-ray spectra for both sources are consistent with the observations. However, the calculated intensity of the coronal source is lower than the observed one by several times. Allowance for the acceleration of fast electrons in a collapsing magnetic trap has enabled us to remove this contradiction. As a result of our modeling, we have estimated the flux density of the energy transferred by electrons with energies above 15 keV to be ~5 × 1010 erg cm?2 s?1, which exceeds the values typical of the thick-target model without a reverse current by a factor of ~5. To independently test the model, we have calculated the microwave spectrum in the range 1–50 GHz that corresponds to the available radio observations.  相似文献   

17.
An intense solar X-ray burst occurred on April 1, 1981. X-ray images of this gradual hard X-ray burst were observed with the hard X-ray telescope aboard the Hinotori satellite for the initial ten minutes of rise and maximum phases of the burst. The hard X-ray images (13–29 keV) look like a large loop without considerable time variation of an elongated main source during the whole observation period. The main X-ray source seems to lie along a ridge of a long coronal arcade 2 × 104 km above a neutral line, while a tangue-like sub-source may be another large coronal loop although the whole structure of the X-ray source looks like a large semi-circular loop. Both nonthermal and hot thermal (3–4 × 107 K) electrons are contributing to the source image. The ratio of these components changed in a wide range from 2.3 to 0.4 during the observation, while the image was rather steady. It suggests that both heating and accelerations of electrons are occurring simultaneously in a common source. Energetic electrons of 15–30 keV would be collisionally trapped in the coronal magnetic loops with density of the order of 1011 cm–3.  相似文献   

18.
We study X-ray spectra of Cyg X-3 from BeppoSAX , taking into account absorption and emission in the strong stellar wind of its companion. We find the intrinsic X-ray spectra are well modelled by disc blackbody emission, its upscattering by hot electrons with a hybrid distribution, and by Compton reflection. These spectra are strongly modified by absorption and reprocessing in the stellar wind, which we model using the photoionization code cloudy . The form of the observed spectra implies the wind is composed of two phases. A hot tenuous plasma containing most of the wind mass is required to account for the observed features of very strongly ionized Fe. Small dense cool clumps filling ≲0.01 of the volume are required to absorb the soft X-ray excess, which is emitted by the hot phase but not present in the data. The total mass-loss rate is found to be  (0.6–1.6) × 10−5 M yr−1  . We also discuss the feasibility of the continuum model dominated by Compton reflection, which we find to best describe our data. The intrinsic luminosities of our models suggest that the compact object is a black hole.  相似文献   

19.
We investigate the hydrodynamics of accretion channelled by a dipolar magnetic field (funnel flows). We consider situations in which the electrons and ions in the flow cannot maintain thermal equilibrium [two-temperature (2T) effects] due to strong radiative loss, and determine the effects on the keV X-ray properties of the systems. We apply this model to investigate the accretion shocks of white dwarfs in magnetic cataclysmic variables (mCVs). We have found that the incorporation of 2T effects could harden the keV X-rays. Also, the dipolar model yields harder X-ray spectra than the standard planar model if white dwarf is sufficiently massive  (≳1 M)  . When fitting observed keV X-ray spectra of mCVs, the inclusion of 2T hydrodynamics and a dipolar accretion geometry lowers estimates for white dwarf masses when compared with masses inferred from models excluding these effects. We find mass reductions ≲9 per cent in the most massive cases.  相似文献   

20.
The generation of lower-hybrid waves by cross-field currents is applied to reconnection processes proposed for solar flares. Recent observations on fragmentation of energy release and acceleration, and on hard X-ray (HXR) spectra are taken into account to develop a model for electron acceleration by resonant stochastic interactions with lower-hybrid turbulence. The continuity of the velocity distribution is solved including collisions and escape from the turbulence region. It describes acceleration as a diffusion process in velocity space. The result indicates two regimes that are determined by the energy of the accelerating electrons which may explain the double power-law often observed in HXR spectra. The model further predicts an anticorrelation between HXR flux and spectral index in agreement with observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号